“<EFINIX.

Efinity” Software User Guide

UG-EFN-SOFTWARE-v13.5
April 2024
www.efinixinc.com

Copyright © 2024. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Efinity Software User Guide

Contents

B GUIES ettt ettt ettt ettt e a et h ettt h et b ettt ea et b et b et naees v
BT o113 OO OO OSSOSO vii
Introduction ix
INEW 1N V20232t ettt ettt eb e bbbttt ettt ettt ene e X

Using an Existing Project with a New Software Version.........c.cccceveinieinieinieinieeseeieveieve e X
WHETE 10 LEAIN MOT@ ..ottt ettt ettt enene Xi
Hardware and Software Requirements xii
Chapter 1: Setting Up 15
EFiNity QUICK STt . ittt 15
Setting General Tool PreferenCes. ...ttt 16
Auto-Load Place-and-Route Data.......cccciieiiieiiieiiiesieee ettt 16

Efinity Main WINGOW. ...c.ooueiiieiieieee ettt ettt ettt n e ese e 17
Chapter 2: Managing Projects 18
PrOJECT EItOr ittt 18
PrOJECT Pan@ ... e e e e 22
Migrating a Project to another FPGA.......cco et 22

USING VHDL LIDIariEs. ...c.ciueiiiiiiiiieieieietrte ettt sttt sttt 24
Chapter 3: Running the Tool Flow 26
Run the Flow with the Dashboard Controls.........c.ccviriiniiniiee e 26

Run the Flow from the Command LiNe......oociiiieiiieeee e 27
AADOUEL EFINity” SYNMTRESIS...cenveeeeeeeeeeeeeeeeeeeeeeee oo eeeeeeeeeeeeee e s e ee e eses e e e eeseeeee s eeseeee s eeseeeeeseee 27
INETIIST PANE.....iiiiieiie ettt b ettt ettt ettt b et nnens 28
NELHST VIEWET (BELA).....eeiiiieiie ettt ettt e et e sttt e et e e et a e s et eeeaaeeeeaaeean 29
Opening the Netlist VIEWET. ...ttt 30

W4 o101 [oV TR OO 30

Highlighting @and Marking.......ooeieeieieiceeeeeee ettt 30

Viewing the Netlist HIerarchy........ocooioieiiiiiieeee e 31

FINAING EIEMENTS.c..iiiitieiieiceceeee ettt ettt ebe b et e s eseeneeneenas 31

Viewing a User-Defined Ele@mMeEnt........cccuciiiiiiiiiicceeee ettt 32

Viewing an Element's CoONNECHIVITY....ooiiieieieiiieieeieseeee et 32

Viewing the ACHON HiSTOMY....iiiiiiiieieieieeet ettt ebe bbb eseene s 32

Viewing Messages aNd LOGS. ...oiiiiieiiieieieeeieste ettt sttt ettt eteeseebesbe s esseseeseeseaseeseesens 32
RESUIT PAN@.c.iiiiie ettt b ettt sttt 33
Viewing Place-and-RoOUte RESUILS.......cc.cciiiiiiiiieieece et 34
Chapter 4: Using the IP Manager......eeeeieeecccisssssnneeeecccsssssnsssssesscss 36
Supported [P Cores by FamMily.....cccoiiiiiic et 37

Using the IP Configuration Wizard........c..ceeoriiiniieicec ettt 38
GENEIATEA FlES. ettt ettt ettt ene e 39
Instantiating 1P in YOUr Project........coiiiiiic e 39
Managing 1P in YOUr Project.........ciiiiii e 40

[P SEHINGS FilEu ettt 42
Getting Updated [P.....coiiiii ettt 42
Chapter 5: Constraining Logic and Assigning Pins 43
ADbOUL the INtErface DeSIgNEr. ..ottt 44

LTy @ 1T o1 =Y o TSP 44

USING the RESOUICE ASSIGNET...iiiiiiiiiiciiiciitcent ettt ettt 47
RESOUINTE VIBW....iiiiiiiiiee ettt ettt sttt sae e sttt e sbe e saee st enaeeeee 47

V/\/\/\\/.eﬂﬂ.\XHWC.CO!ﬂ

Chapter 6: Analyzing Timing

Chapter 7: Simulating

Chapter 8: Debugging

Chapter 9: Configuring an FPGA

Importing and EXporting ASSIGNMENTS.......ciiiiieirieeeeeeet ettt
Interface SCriptiNG Fileu .. .ot
.CSV File fOr GPIO BIOCKS. ..ottt

WOrKing With PrimitiVES.....ccueei ettt
Enabling Manual ASSiGNmMENTS.... ...
ASSIGNMENT RUIES ..ttt
Creating a Location Assignment File.......occiriiiniiiicieceeee e,
Constraining Routing Manually (Beta)......cocoeecoirieiiinniieinieiettneeeeeseeree e

SIMUIBTION IMOA@IS ... ettt et et e e e eens
Changing the Default Testbench NameEs.....cocciviiiieiiiiiiccee et
Simulate with the IVerilog SImUIAtOr. ..o

VIEW WaAVETOIMIS.c..vii ittt ettt ettt ettt eaeeaseae
Simulate with the ModelSim SImMUIBTOT........c.oooiiec e
Simulate With the NCSImM SimUIGTOt

Profile Editor PErspeCliVe.o uciieieeee ettt
Virtual 1/0 Debug Core. ..ottt
Logic Analyzer Debug Core. ...ttt
DEbUG WIZATd. ..ttt a ettt bbbttt aens
D UG PEISPECHIVE ...ttt bbbttt ettt n e e e
LOGIC ANAlYZET PErSPECTIVE. ...ttt ee
Virtual 1/0 PerspeCtiVe.......c.ciririiciiiniicieic ettt
Db UGGET OPTIONS. .ttt ettt skttt
CoNCUITeNt DEbUGGING. ..ottt ettt
RESOUICE USBGE ... e e
Disable the Debug Core. ..ottt

FPGA Configuration MOES.....c..ueuiiiiieieirieee ettt
Flash Programming MOES.......cccociiiiniiiniiineiet ettt ettt sttt
About the Programmer GUIL. ..ottt ettt
Edit the SPI ACtive ClOCK ... e
Generate a Bitstream (Programming) File ..o
About the BRAM Initial Content Updater......c..cciiiiiiiniincieicenicnieetsetsee e
Updating the BRAM Initial Content.......cccoeiiiiiiinieeienecnceereeseeee e
Using the EXample Files. ...t
Command-Lineg INterface......cooiieiieee e
WOrking With BitSIre@mS.....c.ciieiriiirieirei ettt ettt ettt
Edit the Bitstream Header ...ttt
Bitstream CoOmMPIeSSION.....cc.iiiiiiiieice et e
Export to Raw Binary Format. ...
EXPOIt t0 .SV FOIMat . et
Convert to Intel Hex Format at the Command Line........cccceeviniiniiinicniiicececeeeeae
Combine Bitstreams and Other Files......c..ccciiiiiiiiieceeeee e
SPI PrOgramMING. ...ttt et ettt
Program @ Single IMage. ..ottt e
Program Multiple IMmages (CBSEL).......coviriiiiniiriiceceeeee et

Program Multiple Images (Internal Reconfiguration).........cccoeoiieoiieoineineineceeeee 94

Program Multiple Images (Bitstream and Data).......ccccoeereireiiiinieesecseesee e 94

Program @ Daisy Chain.....c.ccccoiiiiiiciec ettt 95

JTAG PrOgramMing....cccccceeceeieeeieeeietete ettt ettt sttt ettt ettt sttt b e 96

JTAG DEVICE IDS.cuiiniinieiieiieiieit ettt ettt sttt et ettt 96

Program @ Single IMage ...ttt 96

Program Using @ JTAG ChaiN....ccooeiininieiiieccnseee ettt 97

Program using a JTAG Bridge (NEW)......cccccoiriiiiininiiiiinneecrreeecneeteie st 98

Program using a JTAG Bridge (LEGACY)...c.cueueeririeiiiriiectreieie ettt 99

JTAG Programming with FTDI Chip Hardware......c.cocccceoniiinnncinnccneccceene 100

FDTI Programming at the Command LiNe........ccccorieininiiciininccnreeeeseeee e 100

Using the Command-Line Programmer ...ttt 103
Project-Based Programming OptioNs.......c.uieiirieieiiniiieienieieietresetet ettt 104
Configuration STAatus REGISTEN......c.ueiiiriiiiieiiee ettt 108
Verifying Configuration with the Programmer..........ccveiniiinii e 109
Securing Titanium BitStre@miS.......couoiiiiiiiicc et 110

Using the Efinity Bitstream Security Key Generator.........c.covveecirnieecenneeinnieecnnenes 111

Blowing Fuses with the SVF Player.......cccoviiiiiiiiiiciicc et 113

Enabling Security for YOUr Project. ...ttt 115

Workflow for Using Security FEAtUres........cccvveuiiriieiiinneccreece et 115

Verifying SECUItY SEHINGS....cveiiririeiiiriieitc ettt 117

Chapter 10: Working with JTAG .svf Files 118
USING the Efinity SVF Player.....cooeieee ettt 118
Chapter 11: Working with Remote Hardware........ccccceveeeeeeccccceensnnneeccccsscccsssssescessssscsssssssssssesssnes 120
Appendix: Installing USB Drivers 122
INStalling the LiNUX USB DIFiVET....cc.ciiiiieiieiecieieieieiiet ettt ettt sve st ese e esessessessensenseneas 122
Installing the WINAOWS USB DIIVET.......cociviiieieieiciieieeeeee ettt ene s 123
Appendix: Connecting Programming Hardware...........cccceeeernneeeecccccccessssesceecssscesssssssssssssscssssses 124
SPIl Programming CoONNECTIONS. ..ottt ettt ettt sttt sttt e sttt ebe st entesteeneesaeeneensens 124

JTAG Programming Connections (Trion FPGAS)......cccoiiiieriiieest ettt 125

JTAG Programming Connections (Titanium FPGAS)......coieiriiieeeiee et 126
Appendix: Efinity Tools 128
Appendix: Efinity Project Files 129
Efinity Source Files for Version Control........coieiiiiiiiiiieieicieieieeve ettt evens 129
Bitstream GeNEratioN... ..o 129
[D]oY oYU e o= SO OSSO RUUSUPSUURPTPT 130
INEEITACE DESIGNEI . ittt ettt ettt ettt ettt ettt b st b et b et b e s b ese b es e s eseebessebess b essebeseebeseesens 131

P ekt k etk ekttt ettt 134
PlACEMENT. ...ttt 135

[Lo 1= ot SO OO U U U PRSP 136
ROUTING . ettt ettt sttt e e ettt et st e st e st e est ekt es e et e eteenbeeheen b e ke ertentesheentesteennenteas 136

Y IENESIS ettt ettt b et bbb sttt te b b e b et e st enteteeteeaeeaeebeebensententeneenees 138
Appendix: Shortcuts 140
Appendix: Icon List 141

Revision History 144

Efinity Software User Guide

Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

Figure 31:

DESIgN FIOW OVEIVIEW. ...uiieiiieiiietiiete ettt ettt ettt ettt ix
General TOO| Pref@rEenCeS.ci ettt 16
EFiNity Main WINAOW...ouciieiiieiiieiiieeee ettt b ettt eb et b st b st s esbese s esessesensesens 17
Project EQItor = ProjeCt Tabottt 18
Project EQitor - Design Tabo ittt 19
Project Editor - Synthesis Tab......ooiiiee e 20
Dashboard CoNntrOlS. ..ottt st 26
USING the NSt PaN@....c.cceiiicieiicc ettt 28
INETIST VIBWE ..ottt 29
1 Opening the Netlist VIEWETottt 30
S FINAING ElEMENTS .ttt 31
2 USING the RESUIT Pan@....ouiieeicecee ettt 33
D FIOOTPIAN EItON ittt 35
: Project Pane > IP Folder Context-Sensitive MenU........cccccovieiinniiinncisceccseee e 41
: Conceptual View of INnterface BIOCKS.ccocviviiiieiiiiiieecece ettt 44
2 IO ACE DIESIGNET ..ttt 45
T RESOUICE ASSIGNEN ... e 46
T RESOUICE VIBW ..o 48
T PACKAGE PlanNEr .o it 51
Y] =i LYo I T DO OSSOSO 52
PIN QUICK VIBW ..ttt s 52
BrOWSING TOT PiNS. ettt 53
Tiles in the FIoorplan EditOr. ...ttt e 55
Bevhavioral Simulation Example .do Macro........cccoiieieieicieeceeee e 68
Post-Synthesis Simulation Example .do Macro........ccoiveireineiineireceeseeseeee e 68
Debugger Profile Eitor Perspective.o ettt 71
Virtual I/O Core BloCk Diagram.. ..o ettt ene s 72
Logic Analyzer Core Block Diagrami........coieiieiieeese e 74
Debug Perspective GUI - LOGIC ANAIYZET.....cciiiiiiiiceicecrece e 78

ViIrtUal [/0 DebUGGEI .ottt sttt st b e b eseeneenenaens 79

Flash Programming Board SEtUP......ccoeiieireiietetse ettt 83

www.efinixinc.com

FIGUIE 32 PrOGIaMIMET ittt ettt bttt et b et ettt h e eb e bbbt ettt sbe e ee 84

Figure 33: BRAM Initial Content UpPdater........cooveiiiiieiinnieeiseee et 88
Figure 34: Setting Programming Options (TriON)......ueciiieririeereerieeeese e e 106
Figure 35: Setting Programming Options (TIHaniUm)....c..ccceeririninineeieieenene et 107
Figure 36: Bitstream AUTNENTICATION. ...ttt 110
Figure 37: Bitstream ENCIyPlion. ..o ettt ettt 111
Figure 38: Disabling JTAG ... ettt ettt ettt ebe e 111
Figure 39: Efinity Bitstream Security Key GeNerator. ..ottt 112
FIGUIE 40 SVE Play@r.. .ottt ettt ettt s ettt e b et et e s eseeneeseeseeseesessesenseneeneas 114
Figure 41: Advanced Device Configuration Status Security Signals.......cccccoeireiniiinnineieceee 117
FIGUIE 421 SV Playr...cocicieeiieeieee sttt ettt ettt sttt nenes 119
Figure 43: SPI Flash Programming with FTDI FT2232H and FT4232H Mini Module Connections

(THION FPGAS). oottt e et e et e et e e et e e eaa e e e eaaeeenteeeenaeseeneeeeeaeeeeteeeaneeean 124
Figure 44: SPI Flash Programming with FTDI FT2232H and FT4232H Mini Module Connections

(THANTUM P GAS). ettt e e e e e e e e e e et e e e e etae e e e e etreeeeeetreeeeeeareeeeens 124
Figure 45: Connect FT2232 Mini Module to JTAG Pins plus CRESET_N and SS_N......ccccooevevecinrnnne. 125
Figure 46: Connect FT4232 Mini Module to JTAG Pins plus CRESET_N and SS_N......cocovenvinienneae 125
Figure 47: Connect FT2232 Mini Module to JTAG PiNS.....ccccviiinnieireetreee et 126
Figure 48: Connect FT4232 Mini-Module to JTAG PiNS.....ccooeieieirieieese et 126
Figure 49: Connect FT2232 Mini-Module to JTAG PiNS....cccoiiriiriieieereeeeeeee e 127

Figure 50: Connect FT4232 Mini-Module t0 JTAG Pins.....coieiirrieirecc e 127

Efinity Software User Guide

Tables

Table 1: Titanium FPGAs Supported in Efinity Software v2023.2Refer to the release notes on the

web site for the latest support. Software patches often enable new device support.........ccccevevevenennee. ix
Table 2: Trion FPGAs Supported in Efinity Software v2023.2.......ccooiiiiiiiiiieeeeee et X
Table 3: Machine Memory REGUITEMENTS.c.ciiiiiieiiieet et Xii
Table 4: Linux Operating SYSTEMici ittt sttt ettt tessesbesesesteneeneeseeseenenes xiii
Table 5: Synthesis ProjeCt SEtNGS. ...oi ittt ee 20
Table 6: Compilation Files and REPOIS. ..ottt 33
Table 7: Interface DesiGNer FIlES.. ...ttt sttt est bbb s b s b s b essebessesens 34
Table 8: IP Cores Supported By Family.......ooiiiiieee ettt 37
Table 9: End of Life IP Cores by Family......ccoiiii et 38
Table 10: Example GPIO .CSV File.. it 50
TabIEe 112 FPGA TilE Ty 0O ittt ettt ettt sttt be st st sena s 54
Table 12: Mapping Trion Primitives to Tiles and Sub-Blocks........ccoveiirieiiniicccecces 56
Table 13: Mapping Titanium Primitives to Tiles and Sub-Blocks........cccooveieieiiiiiiiecee e 56
Table 14: Mapping Primitives tO TileS......oiiiiiiiiieie e 57
Table 15: Primitive Simulation Models. ..ot 65
Table 16: Virtual 1/O Core POIS.......ccciiiiiiireectrecete ettt 72
Table 17: Logic ANalyzer Core POIMS. ..ottt sttt 74
Table 18: DebUgQer OPtioNS. ..ottt sttt st es 80
Table 19: FPGA Configuration MOESs.......cocveiiiiiiiiiieieieieieeie ettt s s b s esens 82
Table 20: Flash Programming MOA@S......coociiiiiiiiiieeiee et 83
Table 21: Internal Oscillator Clock SEttNGS......c.eiriiieiiirice e 86
Table 22: BRAM Initial Content Updater CLI OptioNnS.......cceveiviierierieieieieeete et 90
Table 23: Modes when Combining IMages.......ci ittt et 92
Table 24: Titanium JTAG DEVICE IDS i ittt ettt s e e 96
Table 25: Trion JTAG DeViCe IDs.....coo ittt ettt ettt 96
Table 26: Project-Specific Programming OptioNS......cocereereirieiireereiereteseie ettt 104
Table 27: Configuration Status REGISTEN.......c.ciiiiieiicee e 108
Table 28: Efinity Tools Used for Securing BitStreams........cccoueirieiiicinieiieeieesieieieeeieteie e 110
Table 29: Project Options fOr SECUITY...c.ciiiiiieirieee et 115
Table 30: USB Programming CoONNECHIONS......cciriieiiiririietttretetei ettt ettt 122
TablEe 3712 EfiNITY TOOIS . iuiiieiiieiiieticiett ettt ettt ettt sttt et b et e beseebese b eseesesesbeseebassebessebeseesesennas 128

www.efinixinc.com

Table 32: Shortcuts

Table 33: Document ReVISION HISTOIY.......ciiriieiiiriciee ettt

Introduction

The Efinity” software provides a complete tool flow for designing with Efinix” FPGAs and

cores. The graphical user interface (GUI) provides a visual way for you to set up projects,

run the software flow, view floorplan information, and build the interfaces that surround the

Efinity Software User Guide

logic portion of your design. You use the command-line to perform simulation and automate

the flow using scripts.

Figure 1: Design Flow Overview

GUI or Command Line

Build
Interface

B cuionly [Command Line Only

Place and
— —>
Route

Table 1: Titanium FPGAs Supported in Efinity® Software v2023.2"

Program
FPGA

FPGA Package Bitstream Timing Pinout
Ti35 F100S3F2, F225 v Final Final
F100 v Final Final
F256 - Final Preliminary
Ti60 W64, F100S3F2 v Final Final
F100 v Final Final
F225 v Final Final
F256 - Final Preliminary
Ti90 J361, G400, J484, L484, G529 v Final Final
Ti120 J361, G400, J484, L484, G529 v Final Final
Ti135 C529 Preliminary Preliminary
Ti180 J361, G400, J484, v Final Final
L484, M484, G529
Ti200 C529 - Preliminary Preliminary
Ti375 C529 - Preliminary Preliminary

(1

Refer to the release notes on the web site for the latest support. Software patches often enable new device support.

www.efinixinc.com

Efinity Software User Guide

Table 2: Trion FPGAs Supported in Efinity® Software v2023.2

FPGA Package Bitstream Timing Pinout
T4 F49, F81 v Final Final
T8 F49, F81, Q144 v Final Final
T13 Q100F3, F169, F256 v Final Final
T20 W80, Q100F3, F169, v Final Final
Q144, F256, F324, F400
T35 F324, F400 v Final Final
F256 - Final Preliminary
T55,T85,T120 F324, F484, F576 v Final Final

New in v2023.2

The Efinity” software v2023.2 has the following new features and enhancements:

Added support for the Ti375 FPGA in C529 packages.

Improved quality of results (QoR) and faster runtime for Titanium FPGAs:

— 3x faster runtime in the router.

— Opverall place-and-rooute runtime reduced by 50%.

System memory requirements reduced by 50%.

Updated synthesis options.

Timing and SDC support:

— Improved templates for SDC commands so you do not have to calculate the delays
manually.

— Added exception support for point-to-point combinational delays

— Support for ge t fanout command

Programmer:

— New SPI Active using JTAG Bridge mode that is substantially faster than the
previous (now legacy) mode.

— Includes pre-built .bit files for Titanium and Trion FPGAs. With these files you can

easily use the JTAG SPI flash loader for programming the flash on your board without
creating a project with the JTAG SPI Flash Loader IP core.
IP Manager—Streamlined flow for the Sapphire High-Performance RISC-V IP core; the
IP Manager adds the necessary Interface Designer blocks so you do not have to add them
manually.

Using an Existing Project with a New Software
Version

If you are upgrading from an older Efinity version, previously generated compilation files
(such as old synthesis and place and route output files) may not be compatible with the new
version of Efinity software. If the old files are not compatible, the software will prompt you
to re-compile.

www.efinixinc.com X

Efinity Software User Guide

Important: When you open an existing project in a newer software version the Efinity software
updates the project files with version-specific modeling information; the project files are not backwards
compatible. Therefore, Efinix recommends that you make a backup of your project if you may want to
open it again in an previous software version.

Where to Learn More

The Efinity” software includes documentation as PDF user guides and on-line HTML help.
This documentation is provided with the software. You can also access the latest versions of
PDF documentation in the Support Center:

¢ Efinity Software User Guide

¢ Efinity Synthesis User Guide

¢ Efinity Timing Closure User Guide

e Efinity Software Installation User Guide
e Efinity Trion Tutorial

¢ Efinity Debugger Tutorial

¢ Titanium Interfaces User Guide

¢ Trion Interfaces User Guide

¢ Efinity Interface Designer Python API

¢ Quantum® Trion Primitives User Guide
¢ Quantum® Titanium Primitives User Guide

In addition to documentation, Efinix field application engineers have created a series of videos
to help you learn about aspects of the software. You can view these videos in the Support
Center.

www.efinixinc.com Xi

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTDBG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM

Efinity Software User Guide

Hardware and Software Requirements

General Requirements

 Efinity full release: 64-bit, x86 instruction set architecture
* Windows Standalone Programmer.
— Windows 10: 64-bit x86 instruction set architecture.
— Windows 11: 64-bit x86 instruction set architecture.
* Computer with a 64-bit operating system.
— A 64-bit Windows system is required for the Efinity standalone programmer.

— A 64-bit Windows system is required for using the security tools in the Efinity
standalone programmer.

* Your preferred text editor such as Notepad, gVim, Visual Studio
* Machine memory requirements (when running Efinity design compilations):

Table 3: Machine Memory Requirements

Product Model Memory
Trion T4,T8,T13,T20, T35 8 GB
T55,T85,T120 16 GB
Titanium Ti35, Ti60 8 GB
Ti90, Ti120, Ti180 16 GB
Ti135, Ti200, Ti375 32GB

Windows Requirements

* Windows 10 or later, 64 bit operating system
* Microsoft Visual C+ + 2019 x64 runtime library (or latest version) redistributable

Note: If you want to use the stand-alone Programmer, you also need to install the
x86 and x64 libraries (for 64-bit systems).

° Zadig software to install USB drivers
see on page 123

 Java 64-bit runtime environment; required for configuring the Sapphire RISC-V SoC and
DMA Controller in the IP Manager; available from:

_ (Java 8)
— (Open]DK 8 or 11)
— (OpenJDK 16)

Note: You may also use other Java software platforms that are available in the
market.

Note: The path <drive>:\Windows\System32 must exist in %PATH% if you have a customized
environment variable.

www.efinixinc.com Xii

https://docs.microsoft.com/en-us/cpp/windows/redistributing-visual-cpp-files?view=msvc-170
https://docs.microsoft.com/en-us/cpp/windows/redistributing-visual-cpp-files?view=msvc-170
https://www.java.com/en/download/manual.jsp
https://developers.redhat.com/products/openjdk/download
http://jdk.java.net/16/

Efinity Software User Guide

Linux Requirements

Table 4: Linux Operating System

Operating System

Note

Ubuntu v18.04 or later

You may need to install some graphics related libraries before running the
Efinity tools. An example list of libraries (not comprehensive) could be:

apt install libxcb-xinerama0 libxcb-icccm4 libxcb-imageO libxcb-keysyms1
libxcb-render-util0

Red Hat Enterprise v7.4 or later

You may need to install some graphics related libraries before running the
Efinity tools. An example list of libraries (not comprehensive) could be:

yum install libxkbcommon-x11 xcb-util-renderutil xcb-util-keysyms xcb-
util-image xcb-util-wm xcb-util

Important: If GUl is not working, set an environment variable, then
launch the tool again using the following commands (applicable for all
Linux operating systems):

source/path/to/efinity/<version>/bin/setup.sh
export QT DEBUG PLUGINS=1
efinity

The Qt verbose command line output can provide clues about which system
libraries are missing and need to be installled via apt/yum.

@ Note: Red Hat Enterprise v9.0 has not yet been tested.

* Linux X11 windowing system (for Efinity® GUI)
* Udev device manager for Efinix USB programming cable

sec

on page 122

Installing iVerilog

Icarus Verilog (iVerilog) is a free Verilog simulation tool you can use to compile and simulate
Verilog HDL source code. The software is available as source code or as pre-compiled

binaries.

Windows installation:

To download the simulator:

Note: The latest versions of iVerilog are bundled with the GTKWave software, so you only need to
download 1 file to get both tools. Refer to the website for more information.

To download the simulator source code:

Linux installation:

Refer to the Installation Guide for steps to obtain, compile and install Icarus Verilog:

@ Note: Efinix recommends iVerilog version 11.0 or later.

Installing GTKWave

GTKWave is an open-source tool that analyzes post-simulation dumpfiles and displays the
results in a graphical interface. It includes a waveform viewer and RTL source code navigator.
You can use GTKWave with the iVerilog simulator to analyze and debug your simulation
model, or to view any VCD waveform.

www.efinixinc.com Xiii

https://bleyer.org/icarus/
https://bleyer.org/icarus/
https://github.com/steveicarus/iverilog
https://steveicarus.github.io/iverilog/

Efinity Software User Guide

Windows installation:
You can read more at
@ Note: If you have downloaded and installed the iverilog setup file (bundled with GTKWave), you do not
need to install a separate standalone GTKWave.
To download and run the latest Windows version, follow these steps:

1. You can browse for the software files at . The
Windows files are situated lower down the page.

2. Unuzip the downloaded file.

3. Optional:

You may need to add the path to GTKWave ($GTKWave folders$\bin)\) to your System

Variables path for the software to launch correctly.

4. Run the program by executing gtkwave.exe in the <install dir>/bin directory.

Linux installation:
Linux users can use the following commands:

sudo apt-get update
sudo apt-get install gtkwave

www.efinixinc.com X

\Y

https://gtkwave.sourceforge.net/
https://sourceforge.net/projects/gtkwave/files/

Efinity Software User Guide

Chapter 1

Setting Up

Contents:

Efinity Quick Start

To launch the Efinity graphical user interface (GUI), double-click the Efinity desktop icon.
To launch and use the Efinity tool from the command line, refer to the following sections.

f | E Warning: Do not use non-English characters in the Efinity project paths.
Windows

Set up your environment and PATH:

bin\setup.bat
Launch the Efinity GUI from the command line:
bin\setup.bat --run

Run Efinity from the command line:

cd SEFINITY HOME$\project\<project name> // Change to project directory
efx run.bat <project name>.xml // Run Efinity

For command-line help:

efx run.bat --help

Linux

Set up your environment and PATH:
source bin/setup.sh

Launch the Efinity GUI from the command line:
efinity

Run Efinity from the command line:

cd SEFINITY HOME/project/<project name> // Change to project directory
efx run.py <project name>.xml // Run Efinity

For command-line help:

efx run.py --help

www.efinixinc.com 15

Efinity Software User Guide

Setting General Tool Preferences

Before you create a project, set general tool preferences to control the operation of the

software.

Figure 2: General Tool Preferences

:}(Preferences

General

User editor |C:\WINDOWS\system32\notepad.exe
v| Use user editor as default editor for all files

Top level project path | SEFINITY_HOME/project

¥| Enable flow data integrity check
Open last project on startup
Open file using default system application
¥| Use last window layout setting
V| Auto-correct Tel command
V| Auto-load Place and Route data
v| Migrate interface design with device change

¥| Check IP Upgrades Automatically

Lok |

Cancel

Indicate which external text editor you want to use
Turn on to use your specified editor when opening text files

Indicate the default root path for projects

When enabled, the software checks whether your software
is newer than the project you open

When enabled, the software uses the mime type to open
files in the default system application

When enabled, the software checks for updated IP cores

@ Note: The external text editor defaults to gedit in Linux and Notepad in Windows. The Efinity software
also has a built-in Code Editor, which is best used for viewing code instead of as a full editor.

Auto-Load Place-and-Route Data

When you open a project, the Efinity” software loads the messages and data from previous
compilations and displays messages in the Console. For large designs, loading the place and
route data can take time, and you might want to speed things up a little. The Auto-load Place
and Route Data option lets you disable (or enable) loading of this data when you open a

project.

If you have disabled auto-loading, you cannot view place-and-route results in the Floorplan
Editor or Timing Browser, or use the Tcl console. To enable these tools, click the Load Place
and Route Data button in the main window.

You enable and disable auto-loading in the Efinity” Preferences dialog box (File >

Preferences).

www.efinixinc.com 16

Efinity Software User Guide

Efinity Main Window

Use the controls in the Dashboard to run the tool flow, including synthesis, placement,
routing, and bitstream generation.

Figure 3: Efinity Main Window

Log Browser Interface Designer
Timing Browser Debug Wizard
Message Browser ————————————— Debugger
Floorplan Editor —————————— BRAM Initial Content Updater
Show Dashboard ——————— Programmer
Load Place and Route Data ——————— ———— |P Manager
Console |— Tel Console
© Efinity Software - o X
File Flow Tools Floorplan Help

® & bEME FOE L R KD OE LR L O
Project: pt_demo %
Console |
dashb@&ard Q g s
ware Flow | i
Software Flow =l A
SDC file 'C:/Efinity/2023.1.138/project/pt_demo_ti/pt_demo.sdc’ parsed
—— fully.
Project ‘ Netlist | Result (including virtual clocks), @ inputs and 4 outputs were
— constrained.
5 0@
View Project ——- = ptdemo
) - Design
Information File: pt_demo. (default) -
* Constraint Router Setup
SDC File: pt_demo.sdc
Simulation
Misc | e
P
Sanity checking routing trace...
4 - Successfully reloaded trace from trace file (28 nets, 881 nodes)!
View Project Property ~ Value
Properties Top Module pt_demo SDC File 'C:/Efinity/2023.1.139/project/pt_demo_ti/pt_demo.sdc’ parsed
Top VHDL Arch successfully.
Device Ti180J361 3 clocks (including virtusl clocks), © inputs and 4 outputs were
TimingModel C4 constrained.
Family Titanium
Software Version | 2023.1.139 Wed June 14 23 13:42:34 - Flow data refreshed. Elapsed time = om 39.492s
Location C:/Efinity/2023.1.139/project/| VM : 1693.93 MB RSS : 1583.19 MB
Las(changsDa(s Tue June 132023 14:25:33 Wed June 14 23 13:42:34 - Running automated flow starting from synthesis
done. Total duration = lm 49.716s
Kl | — -

www.efinixinc.com 17

Efinity Software User Guide

Chapter 2

Managing Projects

Contents:

* Project Editor

* Project Pane

e Migrating a Project to another FPGA
e Using VHDL Libraries

Project Editor

You use the Project Editor to create or modify a project, add files to your project (such
as timing constraint files), and choose a device family and device. To create a new project,
choose File > Create Project or click the Create Project icon.

Project Tab

Use the Project tab to specify the project name, location, optional project description, device
family, device, and timing model. The project location defaults to <install directory>/
project/ <project name>.

Figure 4: Project Editor - Project Tab

I—ﬂ Project Editor

Project ‘ Design | Synthesis | Placeand Route | Bitstream Generation | Debugger

Name ‘pt_demo |
Location C:/Efinity/2023.1.139/project/pt_demo_ti ‘
Description

Example project for Titanium family.

Family ‘ Titanium >

Device Ti180J361 | select... |

Timing Model | C4 |
OK H Cancel ‘

www.efinixinc.com 18

Efinity Software User Guide

Design Tab

Use the Design tab to add design and constraint files to your project. You can also indicate
the design’s top-level module; if you do not specify one, the tool attempts to determine it
automatically.

Figure 5: Project Editor - Design Tab

[Project Editor X

Project | Design | Synthesis | Placeand Route | Bitstream Generation | Debugger

Top Module/Entity pt_demo

Top Level VHDL Architecture

Default Version : Verilog | verilog_2k - VHDL | vhdl_2008 v

Design (G
Type design file name to filter...

File Name Type Version Library Location

1| pt_demow Verilog verilog_2k |default

sDC 07| |00
Type constraint file name to filter...

File Name Location

1| pt_demo.sdc

0K Cancel

You can choose the top-level VHDL architecture, if desired.
You can set the default Verilog HDL, SystemVerilog, or VHDL version for the design files.

In Efinity” v2020.2 and higher, you can define VHDL libraries and add files to them. See
on page 24 for details.

[ﬂ Learn more: For more information about language support, refer to the

You can import an entire directory of files into your project or add them one at a time. When

you import files:

* Turn on Copy to Project to copy the imported files to your project directory. You
can choose whether to flatten (copy all files to project root directory) or preserve the
directory structure.

* If you do not copy the files to your project, specify whether to reference the files as full or
relative paths.

* Choose to import only design files or all files (which includes constraints).

Optionally, you can specify a Synopsys Design Constraints (.sdc) file for timing-driven
compilation.

Learn more: Refer to on page 63 and the for
more information on timing analysis.

www.efinixinc.com 19

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

Synthesis Tab

Optional. The Efinity” software supports options to help you direct the synthesis flow. Use
the options on this tab to specify project-specific preferences. If you do not make any settings,
the tool uses the defaults.

Figure 6: Project Editor - Synthesis Tab

I—:] Project Edito
Project | Design | Synthesis | Placeand Route | Bitstream Generation | Debugger
Work Directory work_syn
V| Generate Post Synthesis Netlist
Synthesis Options
Name Value =
--allow-const-ram-index 0
--blackbox-error 1
--blast_const_operand_adders 1
--bram_output_regs_packing 1
--create-onehot-fsms 0
--fanout-limit 0
--hdl-compile-unit 1 =
Include Dir mling
Dynamic Parameter E‘
Name Value
Verilog " define Macro =
Name Value
0K Cancel

Table 5: Synthesis Project Settings

Setting Description
Work Directory Specify a custom directory or use the default (work_syn).
Generate post synthesis Choose whether the software should create this netlist.
netlist Default: On
Synthesis Options See "Synthesis Options" in the
Include Dir Specify directories to include in your project. If you use the IP Manager to add IP, the

ip/<module> directory is listed here. The software searches these locations when
you use include statements.

Dynamic Parameter Use this area to add parameters and values that apply to the top-level module or
entity in your project. The value passed into the Dynamic Parameter field must be
the same format as that you would use for any variable in VHDL or Verilog HDL. For
example, string should be in quotation marks.

www.efinixinc.com 20

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH

Efinity Software User Guide

Setting

Description

Verilog “define Macro Use this area to add ‘define macros to your project.

Some FPGA EDA tools automatically create a SYNTHESIS macro. If you want to use
the same behavior in the Efinity software, you need to create it here. For example,
click the Add Verilog "define Macro button and then enter SYNTHESIS in the NAME
field and 1 in the Value field. Then if you want to include simulation only code, use
this format:

“ifndef SYNTHESIS
Sdisplay(...)

. some other simulation directives ...
“endif

You can also use the translate_on and translate_off directives to accomplish similar
functionality.

Eﬂ Learn more: Refer to the for more information on these options.

Place and Route Tab

Optional. The options on this tab let you specify project-specific preferences to help close
timing. If you do not make any settings, the tool uses the defaults.
* The optimization levels (-—optimization level) are settings that control both
placement and routing, targeting different metrics.
— CONGESTION optimization levels may help a congested design meet timing.
— TIMING optimization levels may help a non-congested design meet timing
requirements.
— POWER optimization levels may help reduce a design’s power consumption.

Often, the default settings are the best choice, as these options will not help all designs.

* The placer effort level (--placer effort level)isa way to control how much
runtime the placer uses when it tries to improve placement quality.

* The number of threads (--max-threads) controls how many thread that the placer
can launch. The default setting (-1) means that the placer uses the maximum number of
available processors.

* The --seed option introduces random noise in the placer. The seed is the value you set.

E:Q Learn more: Refer to "Place and Route Options" in the for more details
on these options and how to optimize timing.

Bitstream Generation Tab

Optional. Use the options on this tab to specify project-specific preferences such as the
programming mode, daisy chaining, and memory initialization. If you do not make any
settings, the tool defaults to SPI active programming mode.

Eﬂ Learn more: Refer to on page 104 for more information on
bitstream and programming settings.

Debugger Tab

Optional. This tab is where you enable or disable a debug profile to auto-instantiate in your
design and set a working directory for debugging. These settings are used with the Debug
Wizard.

E:Q Learn more: Refer to on page 70 for more information.

www.efinixinc.com 21

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

Project Pane

The Project pane, which is located under the Dashboard, shows all of the files in your design.
Double-click a filename in the Project pane to open the file in the Efinity® Code Editor. To
open the file in another editor, right-click the file name and select your preferred text editor.
In Efinity® v2020.2 and higher, you can also choose to show the file in it's containing folder.

Tip: In Efinity® v2020.2 and higher you can resize the Project pane. Grab the blank space between the Project
pane and the Console and drag to resize.

You can right-click the folders in the Project pane to open a context-sensitive menu with
shortcut actions. For example, you can right-click Constraint > Add to browse for a
new .sdc file and add it. Refer to on page 40 for more
information on the IP context menus.

Migrating a Project to another FPGA

You choose an FPGA when you create your project. But later, you may want to migrate
your project to a different FPGA. The new FPGA you select may not have the same features
as the existing one, and some resources may not have the same names. So when you choose a
new FPGA in the Project Editor, the Efinity” software automatically performs a design check
in the background to help you migrate the design. You see a message at the bottom of the
main window that the software is checking for migration issues.

Note: Trion and Titanium FPGAs have different configuration settings. Therefore, when migrating designs
from the Trion family to the Titanium family, the software resets any incompatible configuration settings to
the default.

The software generates a detailed log of the interface changes it makes during the migration
and saves it into the <project >/work_pt directory.

Automatic Migration

If the new FPGA you choose is similar to the existing one (for example, you want to change
from the T13 in the BGA256 to the T20 in the BGA256), the software can migrate all the
assignments automatically and gives a message that migration completed successfully. You do
not need to do anything else.

If the two FPGAs have different interface resources (GPIO, PLLs, etc.) but they are pin and
package compatible, the software migrates the assignments automatically. The user design
instances will be preserved but some resources may be automatically reassigned.

Migrate Design Wizard

If the software cannot migrate automatically, it launches the Migrate Design wizard. This
wizard helps you decide how to handle the changes. In the first pane, the wizard:

* Shows the issues it found, for example, GPIO feature differences.

* Asks if you want to create a new interface design or update your current one.

* Lets you back up your existing interface design so you can go back to it if needed.

In the second pane, the wizard shows the assignments that have problems. If you decide to
continue migration, the wizard opens the Interface Designer so you can fix the problems.
You can also cancel to stop migration.

www.efinixinc.com 22

Efinity Software User Guide

Note: If you cancel migration and keep the new FPGA setting, the Migrate Design wizard opens again the
next time you run the Interface Designer.

Note: For help understanding the messages, refer to the "Design Check" topics in the Titanium Interfaces
User Guide. These topics describe the messages the Interface Designer generates and gives suggestions
on how to fix errors and warnings.

The outcome of design migration depends on the FPGAs involved because each FPGA has
its own unique interface and resources, and each interface block supports specific features.
Therefore, migrating the design from one FPGA to another is limited to the interface block
support available in the destination FPGA.

Migrating a design from one family to another requires manual modification in the post-
migrated design. Different families have different architectures, and therefore different
features. However, the software tries to preserve the instances that have already been created
if the interface block is supported in both FPGAs despite having a different feature set. In this
case, some of the configuration settings may be reset to the default in the migrated design.

The possible outcomes for instances when migrating a design are:

* The instance is retained but resource assignments are removed.

— In most cases, the interface block instance is preserved but the assigned resource is
removed because the resource does not exist in the destination FPGA or you are
migrating between families.

— The instance is retained but the feature set is different. Refer to the migration log
in the wizard to understand the differences. For example, when migrating from
Trion FPGAs to Titanium FPGAs, the GPIO instances are preserved but different,
additional, or incompatible features are set to the default.

* The instance is removed.

— 1If the new FPGA does not support the interface block, the block is removed. For
example, migrating a T20F324 design with LVDS RX instantiated to the T8F81 (which
does not support LVDS RX) results in the LVDS RX instance being removed.

— If the new FPGA has the same block but the block's features are completely different,
the block is removed. For example, migrating a T120F576 design with DDR
instantiated to the Ti180G529 (which supports DDR but with a completely different
configuration) results in the DDR instance being removed.

The Device Setting stores information related to I/O banks and FPGA settings. In Titanium
FPGAs, it also includes the Clock/Control configuration.

Device Settings are migrated as part of the design migration process. The outcome of the
migration depends on the setting compatibility between the FPGAs. If the setting is not
compatible, it is reset to the default value for the destination FPGA.

* I/O Bank configuration is migrated if the setting is valid or applicable in the destination
FPGA. For example, if Bank 1A exists in the destination FPGA, the voltage indicated for
this bank is migrated if the destination FPGA Bank 1A supports the voltage value. If the
destination FPGA Bank 1A does not support the voltage, Bank 1A in the migrated design
is reset to the default voltage.

* Clock/Control configuration does not exist in Trion FPGAs. Therefore, you cannot
migrate any settings between Trion and Titanium FPGAs.

www.efinixinc.com 23

Efinity Software User Guide

Using VHDL Libraries

In the Efinity® software v2020.2 and higher, you can use VHDL libraries to organize and

reference commonly used packages and entities.

Create a Library

To create a library for your project:

SANRANF ol b B

@ Note: In VHDL, the work library refers to the current library in the design. When

Open the Project Editor.
Click the Design tab.
Add the design file(s) that have the packages you want to use. You can add multiple files.
Double click the cell under Library.

In the drop-down menu, choose Add New.
Enter the library name and click OK.

assigning a library name to a VHDL design file, you are encouraged not to use the

word work as the library name only (instead use a variable like name, example:

my_work). Doing so will cause an error in synthesis. Leave it blank (or default) if the
file is part of the current library in the design project.

7. (Optional) If you add more than one library file to your project, double-click in the
Library cell for each file and either choose the library name or add a new one.

Library names are saved across projects.
Add a File to a Library

You add a file to a library in the Project Editor > Design tab. Double-click the Library cell
for the file and choose the name from the drop-down list.

Reference a Library

You use the 1ibrary and use VHDL language constructs to reference your new library.
The following simple code example shows a new library file for the package mylibrary:

Example: mylibrary.vhd

--! Use standard library
library ieee;

use ieee.std logic 1164.all;
use ieee.numeric_std.all;

package mylibrary is
--! factor width

constant DF_WIDTH : integer

end package mylibrary;

After you add this file to your project and create a library for it, you can refer to the file in

your code:

= 12;

Example: Referring to the Package

--! Use standard library
library ieee;

use ieee.std logic 1164.all;
use ieee.numeric_std.all;

--! Use costum library
library mylibrary;
use mylibrary.mylibrary.all;

--! Multiplier entity brief description

www.efinixinc.com

24

Efinity Software User Guide

--! Detailed description of this
--! multiplier design element.
entity multiplier is

port (
a : in signed (DF _WIDTH-1 downto 0); --! Multiplier first factor
b : in signed (DF _WIDTH-1 downto 0); --! Multiplier second factor
result : out signed (2*DF_WIDTH-1 downto 0) --! Multiplier result

)
end entity;

Reference Trion and Titanium Primitive Libraries

The Efinity” software includes VHDL libraries for Trion and Titanium primitives. You use
the library and use VHDL language constructs to reference these libraries:

library efxphysicallib;

use efxphysicallib.efxcomponents.all;

[ﬁ Learn more: The following documents provide example code for these libraries:

www.efinixinc.com 25

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES

Chapter 3

Efinity Software User Guide

Running the Tool Flow

Contents:

Run the Flow with the Dashboard Controls
Run the Flow from the Command Line
About Efinity Synthesis

Netlist Pane

Netlist Viewer (Beta)

Viewing Messages and Logs

Result Pane

Viewing Place-and-Route Results

The Efinity software supports GUI and command line tool flows.

Run the Flow with the Dashboard Controls

The Dashboard controls the software flow, which operates in two modes: automated and
manual. Toggle automated and manual flows using the toggle button.

@ Note: The automated flow is on by default.

Automated flow—Use automated mode to run the full flow from start to finish.
Additionally, you can start the flow from any point and run it to the end. For example,
after completing the full flow you can restart the automated flow at the placer stage and
run the flow to the end.

Manual flow—Disable the automated flow to run each stage manually.

When a stage completes, a marker indicates whether the stage completed successfully, with
warnings, or with errors. You can stop and restart the flow at any point.

Figure 7: Dashboard Controls

@ Efinity Software
File Flow Tools Floorplan Help

@ ® 4 = 1 @-— Toggle Dashboard

Project : pt_demo @®
dashb@ard —Toggle Automated/
Manual Flow
[0 > ==
EEEE O
Start Synthesis —— — Stop Flow

Start Placement

Generate Bitstream

Start Routing

www.efinixinc.com

26

Efinity Software User Guide

Run the Flow from the Command Line

You can run the software flow from the command line using the efx_run.py Python 3 script.
This script is available in the scripts directory.

Compilation commands:

°* --flow compile performs synthesis, place and route, and generates a bitstream hex file
(default)

* --flow map performs synthesis

°* --flow pnr performs place and route

°* —-flow full runs the full flow, including RTL and post-synthesis simulation

* --flow interface generates the interface constraint files

Simulation only commands:

* --flow rtlsim performs RTL simulation on the design’s source files
°* --flow mapsim performs simulation with the post-synthesis netlist file

Programming commands:
° --flow pgm creates the bitstream hex file used to configure the device

°* --flow program programs the target device

Tip: Use —--help to display the command-line help and additional options.

The following example command runs the complete flow on the helloworld design:
Example: Run Complete Flow from Command Line
Linux:
> efx run.py helloworld.xml --flow full
Windows:

> efx run.bat helloworld.xml --flow full

About Efinity® Synthesis

The first stage after you complete your RTL design is synthesis. During synthesis, the
compiler takes your design and turns it into a gate-level netlist. The software supports
synthesis options and attributes so you can optimize your design.

The software supports the synthesizable subset of the following languages:
* SystemVerilog and Verilog HDL
* VHDL

* Mixed languages (any combination of the above)

Learn more: Refer to the for more information on synthesis options ans
attributes as well as design guidelines.

www.efinixinc.com 27

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH

Efinity Software User Guide

Netlist Pane

The Netlist pane, which is under the Dashboard, shows the design hierarchy and helps
you browse through the elaborated design and synthesized netlist. You can only view the
synthesized netlist after you have performed synthesis. You can right-click the items in the
Netlist pane to open a context-sensitive menu with shortcut actions.

Tip: In Efinity® v2020.2 and higher you can resize the Netlist pane. Grab the blank space between the Netlist pane
and the Console and drag to resize.

Figure 8: Using the Netlist Pane
Perform

Elaboration

Project | Netlist | Result

Perform Analysis R
Synthesize

[

g a £ <

Hierarchy | Elaborated | Synthesized

Leaf Cells =
Nets

NetBus: Oled(4)

NetBus: Fled(4)

NetBus: Sled(4)

NetBus: Sled_OE(4)

NetBus: n12(4)

NetBus: n26(4)

NetBus: n31(4)

NetBus: n45(4)

NetBus: n50(4) =

Property = Value
NetBus Fled
Size 4

www.efinixinc.com 28

Efinity Software User Guide

Netlist Viewer (Beta)

The Netlist Viewer tool displays and analyzes your design's netlist, including all components
and their connections (nodes and nets). You use the Netlist Viewer to examine an elaborated

netlist visually. (The Netlist Viewer does not support post-mapping netlists in the Efinity

software v2023.1.)

@ Important: The Netlist Viewer is beta in the Efinity software v2023.1.

With the Netlist Viewer you can:

* Visualize and analyze netlists in a graphical format
* Understand the connections between components
* Identify potential issues in your design

@ Note: The Netlist Viewer is supported in the Efinity software v2023.1 and higher.

Figure 9: Netlist Viewer

Show/hide Netlist Hierarchy pane
Close

Go to the previous action

Go to the next action

Zoom in
Zoom out
Fit the whole schematic in the viewer pane
World view
2| Netlist Yiewer -- Modgle: pt|demd - =] X
FEilas Edit View Help
= Netlist hierachy é@
pt_demo
Type and press Enter to search O]ed[3 :0]‘
Search filter. v ||
il Instance: dff 7
i RN ERY
» add_11 D
BeiEL] ! Instance: add_6
b dff 7
v dff 13 9 q[3:0] a[3:0]
» dff_19] {— o |
e = =b"00000p01" b[3:0] o[3:0]
i .
T I |
et t[3:0] .
Fclk ra—
» Fled —
Oclk
~ Oled
Oled[0]
Oled[1] .
Qe Instance: i4
Sclk
Y Sied oe i °
locked — =
nl r
n2 4 »

www.efinixinc.com 29

Efinity Software User Guide

Opening the Netlist Viewer

1.

If you have not already done so, synthesize your design or choose Netlist > Elaborate
All to generate the elaborated netlist for your design.

Click Netlist > Elaborated > Show Elaborated Netlist in Viewer or choose Tools >
Show Elaborated Netlist in Viewer.

@ Important: If the design is large and flattened, the Netlist Viewer will take a long time to load. This
performance problem is a known issue for the beta.

Figure 10: Opening the Netlist Viewer

@ Efinity
File Flow Tools Floorplan Help

SR e B B s o= R © S

Project : pt_demo ar

dashb@ard

HHEEE O

Project | Netlist | Result

-
Hierarchy | Elaborated @ | Synthesized
Type regex to filter... Click to open the
ool Celle Netlist Viewer
Zooming

There are several ways to zoom in or out:

Use the toolbar buttons.
Use the mouse to click and drag:
— Drag down to the right to draw a box around the area you want to zoom in on.

— Drag up to the right to zoom out or drag down to the left to zoom in. The zoom level
is dependent on the length of the line you draw. A pop-up indicator shows the zoom
level represented by the line length, e.g., zoom -1.0 or zoom +0.5.

— Drag up and to the left to fit the whole design in the viewer (zoom fit).

Right-click in the viewer. In the pop-up menu, choose View > <option> to zoom in,
out, or fit.

If you are zoomed in and want to see where you are, open the World View.
— Choose View > World View.
— Click the World View button.

— Right-click in the viewer and choose View > World View from the pop-up menu.

Note: You can also highlight or mark design elements and then zoom to them. See
on page 30.

Highlighting and Marking

For large netlists, you may want to use a visual indicator or marker to keep track of where
specific design elements are located in the viewer. The Netlist Viewer has two ways to put an
indicator onto an element: highlighting and marking,

* Highlighting adds a colored line around the element.

www.efinixinc.com 30

Efinity Software User Guide

* Marking adds a colored dot in the center of the element and on each port connected to the
element.

@ Note: The software does not save the highlights or marks; they are discarded when you close the Netlist
Viewer. (This feature is planned for a future version.)

You can adjust the zoom to fit the highlighted or marked items in the view. Right-click in the
viewer and choose View > Fit highlighted or View > Fit marked.

Viewing the Netlist Hierarchy

The Netlist hierarchy pane shows the instances, ports, and nets of the current module. You
can browse through the list or use the filter to find specific elements.

You can toggle the Hierarchy pane's visibility by clicking the Show/Hide Netlist Hierarchy

icon.

Finding Elements

For large netlists, it can be difficult to browse elements with the Netlist Hierarchy. Instead
you can use the Find function to search for elements by name or with a regular expression.
You can choose whether to search instances, ports, nets, or a combination.

1. Choose Edit > Find to open the Find dialog box.

2. Enter the search criteria.

3. Click OK.

4. The Search Result pane opens and displays the results. Click on an element name to see it
in the viewer.

Note: For buses, you need to click on the bus name not the signal name to see it in
the viewer.

Figure 11: Finding Elements

< R Q < ?
Netlist hierachy EE
pt_demo
Type and press Enter to search. <
Search filter || ince: dff_1
» Instance
» Port Fled[3:C
» Net q[3:0] ;
Instance: add_11 Instance: mux_12
: do[3:0
|_azop [_corso) Sy
Vv=b"00000p01" _ b[3:0] " 0[3:0] d1[3:0] o
— SCACT— L
cin
—4 condi
= ' =
7 —
Message Find objects by entering search text and setting filter a®
Search Result Search:
fled L
Netlist Type = Item |
1 |Net Fled[0] Target Netlist Type:
2 |Net Fled[1] V| Instance
3 Net Fled[2] B Braiis
4 |Net Fled[3]] Net
5 | NetBus Fled Regular expression
6 |Port Fled[0] o
Reset oK Cancel
Click an element to see Find dialog box

it in the viewer

www.efinixinc.com 31

Efinity Software User Guide

Viewing a User-Defined Element

The viewer colors manually instantiated primitives blue (instead of orange). Double-click on
the element to view the internal structure of the primitive.

Note: You cannot view the internal structure for encrypted elements. If you mouse over a blue element
and the cursor changes to a hand, you can double-click to view it. If the cursor does not change, the
element is encrypted.

Viewing an Element's Connectivity

You can see all of the nets that connect to a specific element.

1. Right-click the element.
2. Choose Show Connectivity. The viewer colors all of the nets connected to the element in

blue.

Viewing the Action History

As you work in the Netlist Viewer, it saves a history of all your actions. Then, you can
go backwards in the history to remove actions and forward in the history to perform
them again. This feature can be useful to see a previous state when you are marking and
highlighting elements.

Viewing Messages and Logs

The Efinity software has several methods for viewing messages and log entries that result
from the compilation flow.

Console

The Console provides verbose messages and reports for all aspects of the tool flow.
Additionally, it functions as the Tcl message console when you turn on the Tcl Command
Console.

* You can clear the Console and remove all messages.

* You can prevent the Console from scrolling when the tool issues new messages.

Tip: It can be hard to find specific messages in the Console as they scroll by. Instead, use the Message Browser or
Log Browser to see specific messages like warnings and errors. Additionally, you can use the Search button in the
Console to jump to a specific string.

Message Browser

The Message Browser gives synthesis-specific messages that result when you elaborate the
netlist.

Timing Browser

The Timing Browser shows the critical paths in your design. Refer to on
page 63 for more details.

Log Browser

The Log Browser gives you a way to sort and browse through all of the messages resulting
from the compilation flow. It shows some of the same content as the Console (the Console
is more verbose). You can filter by where the message appeared in the flow (synthesis,

www.efinixinc.com 32

Efinity Software User Guide

placement, routing, programming) and the type of message (info, warning, or error). The Log
Browser lets you search messages using keywords or regular expressions.

Result Pane

The Result pane, which is under the Dashboard, shows all of the reports and files that result
from compilation. Double-click on any file to view it in the Code Editor. Additionally, it
shows a summary table of the resources used. You can right-click the items in the Result pane
to open a context-sensitive menu with shortcut actions.

Figure 12: Using the Result Pane

Project | Netlist | Result

.
Interface =
Simulation
Synthesis
pt_demo.map.v
pt_demo.map.rpt
pt_demo.map.out
Placement
pt_demo.place
pt_demo.place.rpt
1]

Periphery Resource _ =

GPIO 15/55

JTAG User TAP 0/2

Oscillator 1/1

PLL 1/1

oo |
Inputs 5/96

Qutputs 17/113

The numbers of inputs and outputs in the Core Resource section represent the
connections between the core and the periphery; they are not package pins. See
<project>.place.rpt on page 135 for more details.

Tip: In Efinity® v2020.2 and higher you can resize the Result pane. Grab the blank space between the Result pane
and the Console and drag to resize.

Table 6: Compilation Files and Reports

The software generates these files when you run the flow.

Category

File

Description

Synthesis

<project>.map.v

Post-mapping netlist file for simulation.

<project>.map.rpt

Synthesis report file; gives a summary of the resources your
design uses.

<project>.map.out

Messages output to the Console during synthesis; includes any
synthesis warnings or errors.

<project>.res.csv

Provides the resource usage for all of the modules in the
design.

www.efinixinc.com 33

Efinity Software User Guide

Category File Description

Placement Detailed placement report.
Resource summary report.
Messages output to the Console during placement.

Routing Provides the resource summary for inputs, outputs, clocks, LEs,
memory, and multipliers (Trion) or DSP Blocks (Titanium).
Routing report.
Static timing analysis report.
Messages output to the Console during routing.

Bitstream Use this file to program in SPI active or passive mode.

Use this file for JTAG programming.

Messages output to the Console during bitstream generation.

Table 7: Interface Designer Files

The Interface Designer generates these files when you click the Generate Efinity Constraint Files button and when

you do a full compile.

File Description

Constrains the FPGA design pins used in the interface between the core
and the periphery.

Interface Design report file with details of the blocks used, I/O banks,
global connections, clock region usage, GPIO and dual-function
configuration pins used, etc.

Has the board design pinout with pin number, signal name, pin name, 1/0
bank, etc. in a nicely formatted text file format.

Pinout report file formatted as .csv.

Timing report for the Trion® and Titanium interface logic.

Template SDC file to constrain the FPGA design pins based on the
interface configuration.

Contains option register information the Programmer uses.

Template Verilog HDL file defining the FPGA design pins based on the
interface configuration.

Viewing Place-and-Route Results

You view place-and-route results in the Console pane, in the Result pane, and in the
Floorplan Editor.

* The Console displays messages generated during compilation. For example, if the design
has too many I/O pins to fit in the target device, compilation will stop and the Console
will show the error message.

* The Result pane shows the output and report files for each stage in the flow. Additionally,
the Report pane displays a table of the interface resources the design uses; if your design
has a debug core, it also shows a table of resources used by the debugger.

@ Note: Double-click on a file name to open it in the Efinity Code Editor.

www.efinixinc.com 34

Efinity Software User Guide

* After you have run a project through synthesis, placement, and routing, you can open the
Floorplan Editor tool to see a representation of the tiles in the FPGA and the placement
of logic, memory, I/O, and other blocks. Click the Floorplan Editor icon in the main
toolbar to open the Floorplan Editor.

Tip: Detach the Floorplan Editor tool from the main Efinity window for better viewing.

Figure 13: Floorplan Editor

i~~~ The World View Orients You in the Floorplan

Floorplan Editor B
5y
e .
I -~ Tiles
B
ooo
0
= ®
b 2
™ el
m ®
]
1 Q
T P
1 |
L %
|
Net Tracer n
| connected cell ||:T‘
T |Type regex to filter... | |T‘
Instruction[26]~FF
] |Instruction[31]-FF Is
Instruction[28]~FF
cntr/IRWrite~FF Is
Instruction[30]-FF .
Instruction[10]~FF D
Instruction[29]-FF)
Instruction[27]~FF b
[| Instruction[14]~FF
[] | [] Instruction[2]~FF
- | | | | || Instruction[24]~FF
=] MEE[] |nsructonBl-FF o -oes A - Net Tracer Follows
E . [1] n H R Instruction[6]~FF
=[] Block: (1,67) Offset: 0] B EE EEE || |nstuctiono]-FF the Path through
;EType: gbuf_ctrl_block EEE E n Inctruetinn 221 EC
=[] Name: IRWrite~Q~GBUF B B EOE][UndoTace || Trace | the Floorplan
ﬁ'_RouteThru:O [O mm EEE B _ 1
= & - ——— —_ - T—-—"
Q |Ty pe to search HBIeck: (1.87) type=gbuf_ctrl_block name=IRWrite~Q~GBUF ‘

heees Click on a Block to Show Information (Unused Blocks Are Empty)

@ Note: If you have disabled auto-loading, you cannot view place-and-route results in the Floorplan Editor
or Timing Browser, or use the Tcl console. To enable these tools, click the Load Place and Route Data
button in the main window. Refer to Auto-Load Place-and-Route Data on page 16 for details.

[m Learn more: Refer to the Efinity Trion Tutorial for more information on how to use the Floorplan Editor.

www.efinixinc.com 35

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL

Efinity Software User Guide

Chapter 4

Using the IP Manager

Contents:

The Efinity” IP Manager is an interactive wizard that helps you customize and generate
Efinix® IP cores. The IP Manager performs validation checks on the parameters you set to
ensure that your selections are valid. When you generate the IP core, you can optionally
generate an example design targeting an Efinix development board and/or a testbench. This
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
core with different parameters, or the same IP core for different projects.

@ Note: Not all Efinix IP cores include an example design or a testbench.

The IP Manager is included with the Efinity software v2020.2 and higher.

The IP Manager consists of:

[P Catalog—Provides a catalog of IP cores you can select. Open the IP Catalog using the
toolbar button or using Tools > Open IP Catalog.

* [P Configuration—Wizard to customize IP core parameters, select IP core deliverables,
review the IP core settings, and generate the custom variation.

[P Editor—Helps you manage IP, add IP, and import IP into your project.

www.efinixinc.com 36

Efinity Software User Guide

Supported IP Cores by Family

Not all IP cores work with all Titanium or Trion FPGAs. For example, IP cores that connect
to DDR DRAM memory will not work with FPGA that does not have a hard DDR DRAM
interface. The following table shows which IP is supported in which FPGA.

Note: Refer to the FPGA Selector Guide for more information about supported blocks in each FPGA
package.

Table 8: IP Cores Supported by Family

IP Core Trion Titanium

Supported Not Supported Supported Not Supported

AXI Infrastructures

AXI Data FIFO All All
AXI Interconnect All All
AXI4-Stream Switch All All
Arithmetic

CORDIC All All
Divider All All
Integer Square Root All All

Bridges and Adaptors

ABP3 to AXI4 Lite Converter All All

Direct Memory Access All All

Ethernet

Triple Speed Ethernet MAC All All

Memory

Block RAM Wrapper All All

FIFO All All

Memory Controllers

ASMI SPI Flash Controller All All

DDR Hard Memory Controller- T20, T35, T55, T4,T8,T13 All

Calibration and Reset T85,T120

DDR Hard Memory Controller-Reset | T20, T35, T55, T4,7T8,T13 All
T85,T120

DDR3 Soft Controller All All

HyperRAM Controller All All

JTAG SPI Flash Loader All All

SDRAM Controller All All

SD Host Controller All All

www.efinixinc.com 37

Efinity Software User Guide

IP Core Trion Titanium
Supported Not Supported Supported Not Supported
TrionDDR Calibration and Debug T20 (BGA324 T4,T8,T13 All
and BGA400
only), T35, T55,
T85, T120 FPGAs
MIPI
MIPI CSI-2 RX Controller All All
MIPI CSI-2 TX Controller
MIPI 2.5G CSI-2 RX Controller All Ti90, Ti120, Ti35, Ti60
MIPI 2.5G CSI-2 TX Controller Ti180
MIPI DSI TX Controller All All
MIPI D-PHY RX Controller All All
MIPI D-PHY TX Controller
MIPI D-PHY BIDIR RX Controller
MIPI D-PHY BIDIR TX Controller
Processors and Peripherals
Sapphire SoC All except T4 T4 All
Sapphire High-Performance SoC Ti375
Serial Interface Protocols
1°C Al Al
UART All All
Table 9: End of Life IP Cores by Family
IP Core End of Life Replaced By Trion Titanium
in Version
Supported Not Supported Not
Supported Supported
Jade SoC 20221 Sapphire SoC | T8, T13,T20, T4 All
T35, T55,
T85,T120
Opal SoC 2022.1 Sapphire SoC | All except T4 T4 All
Ruby SoC 20221 Sapphire SoC T35, T55, T4, T8, All
T85,T120 T13,T20
DDR Hard 2022.1 DDR Hard T20,T35,T55,| T4,T8,T13 All
Memory Memory T85,T120
Controller- Controller-
Calibration Calibration
and Reset
FIFO (Legacy) 2021.1 FIFO All All

Using the IP Configuration Wizard

The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.

www.efinixinc.com 38

Efinity Software User Guide

2. Choose an IP core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

@ Note: You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed information
on the options, refer to the IP core's user guide or on-line help.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example
design targeting an Efinix” development board and/or testbench. For SoCs, you can also
optionally generate embedded software example code. These options are turned on by

default.

6. (Optional) In the Summary tab, review your selections.

7. Click Generate to generate the IP core and other selected deliverables.

8. In the Review configuration generation dialog box, click Generate. The Console in the
Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

Generated Files

The IP Manager generates these files and directories:

* <module name>_define.vh—Contains the customized parameters.

* <module name>_tmpl.v—Verilog HDL instantiation template.

* <module name>_tmpl.vhd—VHDL instantiation template.

* <module name>.v—IP source code.

* settings.json—Configuration file.

¢ <kit name>_devkit—Has generated RTL, example design, and Efinity” project targeting
a specific development board.

e Testbench—Contains generated RTL and testbench files.

Note: For encrypted IP, the ModelSim software version of 2022.4 or later is
required for successful simulation. For other simulators, the latest version is
required.

Instantiating IP in Your Project

The IP Manager creates these template files in the <project > /ip/ <module name> directory:

* <module name> n_tmpl.v is the Verilog HDL module.

* <module name> v_tmpl.vhd is the VHDL component declaration and instantiation
template.

To use the IP, copy and paste the code from the template file into your design and update the
signal names to instantiate the IP.

www.efinixinc.com 39

Efinity Software User Guide

Important: When you generate the IP, the software automatically adds the module file (<module
name>.v) to your project and lists it in the IP folder in the Project pane. Do not add the <module name>.v
file manually (for example, by adding it using the Project Editor); otherwise the Efinity® software will issue

errors during compilation.

Do not manually add
IP to the Design folder

IP Manager adds generated
IP to the IP folder (and
your project) automatically

Project | Netlist | Result

vhdl_library
Design
File : mylibraryvhd (myLibrary)
File : multipliervhd (default)
Constraint
Simulation
Misc

IP Editor
New IP

@ |P:uartl
@ IP : divider1
Debugger

Import IP
Check Upgrades

Managing IP in Your Project

You can manage your project's IP in the Project pane under the Dashboard. When you right-

click the IP folder, the software shows a context-sensitive menu with these options:

e IP Editor—Launches the IP Editor window, which shows the IP instances in your
project. You can use this window to add additional IP to your project or to import IP.
You import IP using a settings.json file, see on page 42 for details.

* New IP—Launches the IP Catalog.

* Import IP—Import an existing IP core using a settings file.

* Check Upgrades—Checks the Efinity” directory structure to see if there are any updates
to the IP (for example, from a software patch). The Efinity” software checks for available
upgrades by default. You can change this setting in the Preferences window. See

on page 16.

Icon

Meaning

The IP core is up to date.

There is an optional update to the IP core. Efinix recommends that you
launch the IP Configuration wizard for the core to make any changes and
then re-generate the deliverables.

@09

There is a required update to the IP core. You must launch the IP
Configuration wizard for the core to make any changes and then re-
generate the deliverables.

www.efinixinc.com 40

Efinity Software User Guide

Figure 14: Project Pane > IP Folder Context-Sensitive Menu

Project | Netlist = Result

vhdl_library
Design
File : mylibraryvhd (myLibrary)
File : multipliervhd (default)
Constraint
Simulation
Misc

@ |P:uartl

@ |P : divider1 New [P
Debugger Import IP
Check Upgrades
Importing IP

To make it easier for you to re-use IP, you can import a configured IP core. Import the IP by:

1.

A

6.

Right-clicking the IP folder in the Project tab and choosing Import IP or clicking the
Import an IP button in the IP Editor.

Browse for the settings.json file of an existing IP core you want to import.

The IP Manager launches the IP Configuration window.

Enter a name in the Module Name box.

(Optional) Change any of the IP settings (for example, you might not want to generate
the example designs).

Click Generate.

The software generates the imported IP core and adds it to your project.

Managing an IP Core

When you right click the IP core name under the IP folder, the software shows a context-
sensitive menu with these options:

Open Folder—Opens the folder containing the IP deliverables.
Configure—Launches the IP Configuration wizard. You can make any changes to the IP
parameters and then re-generate it.

Generate—Generates the IP deliverables.
Remove—Remove the IP core and delete all deliverables from your project directory.
Open Documentation—Launches the help for the IP core.

www.efinixinc.com 41

Efinity Software User Guide

IP Settings File

When you generate an IP core, the IP Manager creates a settings.json file. This file contains
all of the parameter settings for the customized IP.

You can use this settings file to create another instance of the core with the same settings, or
you can modify it to create another core with slightly different settings. For example, you can
quickly create FIFOs of varying depths by re-using an existing settings.json file.

To create another, modified, instance of the IP core:
1. Right-click the IP folder in the Project pane.

2. Choose Import IP from the pop-up menu.

@ Note: You can also import IP in the IP Editor window.

3. Browse to the settings.json file for the IP core you want to use as a starting point and
click Open. The IP Configuration wizard opens.

4. Enter the module name for the IP core.
5. Configure the IP core as usual and generate the IP.

Getting Updated IP

Starting with v2020.2, IP is typically delivered with the Efinity® software:

e 1IP is included and installed as part of the Efinity® software.

* Updated IP with new features is distributed as patches to the Efinity” software.

* Bug fixes (if any) to the IP cores is distributed as patches to the Efinity” software.

New IP cores may be released as beta versions (.zip file) in the Support Center before being
rolled into the next major Efinity” release.

www.efinixinc.com 42

Efinity Software User Guide

Chapter 5

Constraining Logic and Assigning Pins

Contents:

* About the Interface Designer

* Get Oriented

e Using the Resource Assigner

* Resource View

e Importing and Exporting Assignments

e Scripting an Interface Design

e Viewing the Package Pinout

e Constraining Logic and Routing Manually (Beta)

The tools in the Efinity™ main window help you design the logic portion of your design. You
use the Interface Designer to constrain logic and assign pins to the blocks in the periphery.

In the Interface Designer, you connect the signals from your logic design to the pins in the
device interface blocks, and then output a constraint file. During compilation, the Efinity®
software uses the constraint file to constrain your design to the interface blocks.

[:Q Learn more: The Efinity Trion Tutorial gives step-by-step instructions on using the Interface Designer with
an example helloworld design.

The Titanium Interfaces User Guide and Trion Interfaces User Guide provide instructions on how to use
the Interface Designer to configure each block as well as technical details about the interface.

The Efinity Interface Designer Python API describes how to create an interface design using scripting.

www.efinixinc.com 43

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI

Efinity Software User Guide

About the Interface Designer

Trion” and Titanium FPGAs wrap a Quantum®-accelerated core with a periphery that
sends signals out to the device pins. The core contains the logic, embedded memory, and
multipliers. The device periphery includes blocks such as GPIO pins, LVDS, MIPI, DDR,

and PLLs.

The tools in the Efinity” main window help you design the logic portion of your design. You
use the Efinity Interface Designer to build the peripheral portion of your design.

Figure 15: Conceptual View of Interface Blocks
HEEN

Programmable Core Fabric:
Create your RTL design for the core fabric
using Efinity design tools.

<— Interface Blocks:
Use the Efinity Interface Designer to create and
define these blocks and to connect them to
your RTL design via the signal interface.

<— Signal Interface:
Connects the core fabric to the interface blocks

Embedded Memory
Multiplier

Note: The number and locations of blocks
are shown for illustration purposes only.
The actual number and position depends
on the device.

Get Oriented

The Interface Designer has four main sections:

* Design Explorer—Provides a list view of the interface blocks you have in your design
organized by block type. It also includes device-wide settings for the I/O banks and
configuration options. Select a block to display it's summary and editor.

* Block Summary—Displays the current settings for the selected block.

* Block Editor—Provides options and settings for the selected block. The editor may have

more than one tab, depending on the block.
® Resource Assigner—Provides an easy, tabular method for assigning resources. View by

instance (default) or resource.

www.efinixinc.com 44

Figure 16: Interface Designer

Efinity Software User Guide

o Efinity Interface Designer - pt_deme

File Design Help 4 5 10
@ R (& &)(4 6B | &) [@
Design Explorer & (%)
6 [+ Block Summary | 2
Type and press Enter to search... Property Value
0 Search filter... - [l 1 |Instance Name Oclk_out
2 | GPIO Resource GPIOR_13
~ Design: TaFs1
= Device Setting 3 [Mode clkout
I._j 1/0 Banks (5) 9
~ GPIO (15) 4 |I/O Standard 33V LVTTL / LVCMOS
P = Fed[30] 5 |Unused State NA
» = Oled [3:0]
8 b = Sled [3:0] 6 |Alternate Connection None
& Oclk_out: GPIOR_13
N/ > pli_clkin : GRIOL_20 7 |Features None
= resstn:GPIOL_13
» PLL{1) & |Clock Region RL
» Oscillator (1)
[
JTAG User Tap (0) 9 |0 Bank #
10| Pad GPIOR_13
11| Package Pin D&
woldodpt
13| Clock Pin Name Oclk
14| Clock s Inverted false
15| Drive Strength 1
Notes:

- [m} X
Block Editor 3 @6
-] O
Oclk_out Q
@

Mode
clkout =
I/0 Standard

33V IVTTL/ IVCMOS =

Output

Pin Name

Constant Output

none -
Register Option

none
Drive Strength (1-weakest, 4-strongest)

1 -

Enable Slew Rate

Output Clock =

The Design Explorer shows the interface blocks in your design. They are organized by block type.
The block summary shows the settings for the block selected in the Design Explorer.

Use the Block Editor to add or change settings for the interface block.

You can import or export GPIO resource assignments using a .csv or .isf file.

Click Show/Hide Resource Assigner to toggle a tabular view of assignments.

Use the block tools to add or delete blocks and buses.

Expand or collapse the Design Explorer folders.

The number in parentheses shows the number of used blocks.

1

2

3

4.

5. Use the project management tools to perform design checks, view reports, generate constraints, etc.
6

7

8

9.

1

0. The Package Planner lets you see the pins and assignments graphically.

When you first open the Interface Designer for your project, the Design Explorer shows the
Device Settings folder (with default settings) and empty folders for the interface blocks your
chosen device supports. You need to add blocks as required for your design.

www.efinixinc.com 45

Figure 17: Resource Assigner

Efinity Software User Guide

9’ Efinity Interface Designer - pt_demo - O X
File Design Help
@ = be & O
Resource Assigner @
v B ax o
L ;
- GPIO: Instance View
- all all all all
Q Instance ~ PackagePin Resource 1/0 Bank Alt Conn Features Clock Region Pad =
4l Fled[0] J2 GPIOL_09 1A None None LO GPIOL_09_CDI2
a 41 Fled[1] Cc2 GPIOL_16 1B GCLK None L1 GPIOL_16_CLK2
4 Fled[2] F8 GPIOR_20 2B GCLK MNone RO GPIOR_20_CLK5
4 Fled[3] D8 GPIOR_17 24 GCTRL None R1 GPIOR_17_CTRL...
< Oclk_out D6 GPIOR_13 2A None None R1 GPIOR_13
21 Nladrni A [+ 1Ta i o) 1n NMana Mana n EDINL_ M COK i
Design Explorer ()2 ARSI Block Editor Es o
Type and press Enter to search.. Property Value = Instance Name e @
Search filter... v |[e 1 Instance Name Fled[0] Fled[0] o
2 |GPIO Resource GPIOL_09
- (EPLO{FIIZ [3:0] B 3 |Mode output SIEEE
Fled[0]: GPIOL_09 4 ||/0 Standard 3.3V LVTTL/LVCMOS guieut
4 Fled[1]: GPIOL_16 5 |Unused State NA he 1/0 Standard
4 Fled[2]: GPIOR 20 | |4 D =
Notes:
1. Show or hide the Resource Assigner.
2. Double-click in the Resource cell to open the list of available resources.
3. Double-click in the Package Pin cell to open the list of available pins.
4. Click the Switch View button to toggle between Instance View and Resource View.
5. Type in the filter cell above the column you want to filter.
6. Selecting a block in the Design Explorer highlights it in the Resource Assigner.
www.efinixinc.com 46

Efinity Software User Guide

Using the Resource Assigner

[4 Resource Assigner [o] Switch View Clear Selected Clear All Resources
Resource

7 Show/Hide Filter S/ Reset Filter

The Resource Assigner provides a tabular view of all GPIO resources in your chosen FPGA

and information about them, such as whether they are used, the I/O bank, pad, and package

pin, and the instance assigned to the resource.

* The GPIO: Instance View shows all GPIO instances in your project.

e The GPIO: Resource View shows all GPIO, LVDS, and MIPI RX or TX lane resources
and the resources to which you assigned them.

Note: In the Efinity® software v2021.1, you can only view the resources used for LVDS and MIPI lanes in
the Resource Assigner. You cannot change or assign resources in this view.

To assign a resource:

1. Open the Resource Assigner by clicking the Show/Hide Resource Assigner button. The
software opens to the Instance View, which lists all instances in the design.

@ Note: Click Switch View to toggle between instance view and resource view.

2. In instance view, you can assign pins or resources to the instance. Double-click in the
table cell for the item you want to assign. The software displays a drop-down list of
available selections.

3. Select an unused resource, instance, or pin.

Note: If you select a used resource, instance, or pin, the software makes the new
assignment, which replaces the previous assignment.

4. Press Enter.

@ Note: When LVDS resources are used for both LVDS and GPIO within the same bank, they must be
separated by 2 unused pairs of LVDS pins to avoid any unwanted interference. The Efinity software issues
an error if you do not leave this separation. Refer to

@ Note: Titanium: When using HSIO pins as GPIO, make sure to leave at least 1 pair of unassigned HSIO
pins between any GPIO and HSIO pins in the same bank. This separation reduces noise. The Efinity
software issues an error if you do not leave this separation.

Resource View

When assigning GPIO, sometimes you want to know which resource can be used as a global
clock, global control, or other special function. You can look it up in the pin table for the
FPGA and package you are targeting, but an easier way is to use the Resource View in the
Resource Assigner.

1. Click the Switch View button to open the Resource View.
2. Double-click in the filter box above the Alt Conn column and choose the connection
type, for example, GCLK.

www.efinixinc.com 47

Efinity Software User Guide

Figure 18: Resource View

Resource Assigner

v ¢ o

GPIO : Resource View

Resource
GPIOL_14
GPIOL_15
GPIOL_16
GPIOL_17
GPIOR_18

~RINR 10

-

@
5]

[©)
2

all GCLK all all
Instance Package Pin 1/0 Bank Alt Conn Features Clock Region Pad -
= Sled[2] E2 1A GCLK None LO GPIOL_14_CLKO
El 1A GCLK None L0 GPIOL_15_CLK1
4 Fled[1] c2 1B GCLK None L1 GPIOL_16_CLK2
D2 1B GCLK None L1 GPIOL_17_CLK3
D9 2A GCLK MNone R1 GPIOR_18_CLKT
EQ 2N Gl Mana 1 GDINR 10 ClLKA -

Importing and Exporting Assignments

Although it is nice to use a GUI for adding blocks, in some cases it may be easier to use
another format. The Interface Designer lets you import and export assignments using an
Interface Scripting File (.isf) or comma separated values (.csv) file.

When the software reads an imported .isf, it processes the entire imported file and shows any
issues it found. The import only fails for catastrophic errors. The software:

* Creates new instances defined in the file that do not already exist in the GUI

* Opverwrites assignments for existing instances with settings from the file

* Does not delete instances that are in the GUI but were not defined in the file

When the software reads an imported .csv file, it compares the imported assignments to the
original assignments and reports any issues. If the software finds warnings, it displays them
but allows you to finish the import. If it finds errors, it will not finish the import. When
importing, the software:

* Deletes instances that you removed
* Creates newly defined instances
* Replaces instances you renamed with the new name

Learn more: For help understanding messages, refer to the "Design Check" topics in the Titanium
Interfaces User Guide. These topics describe the messages the Interface Designer generates and gives
suggestions on how to fix errors and warnings.

www.efinixinc.com 48

Interface Scripting File

Efinity Software User Guide

The Interface Scripting File (.isf) contains all of the Python API commands to re-create your
interface. You can export your design to an .isf, manipulate the file, and then re-import it
back into the Efinity” software. Additionally, you can write your own .isf if desired.

In addition to using the API, you can export and import an .isf in the Interface Designer
GUIL. Click the Import GPIO or Export GPIO buttons and choose Interface Scripting File
(.isf) under Format.

Example: Example Interface Scripting File

Version: 2020.M.138
Date: 2020-06-26 14:22

Copyright (C) 2017 - 2020
Device: T8F81

Project: pt_demo

=He S S o S S S S S S

Timing Model: C2 (final)

Create instance

Efinity Interface Configuration

Efinix Inc.

Package: 8l-ball FBGA (final)

Configuration mode: active (x1)

All rights reserved.

design.
design.
design.
design.
design.
design.

create output gpio("Fled",3,0)
create inout gpio("Sled",3,0)
create output gpio("Oled",3,0)

create clockout gpio

("Oclk out")

create pll input clock gpio("pll clkin")
create global control gplo("resetn")

Set property, non-default

S

design.set property("Fled","OUT REG","REG")
design.set property("Fled","OUT CLK PIN","Fclk")
design.set property("Sled[O]","IN PIN","")
design.set property("Sled[0]","OUT PIN","Sled[O0]")
design.set property("Sled[1]","IN PIN",6"")
design.set property("Sled[1]","OUT PIN","Sled[1]")
design.set property("Sled[2]","IN PIN","")
design.set property("Sled[2]","OUT PIN","Sled[2]")
design.set property("Sled[3]","IN PIN",6"")
design.set property("Sled[3]","OUT PIN","Sled[3]")
design.set property("Oclk out","OUT CLK PIN","Oclk")

Set resource assignment

design.assign pkg pin("Fled[O0]","J2")
design.assign pkg pin("Fled[1]","C2")
design.assign pkg pin("Fled[2]","F8")
design.assign pkg pin("Fled[3]","D8")
design.assign pkg pin("Sled[0]","E6")
design.assign pkg pin("Sled[1]","G4")
design.assign pkg pin("Sled[2]","E2")
design.assign pkg pin("Sled[3]","G9")
design.assign pkg pin("Oled[O]", "H4")
design.assign pkg pin("Oled[1]","J4")
design.assign_pkg_pin("Oled[2]',"A5")
design.assign pkg pin("Oled[3]","C5")
design.assign pkg pin("Oclk out","D6")
design.assign pkg pin("pll clkin","C3")
design.assign pkg pin("resetn","F1")

www.efinixinc.com 49

Efinity Software User Guide

.csv File for GPIO Blocks

For larger designs with lots of GPIO, it can be simpler to use a spreadsheet application to
make assignments. The Resource Assigner allows you to import and export GPIO block
assignments using a comma separated values (.csv) file. The .csv file includes the package pin

and pad name, the instance name, and the mode. You can use this method for any type of
GPIO, including LVDS pins used as GPIO or HSIO pins used as GPIO.

Table 10: Example GPIO .csv File

Package Pin-Pad Name Instance Name Mode

G5-GPIOL_00
J4-GPIOL_01_SS_N
H4-GPIOL02_CCK

G4-GPIOL_03_CDl4 led[0] output
F4-GPIOL0O4_CDIO led[1] output
J3-GPIOL_05_CDI5 rstn input

H3-GPIOL_06_CDlI1

(2) led[6] inout

When working with the .csv file:

* Add your assignments to the Instance Name and Mode columns.
* Do not modify the package pin-pad names.

* For the mode, specify: input, output, inout, clkout, or none

@ Note: You cannot make advanced settings such as alternate connections or
registering. To make these settings, use the Block Editor.

When the software reads an imported .csv file, it performs a comparison between the .csv
assignments and the original GPIO block assignments and reports any issues. If the software
finds warnings, it displays them but allows you to finish the import. If it finds errors, it will
not finish the import. When importing, the software:

* Deletes instances that you removed
* Creates newly defined instances
* Replaces instances you renamed with the new name

Scripting an Interface Design

Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics.®) Efinix distributes a copy of Python 3 with the Efinity® software to support point
tools such as the Debugger and to allow users to write scripts to control compilation.

You use the Efinity” Interface Designer to build the peripheral portion of your design,
including GPIO, LVDS, PLLs, MIPI RX and TX lanes, and other hardened blocks. Efinix
provides a Python 3 API for the Interface Designer to let you write scripts to control the
interface design process. For example, you may want to create a large number of GPIO, or

2\ Unassigned instances have a blank field for the Package Pin-Pad Name column.

©) Source:

www.efinixinc.com 50

https://www.python.org/doc/essays/blurb/

Efinity Software User Guide

target your design to another board, or export the interface to perform analysis. This user
guide describes how to use the API and provides a function reference.

language.

Interface Designer Python API.

Viewing the Package Pinout

Learn more: Refer to the Python web site, www.python.org/doc, for detailed documentation on the

Learn more: For more information on using the Python APl to script an interface, refer to the Efinity

The Package Planner provides a visual representation of the FPGA package pins. Each pin

is color coded by function (such as GPIO, configuration, power, etc.) letting you easily see
which package pin has which function. Additionally, you can highlight I/O banks, PLL
reference clocks, global clocks, and global controls so you can quickly find a specific pin that
has the feature you need. This tool is helpful when planning how to map the signals in your

design to package pins.

Figure 19: Package Planner

[Package Planner - pt_demo

Eile View Help

® oo
Refresh the ——
Pinout Package View
256-ball FBGA Pinout Diagram
. Topview Device Name: T20F256
Indicates —— « 4 6 5 16
Pin 1 A L. Q.
Q.2 8.8
o

]
n
"
1

10 11 12 13 14 15 16

w
s
o |F
o
©

- o

X

Click to View Details
for a Selected Pin
P No— Toggle Pin Configuration

Report | Pininformation

Display 1/O bank group
Display PLL Reference Clock
Display PLL External Feedback
Display Global Clock

Display Global Control

Turn these options
on to highlight them
on the pinout image

(7 Toggle World View
Zoom In

a——Zoom QOut

< ——Fit Pinout to the Window
—— Show Package Bottom

2 Rotate Left

Rotate Right

@ —— Reset the Orientation
Toggle the Legend
%~ Toggle the Pin Browser

©——0pen Help

Q

(¢

www.efinixinc.com 51

https://www.python.org/doc/
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI

Efinity Software User Guide

Selecting a Pin

Click a pin in the pinout to highlight it. The Pin Information tab opens to show the details
about the selected pin. Open the Legend to view the meaning of the pins' color coding.

Figure 20: Selected Pin

—— Selected Pin

[Package Planner - pt_demo -] X

File View Help

D View Configuration B8 E
Report | Pininformation
@ 1 2 3 4 5 6 7 8 9 v
Pin Type: : Configuration or GPIO Q
HE O O O H O O O @ wm =
Q
A GND GPIOL.S0 GPIOLS7 GPIOL_59 GND GPIOL 65 GPIOL 62 GPIOL_66/C GPIOR 78_E Padname : GPIOL_71_NSTATUS
DI12 XTFBO_CDI3 %
1 1/0Bank :1D_1E
I/0BankVoltage : 3.3V H
O O O O O O @) —— Selected Pin
B I/OStandard : N/A \
GPIOL 44 GPIOL45 GPIOL52 GPIOL53_.C GPIOL61 GPIOL64 GPIOL63 GPIOL71 N GPIOR 80 .
DI10 STATUS BlockType : GPIO IS DetallS
Block Instance : N/A 8]
® O O O O O ® @ oo
c GPIOL_33_C GPIOL41_C GPIOL48 GPIOLS1 GPIOL67.C GPIOLS8 GPIOL_70_C GPIOL_72_E GPIOR_76_P Function User10/Configuration
TRS DI9 DI13 BSELO XTFBO_CDI1 LINO £
4
« v ®
Legend o

PinType | 1/OBank PinFunction

g
g

Type
Configuration or GPIO

Dedicated Ground

Dedicated Power

LVDS Reference Resistor Pin

CRF R EECEN=)
eomNNEe

Multi-Function or GPIO

g
B

Type
Dedicated Configuration

Dedicated JTAG

Legend

GPIO
LVDS or GPIO

eoeO NN

Multi-Function, LVDS, or GPIO

You can also hover over a pin for a quick view of the pin details.

Figure 21: Pin Quick View

E} Package Planner - pt_demo

File View Help

CK

Package View
J GND GPIOL_20_C GPIOL_16 GPIOL_14 GPIOL_11 vCC
TRLO_CDI4
K GPIOL_18 GPIOL 5 GPIOL_12_C TDI VCCIO1A
GPIOL_19
- DI2
Type: GPIO
Pin: K2
. c Block Instance: Fled[3] . . .
IO Bank: 1B_1C
L Resource Name: GPIOL_19
GPIOL_23_C GPIOL_13__ _08_C GPIOL_05_C TDO VCCIO4B
TRL3 DI3 DIO SO
M ™S TCK GPIOL_01_C GPIOB_TXPO

0 0 5

- [m] X

- &

H 1

Ve GN

H i

GND GN ©

=

®

H 1
VCCI04B GN

GPIOB_TXNO GPIOB_TXPO GPIOB_TXNO GPIOB.

5 1

3

www.efinixinc.com 52

Efinity Software User Guide

Browsing for Pins

The Package Planner has a Pin Browser, which has a table view similar to the Resource
Assigner. You can filter pins and then select them in the Pin Browser. The selected pin is
highlighted in the pinout.

Figure 22: Browsing for Pins

—— Selected Pad Name

[Package Planner - pt_demo - o X

File View Help
® T 0
Pin Browser e

v ¢ 8 a o

Pin Search
all n 1F all all all m— Fllter PlnS

PinName ~ Pad Name Pin Type 1/OBank 1/0BankVoltage 1/0 Standard BlockType BlocklInstance Resource Name Function =

A2 GPIOL_50 GPIO 1D_1E 33V GPIO GPIOL_50 Userl0

A GPIOL_57 GPIO 1D_1E 33V GPIO GPIOL_57 Userlo

A GPIOL_59 GPIO 1D_1E 33V GPIO GPIOL_59 Userl0

A6 GPIOL_65 GPIO 1D_1E 33V GPIO GPIOL_65 Userl0

AT GPIOL_62 GPIO 1D_1E 33V GPIO GPIOL_62 Userl0

As coint_&& cnina coin 10 23v coin coint s lcariny ~

Package View

&

(] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o

O Om OO O @ m

A GND GPIOL_S50 GPIOL_57 GPIOL_59 GND GPIOL_65 GPIOL_62 GPIOL_66_C GPIOR 78_E GPIOR_79_E GPIOR_84 GND GPIOR_95_C ‘GPIOR_90 GPIOR_94_C Q
DI12 XTFBO_CDI3 XTFB1_CDI3 DI26 D127

0 ta

@)
@)
o
O -

o
a
=
<
IS
a
=
<
2
by
@
=
R
)

GPIOL7LN GPIOR 80 GPIOR 8 GPIOR 83 GPIOR 93 GPIORS7 GPIOR92 GPIOR 98

B GPIOL44 GPIOL45 GPIOL52 GPIOL
DI STATUS,

O
o
O
L
L

C GPIOL 33_.C GPIOL41.C GPIOL48 GPIOI
TRIS nig

GPIOL67_C GPIOI
Nz

£

« @ 2 9

58 GPIOL70_C GPIOL72E GPIOR76P GPIORSLM GPIORS6 GPIORSS GPIOR 99 GPIOR_102 GPIOR 112_
RSFN XTFRO (DT HTND RFFOIK mn3
]

www.efinixinc.com 53

Efinity Software User Guide

Constraining Logic and Routing Manually

(Beta)

The Efinity software v2022.1 and higher lets you assign logic to a specific location in the
FPGA's core. With this method, you can place your design's logic manually instead of letting

the software place it for you.

In v2022.2 and higher, you can also manually constrain routing to specific paths. When you
constrain routing you also need to constraint the logic to which the nets connect.

Placing logic and/or routing manually is an advanced technique, so make sure that you fully
understand the rules and restrictions as described in the following sections.

@ Important: These features are beta.

Tiles

The FPGA is made up of a grid of tiles. Most tiles are for logic/routing and others are for
functions like RAM, multipliers, or DSP. The following table shows the types of tiles by

family and their use.

Table 11: FPGA Tile Types

Tile Trion Titanium Used for
EFT v v Logic and routing with register
EFL v Logic and routing without register
EFM v Logic, routing, register, and shift register
RAM v v RAM blocks
MULT v Multiplier blocks
DSP48 v DSP blocks

When you view your design's placement in the Floorplan Editor, you can click on a tile to
view its type and other details. In the following figure, the selected blue tile is an EFT and is

used for logic.

Tip: The Floorplan Editor provides a graphical way to find logic you want to constrain.

www.efinixinc.com 54

Figure 23: Tiles in the Floorplan Editor

Floorplan Editor

Efinity Software User Guide

@
eft
@
S
¥
memory efl eft)
g
®
)) - i
@
memory efl eft n
O«
O+
efl eft efl I
I
4 I ‘ L o
Q. [Type to search... |§|Block: (61,45) type=eft name=Instruction[5]~FF
~ Selected Tile
Notice that some tiles in the floorplan have a number. This number indicates how many
routing lines are used in that tile. A tile used for logic (blue) can also be used as routing
(indicated by the number). Orange means a tile is only used as routing.
www.efinixinc.com 55

Working with Primitives

Efinity Software User Guide

During synthesis, the software maps your design's logic—LUTs, RAM, flipflops, etc.—to
primitives. These primitives occupy specific locations (tiles or groups of tiles). Each tile has
one or more sub-blocks in which to place a primitive. Placing multiple primitives into the
same tile is called packing.

The following tables show the types of primitives, the tiles where you can place them, and
the sub-blocks they can occupy.

Table 12: Mapping Trion Primitives to Tiles and Sub-Blocks

Tile Sub-Block
0 1 2 3
EFT EFX_LUT4 - EFX_FF -
EFX_ADD
EFL EFX_LUT4 - EFX_FF -
EFX_ADD
RAM EFX_RAM_5K Reserved - -
EFX_DPRAM_5K
MULT EFX_MULT - - -
Table 13: Mapping Titanium Primitives to Tiles and Sub-Blocks
Tile Sub-Block
0 1 2 3
EFT EFX_LUT4 Reserved EFX_FF -
EFX_ADD
EFX_COMB4
EFM EFX_LUT4 Reserved EFX_FF -
EFX_ADD
EFX_COMB4
EFX_SRL8
RAM EFX_RAM10 Reserved - -
EFX_DPRAM10
DSP48 EFX_DSP48 EFX_DSP24 EFX_DSP12 EFX_DSP12
EFX_DSP24 EFX_DSP12
EFX_DSP12

www.efinixinc.com

Efinity Software User Guide

The following table shows another view of the same mappings.

Table 14: Mapping Primitives to Tiles

Primitive Compeatible Tiles Allowed Sub-
Trion Titanium Block Indices
EFX_LUT4 EFT, EFL EFT, EFM 0
EFX_ADD EFT, EFL EFT, EFM 0
EFX_COMB4 EFT, EFL EFT, EFM 0
EFX_FF EFT EFT, EFM 2
EFX_SRL8 - EFM 0
EFX_RAM_5K RAM - 0
EFX_DPRAM_5K RAM - 0
EFX_RAM10 - RAM 0
EFX_DPRAM10 - RAM 0
EFX_MULT MULT 0
EFX_DSP48 - DSP48 0
EFX_DSP24 - DSP48 0,1
EFX_DSP12 - DSP48 0,123

Finding Primitive Cell Names

When the software maps your design to primitives, it assigns a cell name to each instance. To
view the primitive cell names:

¢ In the Dashboard's Netlist tab, click the Load Synthesized Netlist icon and expand Leaf
Cells.

* Open the <project>.map.v file (in the Dashboard, go to Result pane > Synthesis).
This file is in the project's outflow directory.

Enabling Manual Assignments

Because manual assignments are beta in the Efinity software v2022.1, v2022.2, and 2023.1,
you must enable them with an .ini file.

1. Create a text file named efx_pnr_settings.ini and save it in your project directory.
2. Add the following line to the .ini file:

loc_assignment = <filename>.placeloc

When you synthesize your design, the software uses the assignments in the
< filename > .placeloc file.

www.efinixinc.com 57

Efinity Software User Guide

Assignment Rules

Follow these rules when creating assignments.
General Rules

* You can only constrain logic in the core (use the Interface Designer for I/O constraints).

* You can only constrain primitive cells. If two primitives cells can be packed together,
you can assign them to the same location. The sub-block index must be unique for each
primitive cell in a location. For example, if you assign four EFX_DSP12 primitives to the
same tile, they must each have a different sub-block.

* The software does not pack manually assigned cells with unassigned cells. For example, if
you place a EFX DSP12 into a DSP tile at sub-block 0 and do not assign any other sub-
blocks, the software will not pack any other DSP logic into that tile, leaving sub-blocks
1, 2, and 3 empty. Similarly, only assigning flipflops (which use sub-block 2) uses more
overall resources because sub-block 0 is left empty.

@ Important: Because assigned and unassigned cells are not packed together, make
sure to "fill up” the tile with logic. Otherwise you can end up using more tiles than
needed.

Flipflops
* An EFX FF can be packed alone or with its driver cell (EFX _LUT4, EFX SRLS,

EFX_ADD, or EFX_COMBA4).

* An EFX FF can only be packed with an EFX SRLS if they share CE and CLK inputs
and if the EFX_FF does not have an inverted input.

° An EFX FF cannot be packed if it has an inverted input connected to a multi-fanout net.

RAM, Multiplier, and DSP

e FEFX MULT, EFX_DSP48, and all RAM primitives cannot share a tile with any other
cells.

* Two EFX_DSP24 primitives or up to four EFX DSP12 primitives not connected by
CASCIN/CASCOUT signals can be packed together and share a location.

Chains

EFX_DSP48, EFX_DSP24, EFX_DSP12, EFX_ADD, and EFX_SRLS can form chains. If
one cell in the chain is assigned a location, every other cell in the chain must also be assigned
a location, in the correct order.

Creating a Location Assignment File

The location assignment file is a text file with the extension .placeloc. Each assignment is on
a single line with tabs or spaces between the data:

<block name> <x> <y> <subblk>

e <block name> is the primitive cell name.
* <x> is the horizontal location.

* <y> is the vertical location.

° <subblk> is the sub-block location.

You must include all data for each assignment.

Any text following a # character is ignored (treated as a comment).

www.efinixinc.com 58

Efinity Software User Guide

Tip: Use the Floorplan Editor to help you find the x, y coordinates for a tile. When you click a tile the coordinates
are shown in ().

.) - _ .)))

Q. |Type to search. Block; (61,45) type=eft name=Instruction[5]~FF

X,y coordinates for the selected tile

To make it easier for you to create assignments, the Efinity software can dump all placement
data into a file when placement finishes. You can copy and paste the primitive cells you want
to constrain into your .placeloc file and then modify the x, y coordinates.

To dump the placement data, add the following line to your efx_pnr_settings.ini file and re-
run the placer.

dump placeloc = on

@ Important: Do NOT simply copy and paste the entire dump file into your .placeloc file or the software
may not be able to perform placement efficiently. Only copy the primitives you want to constrain.

Example: LUT and Flipflop
The example packs an EFX_FF with its driver, LUT_A, an EFX_LUT4.

#block name x y subblk
#

LUT A 3 3 0
FF B 3 3 2 # LUT_A drives FF_B

Example: SRL8 Chain

This example assigns locations to every cell in an SRL8 chain.

#block name X

first_srl8
second_srl8
third srl8
fourth srl8

Example: Parallel Cascaded DSP Block

This example assigns locations to every EFX_DSP24 across two chains. There can be two EFX_DSP24 cells per DSP
tile.

#block name X % subblk
#

chain0 _dsp24 0 17 2 0
chainl dsp24 0 17 2 1
chain0 dsp24 1 17 22 0
chainl dsp24 1 17 22 1

www.efinixinc.com 59

Efinity Software User Guide

Constraining Routing Manually (Beta)

With the Efinity software v2022.2 and higher the router lets you manually constrain routing
traces for Titanium FPGAs. This feature is beta in v2022.2.

After you compile your design once, you can lock down (or constrain) specific nets to specific
paths. For any future compilations, the software routes these constrained nets in the same
way. To constrain nets, you also need to constrain the logic to which the nets connect. See

on page 54 for information on making
logic constraints.

You can combine constrained logic and constrained routing to preserve the placement and
routing of a small part of your design, letting the rest change as you compile. This feature can
be useful when logic (such as a sampling delay line) with very specific routing requirements
must be locked down early in the design cycle. Additionally, this feature lets you preserve
place and route for connections that have difficult timing constraints.

Routing Constraint Flow

To use routing constraints, follow this procedure:

1. Determine which nets and cells should be constrained.

2. Run the Efinity software, adjusting your design for each iteration, until the nets meet
timing.

3. When the nets meet timing, use an .ini file to tell the software to save the placement and
routing data to templates. (See on page 61)

4. Do not make any changes to the design and re-compile.
The software creates these template files:

* Placement template <project>.out.placeloc
* Routing template <project>.rcf.template

The software also creates a routing traces file <project > .troutingtraces.

5. Move these three files out of the outflow directory, for example, move them up one level
to the main project directory.

6. Copy and paste the cells and nets you want to constrain from the two template files
to your own files. You do not want to copy everything! (See
on page 61 and on page 58)

7. Add your new constraint files to an .ini file. (See on page
60)

8. Continue to change your design as needed. When you compile, the software will place
and route the constrained logic and nets as defined in the constraint files.

Enabling Routing Constraints

Because routing constraints are beta in the Efinity software v2022.2, you must enable them
with an .ini file. Because routing constraints are used with logic constraints, you enable them

both.

1. Create a text file named efx_pnr_settings.ini and save it in your project directory.
2. Add the following lines to the .ini file:

loc_assignment = <path>/<filename>.placeloc
rcf file = <path>/<filename>.rcf

When you synthesize your design, the software uses the assignments in the specified files.

www.efinixinc.com 60

Efinity Software User Guide

Generate .rcf Template

You tell the software to generate templates in the efx_pnr_settings.ini file. Because routing
constraints are used with logic constraints, you enable templates for both.

1. If you do not already have one, create a text file named efx_pnr_settings.ini and save it
in your project directory.
2. Add the following lines to the .ini file:

dump placeloc = on
generate rcf template = on

When you compile your design, the software generates the <project>.out.placeloc and
<project > .rcf.template files.

@ Important: Do not generate these templates until you are ready to lock down the routing.

Creating a Routing Constraint File

The routing constraint file is a text file with the extension .rcf. The file format is line-
oriented; each command is on a single line with spaces between the data.

To make it easier for you to create assignments, the Efinity software can dump all routing
data into a template file when routing finishes. (See on page 61)
You copy and paste the nets you want to constrain into your own .rcf.

@ Important: Do NOT simply copy and paste the entire template file into your .rcf or the software may not
be able to perform routing efficiently. Only copy the nets you want to constrain.

The .rcf has these components:

* routeTraceFile <path> /< filename> troutingtraces is the file that has the saved
net traces you want to use.

* restoreNetFromTraceFile <met> isthe net you want to constrain

* Lines beginning with # are comments

The constrained router flow will use the following trace file to restore constrained nets
routeTraceFile <path>/<project>/<filename>.troutingtraces

Here is a list of available nets that can be restored from the trace file
You can use (#) to comment any net that you would like to exclude
restoreNetFromTraceFile rst i

restoreNetFromTraceFile net 1

restoreNetFromTraceFile net 2

restoreNetFromTraceFile net 3 # this net is ignored

www.efinixinc.com 61

Efinity Software User Guide

Best Practices for Constraining Routing
Follow these guidelines when constraining routing:

* Use a consistent naming convention, such as netname LOCKED, for all constrained nets.
This methodology lets you identify them in the template files more easily.

* Use the syn keep synthesis attribute to tell synthesis to keep the signal during
optimization. If you do not use syn keep, software might optimize away the net you
want to constrain.

(* syn keep = "true" *) wire netname LOCKED;

* In your .rcf, do not point to the .troutingtraces file in the project outflow directory.
This file is overwritten each time you compile. Instead, move the .troutingtraces file into
another directory and point to it in that location.

¥ you modify your design, the primitive cell names (for example LUT names) might change

through the synthesis step. As a result, you may need to make some modifications in your

<project > .out.placeloc file to reflect the new primitive cell names of the synthesized
netlist.

www.efinixinc.com 62

Efinity Software User Guide

Chapter 6

Analyzing Timing

You use static timing analysis (STA) to measure the timing performance of your design.
The software generates a timing report based on the design’s place and route results and the
project’s SDC file. The software provides several tools for viewing and cross-probing timing
results:

* The Timing Browser helps you explore your design’s critical paths and the cells of those
paths.

* The Floorplan tool shows the locations of the paths and cells in the fabric.

* The Tcl Command Console helps you analyze and explore timing.

After analyzing your design’s timing, you can update your SDC file if needed. To apply
the new SDC settings to see how they affect placement and routing, re-run the flow from
synthesis to the end.

[ﬂ Learn more: For detailed information on performing timing analysis and closing timing, refer to the

www.efinixinc.com 63

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

Chapter 7

Simulating

Contents:

You can use the command line flow to perform RTL simulation on your design’s source files
as well as simulation on the post-synthesis netlist file. Simulation involves the following steps:

1. Perform behavioral RTL simulation to ensure that the RTL design matches your
testbench functionality. You can include multiple Verilog HDL design files. Use the —-
flow rtlsimflag.

2. Run the mapper to synthesize your design using the -—f1low map flag. The software
creates the <project name>.map.v file in the outflow directory, which you use for post-
synthesis simulation.

3. Perform post-map simulation using the top-level testbench and the .map.v file using the
--flow mapsim flag.

The following example shows the commands for these three steps:

Example: Simulating at the Command line

Linux:
efx run.py <project name>.xml --flow rtlsim
efx run.py <project name>.xml --flow map
efx run.py <project name>.xml --flow mapsim
Windows:
efx run.bat <project name>.xml --flow rtlsim
efx run.bat <project name>.xml --flow map
efx run.bat <project name>.xml --flow mapsim

The software saves simulation results into the outflow directory.

www.efinixinc.com 64

Simulation Models

The Efinix primitive models are located in the directory <installation directory>/

sim_models/verilog

Table 15: Primitive Simulation Models

Efinity Software User Guide

Primitive Description Trion Titanium Filename
EFX_ADD Simple Full Adder v Vv efx_add.v
EFX_COMB4 Simple 4-Input LUT ROM plus Simple Vv efx_comb4.v

Adder
EFX_DPRAMS5K 5 Kbit True-Dual-Port RAM Block v efx_dpram5k.v
EFX_DPRAM10 10 Kbit True-Dual-Port RAM Block v efx_dpram10.v
EFX_DSP12 Quad-Mode 4 x 4 DSP Block v efx_dsp12.v
EFX_DSP24 Dual-Mode 8 x 8 DSP Block v efx_dsp24.v
EFX_DSP48 Full Function DSP Block v efx_dsp48.v
EFX_FF D Flip-flop with Clock Enable and Set/ v v efx_ff.v

Reset Pin
EFX_GBUFCE Global Clock Buffer v v efx_gbufce.v
EFX_LUT Simple 4-Input LUT ROM v v efx_lutd.v
EFX_MUL 18 x 18 Multiplier Vv efx_mult.v
EFX_RAM_5K 5 Kbit RAM Block v efx_ram_5k.v
EFX_RAM10 10 Kbit RAM Block v efx_ram10.v
EFX_SRL8 8-Bit Shift Register Vv efx_srl8.v

www.efinixinc.com

65

Efinity Software User Guide

Changing the Default Testbench Names

The simulation flow assumes that:

* Your testbench file is named <project name>_tb.v
* The top module in your testbench is named sim

To use a different testbench name, use the --tb option.

To use a different name for the top-level module, specify it with the --tb top option.
Example: Changing Default Names
Linux:

efx run.py <project name>.xml --flow rtlsim|mapsim --tb <testbench name>

efx run.py <project name>.xml --flow rtlsim|mapsim --tb top <top-level module name>
Windows:
efx run.bat <project name>.xml --flow rtlsim|mapsim --tb <testbench name>

efx run.bat <project name>.xml --flow rtlsim|mapsim --tb top <top-level module name>

Note: If the testbench file is not located at the root level of the project directory, you need to specify the
path. For example:

efx run.py helloworld.xml --flow rtlsim --tb src\helloworld tb.v

Simulate with the iVerilog Simulator

By default, the Efinity® software calls the iVerilog simulator. Use the ——flow rtlsim|
mapsim flag.

@ Note: You can download the free Icarus Verilog (iVerilog) simulator from

Note: Windows: You may need to add the path to iVerilog ($iVerilog folder$\bin\)to your System
Variables path for the software to launch correctly.

For example, the commands to simulate are:

Example: Simulate with iVerilog

Linux:

> efx run.py <project name>.xml --flow rtlsim // Behavioral simulation

> efx run.py <project name>.xml --flow map // Synthesize the design

> efx run.py <project name>.xml --flow mapsim // Post-synthesis simulation
Windows:

> efx run.bat <project name>.xml --flow rtlsim // Behavioral simulation

> efx run.bat <project name>.xml --flow map // Synthesize the design

> efx run.bat <project name>.xml --flow mapsim // Post-synthesis simulation

The simulator responds with
o PASS if the simulation is successful.

www.efinixinc.com 66

http://iverilog.icarus.com

Efinity Software User Guide

* aDPython exception warning if the simulation is unsuccessful.

The software saves simulation results (< project name> .rtl.simlog and <project
name>.map.simlog) and error messages (< project name>.log) in your project's outflow
directory.

View Waveforms
To use GTKWave to view a waveform:
1. Add the following lines to your testbench to generate the dumpfiles:

Sdumpfile ("outflow/<file name>.vcd") ;
Sdumpvars (0, sim);

2. Simulate with the iVerilog simulator.
3. Use this command to view the output waveform:

gtkwave outflow/<project name>.vcd

Simulate with the ModelSim Simulator

By default, the Efinity” software calls the iVerilog simulator. Use the --modelsim option
to target the ModelSim simulator instead.

@ Note: The simulator must be in your path for the simulation to run properly.

For example, the commands to simulate are:

Example: Simulate with ModelSim

Linux:

> efx run.
> efx run.
> efx run.

Windows:

> efx run.
> efx run.
> efx run.

py <project name>.xml --flow rtlsim --modelsim
py <project name>.xml --flow map
py <project name>.xml --flow mapsim --modelsim

bat <project name>.xml --flow rtlsim --modelsim
bat <project name>.xml --flow map
bat <project name>.xml --flow mapsim --modelsim

The simulator responds with
e PASS if the simulation 1s successful.
o FAIL if the simulation is unsuccessful.

// Behavioral simulation
// Synthesize the design
// Post-synthesis simulation

// Behavioral simulation
// Synthesize the design
// Post-synthesis simulation

The software saves simulation results (< project name>.rtl.simlog and <project
name>.map.simlog) and error messages (< project name>.log) in your project's outflow

directory.
Simulate with the ModelSim GUI

The ModelSim GUI uses a macro file of your simulation files and workspace for simulation.

1. Create a new macro file <project name>.do in your project directory.

2. For behavioral simulation, define your workspace and include your source code.

3. For post-synthesis simulation, define your workspace, include the post-mapping synthesis
file, and include the simulation models for Efinix primitives.

www.efinixinc.com 67

Efinity Software User Guide

4. Addthe vsim -t ps <work space>.<test bench module name> command
to start simulation in the ps timeframe.

5. Addthe run <number>us command to generate a waveform up to <number> ps.
6. Run the ModelSim software in the Transcript console.

7. Change to the project root directory.

8. Use the do command to execute the macro (do <name>.do).

9. Add signals to the waveform in the Objects tab.

10. View the simulation result in the Wave tab.

The following examples show the macro files for behavioral and post-synthesis simulation for
the helloworld design provided with the Efinity” software.

Figure 24: Bevhavioral Simulation Example .do Macro

vlib work
vmap work work

vlog "helloworld.v"
vlog "led.v"

vlog "reset.v"

vlog "helloworld tb.v"

vsim -t ps work.sim
run lus

Figure 25: Post-Synthesis Simulation Example .do Macro

The Efinity software provides additional primitives, but they are not used for simulation.

vlib work
vmap work work

vlog "outflow/helloworld.map.v"

vlog "<path to Efinity>/sim models/verilog/efx add.v"

vlog "<path to Efinity>/sim models/verilog/efx dpram Sk.v"
vlog "<path to Efinity>/sim models/verilog/efx ff.v"

vlog "<path to Efinity>/sim models/verilog/efx gbufce.v"
vlog "<path to Efinity>/sim models/verilog/efx lutd.v"
vlog "<path to Efinity>/sim models/verilog/efx mult.v"
vlog "<path to Efinity>/sim models/verilog/efx ram S5k.v"

vlog "helloworld tb.v"

vsim -t ps work.sim
run lus

www.efinixinc.com 68

Efinity Software User Guide

Simulate with the NCSim Simulator

By default, the Efinity” software calls the iVerilog simulator. Use the —~-ncsim option to

target the NCSim simulator instead.

@ Note: The simulator must be in your path for the simulation to run properly.

For example, the commands to simulate are:

Example: Simulate with NCSim

Linux:
> efx run.py <project name>.xml --flow rtlsim --ncsim
> efx run.py <project name>.xml --flow map
> efx run.py <project name>.xml --flow mapsim --ncsim
Windows:
> efx run.bat <project name>.xml --flow rtlsim --ncsim
> efx run.bat <project name>.xml --flow map
> efx run.bat <project name>.xml --flow mapsim --ncsim

The simulator responds with
e PASS if the simulation 1s successful.
e FAIL if the simulation 1s unsuccessful.

// Behavioral simulation
// Synthesize the design
// Post-synthesis simulation

// Behavioral simulation
// Synthesize the design
// Post-synthesis simulation

The software saves simulation results (< project name>.rtl.simlog and <project
name>.map.simlog) and error messages (< project name>.log) in your project's outflow

directory.

www.efinixinc.com 69

Efinity Software User Guide

Chapter 8

Debugging

Contents:

The Efinity” software includes a hardware Debugger to probe signals in your FPGA design
via the JTAG interface. The Debugger has two perspectives: Profile Editor and Debug. The
Profile Editor perspective is where you add debug cores manually. You can also view the
settings of a Logic Analyzer core that you created with the . The Debug
perspective is where you perform debugging.

The Debugger includes two debug cores, and a .
You use a manual flow and the Profile Editor to configure Virtual I/O cores. You can use a
manual flow or the Debug Wizard's automated flow to configure Logic Analyzer cores.

Debugging involves the following general steps:

1. Create a debug profile with the Virtual I/O and/or Logic Analyzer debugger core(s).
Generate the debug design file and add it to your project.

Compile.

Program the FPGA.

Run the Debugger GUI and observe the values on the probes.

AN

@ Note: The minimum operating frequency of the debug cores is 2 times the JTAG TCK frequency.

www.efinixinc.com 70

Efinity Software User Guide

Profile Editor Perspective

Choose Perspectives > Profile Editor to open the editor. If you created a debug profile
using the Debug Wizard, the editor loads it automatically. You can import an existing profile;
if you do not have an existing debug profile, you add Virtual I/O or Logic Analyzer cores
and then configure them.

Figure 26: Debugger Profile Editor Perspective

Efinity Debugger

File Perspectives Help

Hame Init. Value

Core name a0 || | @]

Data depth | 1024 ~ | Trigger In Fort Trigger Out Port Capture Contral

Name Width Proke Trigger or Data = |E |
DATA AND TRIGGER v‘
! X
~| DATA AND TRIGGER - |
1
~| DATA AND TRIGGER - |-

+ Add Debug Core + Add Probe # Remove Probe or
i— -mj— Source

! Import Profile + Add Source # Remove Debug Core
T S *

1. Click Add Debug Core to add a Logic Analyzer (1a) or Virtual I/O (vio) core
manually. You can also use the Debug Wizard for Logic Analyzer cores.

2. For vio, add probes and sources; for 1a, add probes.

3. For vio, specify the signal name and width; for sources you can also specify a radix and
initial value.

4. For 1a, specify the signal name, width, and whether the signal is for collecting data,
triggering, or both.

5. Click Generate Core RTL to create the debug module and instantiation template.

6. If you created a debug profile with the Debug Wizard, click Import Profile to load it.

7. The Console displays messages.

www.efinixinc.com 71

Efinity Software User Guide

Virtual I/0 Debug Core

The Virtual I/O (vio) core lets you monitor and drive the FPGA signals using the
Debugger. You can use it to capture instantaneous data from connected wires or registers,
and you can edit values of connected wires or register. This debug core is useful for triggering
reset or control signals in real time. For example, you could use the Virtual I/O core to
trigger a reset instead of using a pushbutton; or, you can use it to monitor a data bus to
ensure that the data is what you expect. You manually configure and instantiate the Virtual
I/O core.

Functional Description

The Virtual I/O core has an interface to the JTAG User Tap block, a clock, and user-
specified probes and sources.

Figure 27: Virtual I/0O Core Block Diagram

bscan_CAPTURE

Virtual I/O Debug Core
<core>_clk

bscan_DRCK g «e
bscan_RESET N Input <core>_<probe name>[n:0]
bscan_RUNTEST _ :
bscan_SEL > ¢ > Registers oo Probes

JTAG _ » JTAG <« andActivity _ <core>_<probe name>[n:0]

User Tap bscan_SHIFT » User Tap Detectors ©

bscan_TCK » Interface
bscan_TDI 4
bscan TMS & <core>_<source name>[n:0]
bscan_UPDATE _ —> Output PPy Sources
bscan_TDO | <+— Registers <core>_<source name>[n:0]

A

Table 16: Virtual I/0O Core Ports

Port Direction Description

<core>_clk Input Clock to register input and output ports.

<core>_<probe name>[n:0] Input Probes you add in the Profile Editor. You can add a maximum
on 64 probes; the maximum probe width is 256 bits.

<core>_<source name>[n:0] Output Sources you add in the Profile Editor. You can add a maximum
on 64 sources; the maximum source width is 256 bits.

bscan_CAPTURE Input Capture output from the TAP controller.

bscan_DRCK Input Gated TCK output.

bscan_RESET Input Reset output for the TAP controller.

bscan_RUNTEST Input Output asserted when the TAP controller is in the Run Test / Idle
state.

bscan_SEL Input USER instruction active output.

bscan_SHIFT Input SHIFT output from TAP controller.

bscan_TCK Input JTAG test clock input (TCK).

bscan_TDI Input JTAG test data input (TDI).

bscan_TMS Input JTAG test mode select input (TMS).

bscan_UPDATE Input UPDATE output from TAP controller.

bscan_TDO Output JTAG test data output (TDO).

www.efinixinc.com 72

Efinity Software User Guide

Adding a Virtual I/0O Core

Open the Debugger.
Choose Perspectives > Profile Editor.
Choose Add Debug Core > VIO.

Specify the core name.

AN

Add sources (inputs to your design from the JTAG interface) and probes (outputs from

your design to the JTAG interface).

* For probes, choose a width and specify the signal to which you want to connect the
probe in your design.

* For sources, choose a width and specify the signal to which you want to connect
the source in your design; you can set an initial value and choose a radix for how to
display the data.

6. Click Generate Core RTL. The Efinity” software saves the debug profile in your

project directory as debug_profile.json. The software also creates a debug template

(debug_TEMPLATE.v), which includes the module for the debug profile you created and

debug_top.v, which is the RTL logic for the debug core.

7. Add the debug_top.v file to your project.

Tip: In the Project pane, right-click Design and choose Add to open a dialog box to find the file and add it.

8. Add aJTAG User Tap block in the Interface Designer. Choose JTAG_USERT1 as the
JTAG Resource.

Note: the debug template uses the default signal names prefixed with
jtag_instl.If you use a different name, then you should also change it in the
module instantiation.

9. Add the debug logic into your design using these steps:

a. Add all of the JTAG input and output pins to the project's top module. Refer to the
JTAG User TAP block pin names in the Interfaces Design to get the pin list.

b. Instantiate the debug core in the project's top module. You can copy the example code
from the generated debug_TEMPLATE.v or debug_TEMPLATE.vhd file in the project
folder.

¢. Connect the nets that you want to monitor and drive the FPGA signals. You need to map
the net (input, output, wire, register, and/or signal) to the port of the instantiated debug
core (edb_top_ inst).

10. Compile the design.

When compilation completes, you can launch the Debugger to perform debugging.

www.efinixinc.com 73

Efinity Software User Guide

Logic Analyzer Debug Core

You use the Logic Analyzer core (1a) to monitor the signals in your design. You can capture
connected wire or register values over a specified time period. During runtime, the core
samples the signals and saves the data into the FPGA's block RAM. You can specify the
number of probes, the buffer depth, and the width for each probe input. Additionally, you
can set global AND, OR, NAND, and NOR trigger conditions as well as segment triggers.

You add a Logic Analyzer core manually or using the Debug Wizard, compile your design,
and program the FPGA. Then, you use the Debugger to set trigger events. When a trigger
occurs, the core fills the sample buffer and loads the results into the Debugger's Debug
Perspective. You can view this data using the GTK waveform viewer.

@ Note:

Functional Description

The Logic Analyzer core has an interface to the JTAG User Tap block, a clock, user-specified
probes and trigger-related signals.

Figure 28: Logic Analyzer Core Block Diagram

bscan_CAPTURE . <core> clk
bscan_DRCK 4 AII;ZI?(I:er < - . 0]
> <core>_<probe name>[n:
bscan_RESET » Debug Core <
bscan_RUNTEST _ ®
bscan_SEL | : Probes
JTAG d
User Tap E:g::-?g:f T > ~ <core>_<probe name>[n:0]
bscan_TDI > _ <core>_trig_in
bscan_TMS > " <core>_trig_in_ack R
bscan_UPDATE > <core>_trig_out :
| < bscan_TDO ~ <core>_trig_out_ack 4
Table 17: Logic Analyzer Core Ports
Port Direction Description
<core>_clk Input Clock for triggers. At a minimum, this clock should run at twice the

speed of the JTAG clock. The Debugger uses a JTAG clock of 3 MHz,
so this clock should be 6 MHz or higher.

<core>_<probe Input Probes you add in the Profile Editor. You can add a maximum on 64
name>[n:0] probes; the maximum probe width is 256 bits.
<core>_trig_in Input Input trigger. You can connect this port to another Logic Analyzer

core to build a cascading chain of triggers. Alternatively, you can
connect it to an external source such as an oscilloscope.

<core>_trig_in_ack Output Input trigger acknowledge.

<core>_trig_out Output Output trigger. This trigger can be generated from an external
trigger condition or from the <core>_trig_in port of another Logic
Analyzer core.

<core>_trig_out_ack Input Output trigger acknowledge.
bscan_CAPTURE Input Capture output from the TAP controller.
bscan_DRCK Input Gated TCK output.

bscan_RESET Input Reset output for the TAP controller.

www.efinixinc.com 74

Efinity Software User Guide

Port Direction Description
bscan_RUNTEST Input Output asserted when the TAP controller is in the Run Test / Idle
state.
bscan_SEL Input USER instruction active output.
bscan_SHIFT Input SHIFT output from TAP controller.
bscan_TCK Input JTAG test clock input (TCK).
bscan_TDI Input JTAG test data input (TDI).
bscan_TMS Input JTAG test mode select input (TMS).
bscan_UPDATE Input UPDATE output from TAP controller.
bscan_TDO Output JTAG test data output (TDO).

Adding a Logic Analyzer Core Manually

g oR e

N

Open the Debugger.

Choose Perspectives > Profile Editor.

Choose Add Debug Core > Logic Analyzer.

Specify the core name.

Select the data depth. This settings lets you control how much data is saved for the probes.
The more data you save, the more on-chip memory is used.

Turn on Trigger In Port and/or Trigger Out Port to enable those signals.

. Turn on Capture Control if you want to change the capture mode in the Capture Setup

tab during debugging (see on page 77 for details). If you turn this
option on, the Logic Analyzer uses more FPGA resources.

Add probes (outputs from your design to the JTAG interface).

Choose a width and specify the signal to which you want to connect the probe in your
design.

. Choose Data and Trigger (default) to save data and can trigger when to capture.

Choose Data Only to save data.

Choose Trigger Only to trigger when to capture data. Tigger only signals do not
display in the resulting waveform.

Click Generate Core RTL. The Efinity” software saves the debug profile in your

project directory as debug_profile.json. The software also creates a debug template
(debug_TEMPLATE.v), which includes the module for the debug profile you created and
debug_top.v, which is the RTL logic for the debug core.

10. Add the debug_top.v file to your project.

Tip: In the Project pane, right-click Design and choose Add to open a dialog box to find the file and add it.

11. Add a JTAG User Tap block in the Interface Designer. You can choose either JTAG

resource.

Note: the debug template uses the default signal names prefixed with
jtag_instl. If you use a different name, then you should also change it in the
module instantiation.

12. Add the debug logic into your design using these steps:

a.

Add all of the JTAG input and output pins to the project's top module. Refer to the
JTAG User TAP block pin names in the Interfaces Design to get the pin list.

b. Instantiate the debug core in the project's top module. You can copy the example code

from the generated debug_TEMPLATE.v or debug_TEMPLATE.vhd file in the project
folder.

www.efinixinc.com 75

Efinity Software User Guide

c. Connect the nets that you want to monitor and drive the FPGA signals. You need to map
the net (input, output, wire, register, and/or signal) to the port of the instantiated debug
core (edb_top inst).

13. Compile the design.

When compilation completes, you can launch the Debugger to perform debugging.

Note: For complex designs with multiple levels of hierarchy, it can be time-consuming to implement the
Logic Analyzer core manually. Instead, use the Debug Wizard.

Debug Wizard

The Debug Wizard provides an automated flow for adding a logic analyzer core to your
design. You launch the wizard from the Efinity main icon bar. This wizard is helptul for
complex projects with multiple levels of hierarchy. You select signals and nets from the
post-map netlist and specifiy the probe type. Then, the wizard automatically creates a debug
profile, adds the debug core to your project, connects the nets that you want to debug to
the probe ports of the debug instance, and adds the JTAG User Tap block to your interface
design. When the wizard completes its processing, you simply compile and start debugging.

Using the Wizard

1. Launch the Debug Wizard.
2. Choose the buffer depth. The buffer uses on-chip RAM, therefore, a larger buffer uses

more RAM.
3. Optionally enable capture control. Enabling this option lets you change the capture mode
in the Capture Setup tab during debugging (see on page 77 for

details). If you turn this option on, the logic analyzer uses more FPGA resources.

4. Select the JTAG User TAP (USER1 or USER2) to connect to the Debugger in the
Connection Settings box.

5. In the Signals from list, choose Elaborated Netlist to browse for signals in the pre-map
netlist, or Post-Map to use signals from the post-map netlist.

6. Select signals and add them using the forward arrows. You can filter the signal list with
regular expressions.

Note: Signals with an Undefined clock domain are not driven by any clock in the
post-map netlist. If you want to capture the waveform of a signal with an undefined
clock domain, you need to manually add the Logic Analyzer core.

7. Specify the probe type (Data and Trigger, Data Only, or Trigger Only) for each signal.
8. Click Next. The wizard generates the core and hooks it up to your design.
9. Turn on Enable Auto Instantiation to have the wizard enable the logic analyzer in your

project.

10. Click Finish. The Efinity" software saves the debug profile in your project directory
as debug_profile.wizard.json. The software also creates a debug template
(debug_TEMPLATE.v), which includes the module for the debug profile you created and
debug_top.v, which is the RTL logic for the debug core.

Note: The wizard's automated flow requires the JTAG_USER1 or JTAG_USER2 resource. If you are using
the block for the Debugger, you cannot use it for any other JTAG function; otherwise, you will receive an
error during placement.

www.efinixinc.com 76

Efinity Software User Guide

If you did not turn on Enable Auto Instantiation, you can manually enable the wizard-
created debug profile:

1. Open the Project Editor.

2. Click the Debugger tab.

3. Select your project's debug_profile.wizard.json in the Debug Profile box.
4. Turn on Debugger Auto Instantiation.

Turn off Debugger Auto Instantiation in the Debugger tab to disable the debugger profile.

Debug Perspective

The Debug perspective is where you perform debugging. From this view, you can program
the FPGA, set triggers, and open the GTKWave waveform viewer to see the results.

When you close the Debugger, it asks you if you want to save settings. Click Yes if you
want to save values you have entered (such as trigger values, radix, window depth, etc.). This
feature lets you open and close the Debugger without losing your work.

The Debugger provides basic error checking. When you program the FPGA, the Debugger
checks to make sure that the bitstream you chose matches the FPGA you are trying to
program. Additionally, the Debugger verifies that the debug profile in your Efinity project
matches the debug core in the bitstream you are using. If the Debugger finds any mismatches,
it gives an error message.

You can open multiple Debugger windows. Choose Tools > Open Debugger multiple
times or click the Debugger icon multiple times to open additional windows. When you close
the Efinity software, all Debugger window close as well.

Note: Download and install the GTKWave software from . Windows: You may
need to add the path to GTKWave ($GTKWave folder$\bin\)to your System Variables path for the
software to launch correctly.

www.efinixinc.com 77

http://gtkwave.sourceforge.net

Efinity Software User Guide

Logic Analyzer Perspective
The following figure shows the Debug perspective for the Logic Analyzer.

Figure 29: Debug Perspective GUI - Logic Analyzer

File Perspectives Help

Ready @

a0 EE
Run | |Run Immediate | @

Core Status
Caphure Status

Segment 0 of 1 Segment sample 0 of 1024 Total sample 0 of 1024

0% 0% 0% |
Waveform Path |fhomejjayfefinix/release/efinity2019. 3/project/helloworld-dbg-autoflal_waveform.ved [« B | Overwrite

Trigger Setup | capture setup

Trigger Mode
T7|[T7] Trigger Condition | Glabal 'AND" =
Hame Operatar Radix Value Port

adl7:01 Hin 00001111 probad(7:0]

Progra oo @
Configuration ar 6 19 14:81:42 - Programming " Shomes Jayserinly/roleasas
ef /2019, Isproject Mellowor 1d-db oot Tlow /hellower 1d. hex' wia
USE Target L"| JTAG at freq 3
§ Fri December & 3 - Device ID read Trom JTAG: @wDO210A73

USB Infe Bus 003 Device 002: ID 0403:6010 Fri Decembe 48 - ... Tinished with J 0 BRI LNG

) , Fri Decemhe 1 - pyftdl URL: Ttdl:s 6306018 FTIGEIFKSE

Bitstream joworld-dbg-auto/outflowrhelioworid.hex €3 | | T20F256 | v | & | & Eri Decenbe & - pyftdi URL: Ftdi://0x8483:0x6010:FTIGEIPK/2

Debugging | 0x00210a7% - || & B | | W |

m Select Bitsteam ":%_ Connect Debugger ":_::.-,:-:, Disconnect Debugger
,)
Start Programming | + Add Net | # Remove Net
(m]|
Stop Programming | Select Waveform File
(m i

To perform debugging using the Logic Analyzer:

1. Select the bitstream and program the FPGA.
2. Connect the Debugger.

3. Add triggers. If you turned on Capture Control in the Debug Wizard, you can adjust the
capture mode in the Capture Setup tab.

4. Click Run to run the code. The Debugger waits for the trigger conditions you set and
then captures data.

Click Run Immediate to begin capturing data immediately.
5. The Core status and Capture status areas show the progress.
6. The Console shows messages.
7. Click the Select Waveform File button to choose a waveform file.

www.efinixinc.com 78

Efinity Software User Guide

Understanding Capture Control

The Logic Analyzer core supports a capture control option. When you turn on this option in
the debug profile, the Capture Setup tab becomes available during debugging.

The Capture Mode option selects which condition the Debugger evaluates before each
sample is captured:

e Always—Stores a data sample during a given clock cycle regardless of any capture
conditions you set.

e Basic—Only stores a data sample during a given clock cycle if the capture condition
evaluates as true. Select this option to add nets and set capture conditions.

You can subdivide the capture data buffer into one or more segments. The Debugger
automatically suggests a window depth depending on the number of segments you choose.
Additionally, you can set the position of the trigger in the window.

Virtual I/O Perspective

The following figure shows the Virtual I/O Debug perspective.

Figure 30: Virtual I/0 Debugger

File Perspectives Help

Narie Type Width Radix Value @

3 probed Probe 26 Hex - 8

1 prabel Probe 4 Hax = 0

1 probez Frobe a Hax - @

3 sourced Source 1 Hax = @

1 sowrcel Sourca 1 Hex -8

1 sowrca? Courca 4 Hax = @

viol | @

Configuration B 5 10 15:08:56 - gramming °/homesjays 1xdreleasesatinity/

3.8 WHz
5B Target | Trion T20 Developer Board 5
S8 Info Bus 003 Dewvice D0Z2: 1D 0403:6010

Bitstream yprajectfhelloworid-dbg/outflow/helloworld hex @) | [T20F256| o1 9
-

Debugging | 0x00210a79 = || df | |USERL -

To perform debugging using Virtual I/O cores:

1. Select the bitstream and program the FPGA.

2. Connect the Debugger.

3. Enter values for the sources and observe the values for the probes.
4. The Console shows messages.

www.efinixinc.com 79

Efinity Software User Guide

Debugger Options
The Debugger has these options, which you turn on or off in the Options menu:

Table 18: Debugger Options

Option Description

Allow .bit/.hex for all configuration modes With this option turned on, you can program
the FPGA using a .hex file in JTAG mode. This
option supports legacy behavior for Trion
FPGAs.

Always launch new waveform viewer window | Turn this option on if you want the Debugger
to open a new waveform window each

time you launch a debug session. Existing
windows remain open.

Concurrent Debugging

The Debugger has the concurrent debug feature where you can open multiple debug
windows and connect to different JTAG USER TAP interfaces at the same time. This
feature lets you perform debugging more easily. For example, you can set up a trigger in one
Debugger window and then cause the event to happen in the second Debugger window.

The concurrent debug feature requires you to connect to the board using the Efinity
Hardware Server. You can use the same computer for the server and client. Launch the
server with the board connected to your computer and then connect to the server from the
Debugger client using the same IP address.

See on page 120 for instructions on setting up a
Hardware Server.

To open more than one Debugger window, choose Tools > Open Debugger or click the
Debugger icon multiple times.

Resource Usage

In Efinity version 2020.1 and higher, you can view the resources used by the debug cores in
the Dashboard's Results pane in the Debugger table. The software reports:

* Whether auto-instantiation is turned on or off

* Whether the debug target is the elaborated or post-map netlist
* Number of flipflops used

* Number of adders used

* Number of LUTSs used

* Number of memory blocks used

Note: The resoure usage is an estimation, and is meant to give you a general guideline about the usage
for reference purposes.

www.efinixinc.com 80

Efinity Software User Guide

Disable the Debug Core

If you want to remove a debug core from your project:

Open the Project Editor.

Click the Debugger tab.

Turn off the Debugger Auto Instantiation option.
Click OK.

5. Re-compile the design.

B

The software removes the debug profile from your design, but does not remove it from
disk. So you can re-enable the debug profile again by turning on the Debugger Auto
Instantiation, specifying the profile name, and recompiling.

www.efinixinc.com 81

Chapter 9

Efinity Software User Guide

Configuring an FPGA

Contents:

* FPGA Configuration Modes

® Flash Programming Modes

e About the Programmer GUI

e Generate a Bitstream (Programming) File
e About the BRAM Initial Content Updater
e Working with Bitstreams

¢ SPI Programming

¢ JTAG Programming

e Using the Command-Line Programmer

* Project-Based Programming Options

e Configuration Status Register

e Verifying Configuration with the Programmer
¢ Securing Titanium Bitstreams

When you have finished running your design through the flow, you are ready to configure a
device. You configure devices using the standalone GUI or command-line Programmer tool
and a USB cable attached to your board. You can download the bitstream file into the device
itself or into flash memory. Before you begin configuration, install the USB drivers for the
programming cable (see Appendix: Installing USB Drivers on page 122).

FPGA Configuration Modes

Trion® and Titanium FPGAs have dedicated configuration pins. You select the configuration
mode by setting the appropriate condition on the input configuration pins. Trion® and
Titanium FPGAs support the following configuration modes.

Table 19: FPGA Configuration Modes

Mode Description
SPI Active (serial/parallel) The FPGA loads the bitstream itself from non-volatile SPI flash memory.
SPI Passive (serial/parallel) An external microprocessor or microcontroller sends the bitstream to the FPGA

using the SPl interface.

JTAG

A host computer sends instructions through a download cable to the FPGA's
JTAG interface using JTAG instructions.

www.efinixinc.com 82

Efinity Software User Guide

Flash Programming Modes

The following table shows the methods you can use to program the configuration bitstream
into the flash device on your board. Although you can program the flash directly using the
SPI interface, this method requires that you have a SPI header on your board or use an FDTI
chip. Therefore, Efinix recommends that you use a JTAG bridge, because that method only
requires a JTAG header, which you would typically have on your board for other purposes

anyway.

The Efinity
over a SPI fl

software includes the JTAG SPI Flash Loader IP core that gives you full control
ash device and lets you perform actions comparable to an FTDI flash controller

chip. With this IP core you can turn the FPGA into a flash programmer and use it to
program the flash device.

[ﬂ Learn more: Refer to the for more information.

Table 20: Flash Programming Modes

Mode

Description

SPI Active (serial/parallel)

Use the Efinity Programmer and a cable connected to a SPI header on the board.

(Legacy)

SPI Active using JTAG Bridge

Program a single flash device. First, program the FPGA with a design that turns it
into a flash programmer. Then, program the flash. This is the same mode that was
in previous versions of Efinity software.

(New)

SPI Active using JTAG Bridge

A improved version of the SPI Active using JTAG Bridge (Legacy) mode with a
faster flash programming time.

Bridge (Legacy)

SPI Active x8 using JTAG

Program two identical flash devices. First, program the FPGA with a dual flash
programmer. Then, program the two flash devices. This mode allows you to load
images more quickly, and is only supported for Titanium FPGAs. This is the same
mode that was in previous versions of Efinity software.

Bridge (New)

SPI Active x8 using JTAG

A improved version of the SPI Active x8 using JTAG Bridge (Legacy) mode with a
faster flash programming time.

Figure 31:

Flash Programming Board Setup

Programming
Module

SPI Header |} Board Eca JTAG Header
SPI Flash FPGA
SCK 4—e CCK SPI Flash FPGA

sSDO » CDI1 SCK ¢<— CCK TMS

SDI < cDIo SDO —» CDI1 TCK

CS < SSL N SDI «— CDIO TDO

HOLD &% CDI3 CS4+—SssLN TDI
Using a SPI Header Using a JTAG Header

www.efinixinc.com 83

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=FLASHCTRL-CORE

Efinity Software User Guide

About the Programmer GUI

The graphical user interface makes it easy to select bitstream images and program Efinix
FPGAs.

Figure 32: Programmer

"2 Efinity Programmer - O X
File Help
® & £ @ i@ Board Name
Refresh the Available
Target USB Targets
USB Target Titanium Ti60 F225 Development Board [| % Connect to a
USB Info Bus 000 Device 255: ID 0403:6010 S/N FTSECP6E Remote Host
Image

Select Image
Bitstream File bl || Open Combine Multiple

Images Files Dialog Box
FPGA Tig0F225 Checksum BFB07369

Programming Mode

=)

JTAG v o Start Programming
JTAG Options

Device Select 0x00220a79 v

JTAG Clock Speed | 6MHz - Configuration Options

Device Configuration Status
@ LastUpdated: Sat Jun192116:30:48 | | [7] Advanced Device
Configuration Status

B
Refresh Configuration
Sat June 19 21 16:30:30 - Board Profile: Generic Board Profile Using FT2232H Status
Sat June 19 21 16:30:30 - Valid device ID found: 0x00220A79
Sat June 19 21 16:30:45 - Refreshing device status... Status Messages

Sat June 19 21 16:20:48 - Device is in user mode!

To use the Programmer:

1. Choose a target. Click the Edit Remote Host List button to connect to a board attached
to a remote host. See on page 120.

2. Choose a bitstream file. Use a .hex file for SPI modes or a .bit file for JTAG mode.
After you select a bitstream, the Programmer reads the bitstream and displays data in the
FPGA and Checksum fields. The checksum excludes the pre-header and ignores whether
characters are uppercase or lowercase; therefore, it is a checksum of the bitstream content,
not a file checksum.

www.efinixinc.com 84

Efinity Software User Guide

Tip: You can also get the checksum from the command line using the command:

SEFINITY HOME$\bin\python3 $EFINITY HOME$%\pgm\bin\efx pgm\generate checksum.py <bitstream>

3. Choose the programming mode and then select options.

Mode Options
SPI Active Starting Flash Address
Flash Length
Erase Before Programming
Verify After Programming
SPI Passive Clock Speed
JTAG Device Select

JTAG Clock Speed

SPI Active using JTAG Bridge (Legacy)
SPI Active using JTAG Bridge (New)

SPI Active x8 using JTAG Bridge (Legacy)
SPI Active x8 using JTAG Bridge (New)

Starting Flash Address
Flash Length

Erase Before Programming
Verify After Programming

Device Select
JTAG Clock Speed

4. Click the Program FPGA (SPI Passive or JTAG) or Program Flash (all other modes)
button.

The Programmer has status information that gives you diagnostics:

* The FPGA or flash device's configuration status displays in the Device Configuration
Status area. Click the Refresh button to refresh the status and display messages in the
console.

* Use the Advanced Device Configuration Status button to get diagnostics that can be
helpful when debugging why configuration is failing. Refer to

on page 108 for more information.

Note: For detailed information on how to use configuration modes and set up your circuit board for
configuration, refer to or

www.efinixinc.com 85

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN006
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Software User Guide

Edit the SPI Active Clock

An internal oscillator generates the internal clocks the FPGA uses during configuration.
In SPT active configuration mode, configuration starts operating at the default frequency
(10 MHz) and then switches to the user-selected clock to minimize configuration time
(assuming the SPI flash device supports the faster fjrax).

You set the configuration clock frequency in the Efinity” software.

Table 21: Internal Oscillator Clock Settings

SPI Clock Divider Frequency (MHz)
DIV4 20
DIV8 10

To change the clock frequency:

1. Choose File > Edit SPI Active Clock or click the toolbar icon to open the Edit SPI
Active Clock Settings dialog box.

2. Choose the divider value with DIV Select.
3. Click Apply and Close to save your changes.

You can also set the clock frequency for the project in the Project Editor > Bitstream
Generation tab. Any setting you make in the Edit SPI Active Clock Settings dialog box
overrides what you set for the project.

Note: T20 (Q144, F324, F400 packages) and T35 (all packages) support negative edge sampling. Click
Enabled to turn it on. Then, specify the number of extra clock cycles to insert between the time when the
default clock changes to the specified clock and when the FPGA continues configuration. You can add up
to 7 extra clock cycles.

www.efinixinc.com 86

Efinity Software User Guide

Generate a Bitstream (Programming) File

When you run the automated flow, the software automatically generates bitstream files
that you can use to configure your target device. You can also generate the bitstream files
manually. To generate bitstream files from the command line, use the following command:

Example: Generate a Bitstream File from the Command Line

Linux:

> efx run.py <project name>.xml --flow pgm
Windows:

> efx run.bat <project name>.xml --flow pgm

The software generates these files in the outflow directory:
* .hex file as <project name>.hex. Use this file to program in SPI active or passive mode.
o .bit file as <project name> .bit. Use this file for JTAG programming.

@ Important: With the Efinity software v2021.2 and higher, you must use .hex for SPl and .bit for JTAG.

The bitstream file includes programming options you set for your project (e.g., to initialize
user memory or set configuration mode). If you change these options you must regenerate
the bitstream file. See on page 104.

@ Note: The software does not generate bitstream files for preliminary devices.

About the BRAM Initial Content Updater

The BRAM Initial Content Updater is a tool that lets you quickly update the initial memory
saved in the FPGA's BRAM without performing a full compile. For example, you can use
this tool if you want to:

e Update RISC-V application code in the on-chip memory

* Update sensor parameters in on-chip memory

In the tool, you select the elaborated netlist memory that you want to update, not the post-
map memory. Therefore, you do not need to know how synthesis decomposes and maps
the memories to use this tool. Because this tool bypasses the full compilation flow, it does
not update <project>.map.v and other intermediate compiler output files. As a result, the
updated bitstream file will be out of sync with your other project files.

The format of the initial memory files is the same format used by Verilog HDL parsers and
and the $readmemh or $readmemb Verilog HDL functions.

www.efinixinc.com 87

Efinity Software User Guide

@ Note: The --optimize-zero-init-rom synthesis option tells the software to optimize away zero value
ROMs. If your design has zero-value ROMs and you plan to use the BRAM Initial Content Updater later,

disable this s

ynthesis option in your project settings.

Figure 33: BRAM Initial Content Updater

{7} BRAM Initial Content Updater *
Select Elaborated Netlist Memory Ii_ Filter the list
Filter: @

Regular Expression Case Sensitive

mem

Select Memory Initialization File

e TR +
emoy/helloworld-dbg_GOLDEN,/bram/reverse.inithex | | [od

e

— List of memory initialization
files used in the project

—— Select a new memory initialization file

W Ty ;‘) (-
Lt n_s

|
I— Close

Revert to the original memory content
Update memory content

Updating the BRAM Initial Content

To use the tool:

1.

0P NS YR e

Compile your project if you have not already don
Updater tool is disabled if you have not compiled.

Choose the new .hex file.

Click Open.

Click the Update Memory Content button.
. Click the Regenerate Bitstream button.

10. Close the BRAM Initial Content Updater.

Configure the FPGA with your updated bitstream.

Generate a new bitstream

e so. (The BRAM Initial Content
)

Create a new .hex file or update an existing one with the new memory content.
Open the tool by choosing Tools > Bram Update or by clicking the toolbar icon.
Select the memory you want to update. Use the filter options to narrow the list.

Click the Select Memory Initialization File button.

If you want to revert the bitstream back to the original one:

1.

Open the BRAM Initial Content Updater.

2. Click the Revert Memory Content Updates button.

3.

Click the Regenerate Bitstream button.

www.efinixinc.com 88

Efinity Software User Guide

Using the Example Files

If you have a Trion T20 BGA256 Development Board, you can use the example files provided
with the Efinity software to experiment with the BRAM Initial Content Updater.
1. Connect the board to your computer.

2. Open the helloworld project in the < Efinity install path>/debugger/demo/
helloworld-dbg_GOLDEN directory.

3. Compile the project.

Configure the FPGA using the Programmer, JTAG mode, and the .bit file located in the
project's outflow directory.

Open the BRAM Initial Content Updater.

Click the memory named mem to select it.

>

Click the Select Memory Initialization File button.

Select the reverse.inithex file in the helloworld-dbg_GOLDEN directory.
. Click Open.

10. Click the Update Memory Content button.

0o N W

11. Click the Regenerate Bitstream button.
12. Close the BRAM Initial Content Updater.

13.1In the Programmer, click Start Ptrogram (use the same bitstream file). When configuration
completes, the LEDs on the board blink in the opposite direction, showing the changed
initial memory state.

You can use the other files in the helloworld-dbg_GOLDEN directory to update the
bitstream to show other blinking patterns. Additionally, you can create your own .hex file to
change the blinking pattern.

www.efinixinc.com 89

Command-Line Interface

Efinity Software User Guide

In addition to the GUL you can rus the BRAM Initial Content Updater from the command
line. With this method you can perform iterative work, without having to go through GUI
for every iteration.

Usage:

efx bram update --project <project name> --memory <logical memory name>,<initialization file>

<options>

Where:

Table 22: BRAM Initial Content Updater CLI Options

Option Shorthand Description Type Example

--help -h Show the help. Optional | --help

--project arg 8 Specify the Efinity project file. Required | -j pt_demo.xml

--mem_info arg -i Specify the memory file in protocol buffer | Optional | -i new_mem.hex
format.

--place arg -p Specify a placement file. Optional | -p pt_demo.place

--lbf arg -l Specify the Logical Bit File (.Ibf). Optional | -| pt_demo.Ibf

--output arg -0 Specify the name for the updated Optional | -o pt_demo.bit
bitstream file.

--family arg -f Indicate the FPGA family, trion or titanium | Optional | -f trion

--verbose -v Print out verbose messages. Optional | -v

--memory arg -b Specify the logical memory you want to Required | -b mem,new_mem.hex
update and the memory initialization file.
Use the format <memory>,<init file>

--mode arg -m Indicate the mode for the update tool. Optional | -m revert

update: Default. Use to updatie the
memory with a new file.

read: Reads the current initial content
data in the bitstream and displays it in the
console.

revert: Go back to the original initial
memory content.

Working with Bitstreams

You can use the Efinity Programmer to manipulate a bitstream before programming an

FPGA or flash device.

www.efinixinc.com 90

®

Efinity Software User Guide

Edit the Bitstream Header

You can use the Programmer to edit the bitstream header information, for example, to add
project or revision information. To edit the header:

1. In the Programmer, choose File > Edit Header... or click the toolbar icon to open the
Edit Image Header dialog box. The window shows the default header information.

2. Edit the header.
3. Click Save.

Important: When editing the bitstream header, if you remove any of the auto-generated information
(such as Device: <name>), the Programmer may not be able to recognize the bitstream. Efinix
recommends that you only append a small amount of information to the auto-generated data if you want
to customize or annotate the header. The header can be a maximum of 256 characters, including the auto-
generated text.

If you want to write your own program to detect which device the bitstream targets (e.g., using a
microprocessor and SPI passive mode), be sure to keep all of the auto-generated header, specifically the
Device: <name> string.

Bitstream Compression

When you generate a bitstream for Titanium FPGAs, the Efinity” software compresses the
bitstream by default. This compression results in a bitstream size that is about half of the
maximum size.

Refer to for the bitstream sizes.

Important: If you are using the Titanium security features (AES-256 encryption and/or asymmetric
authentication), the software cannot compress the bitstream. Therefore, compression is disabled when you
use these feaatures.

Export to Raw Binary Format

The Efinity” software v2018.4 and later supports raw binary (.bin) format for use with third-
party flash programmers. To export to this format:

Open the Programmer.
Select the bitstream file.
Click Export.

Specify the filename.
Click Save.

SRR

You can also convert the file to .bin at the command line as described in
on page 92.

Export to .svf Format

The Efinity” software v2021.1 and later supports serial vector format (.svf) files for use with
third-party JTAG programmers. To export to this format:

Open the Programmer.

Select a bitstream file.

Click Export.

Specify the filename.

Choose Serial Vector Format (*.svf) as the Files of type.
Click Save.

SR »Dhe

www.efinixinc.com 91

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

export bitstream.py [-h]
[--sdr_size SDR SIZE] [--tir length TIR LENGTH]
[--tdr length TDR LENGTH]

Efinity Software User Guide

Convert to Intel Hex Format at the Command Line

You can also convert a bitstream file to Intel Hex and other formats at the command line
using this command:

[--family <Trion or Titanium>]

[--hdr_length HDR LENGTH]

<format> <input filename> <output filename>

Where <format> is:

hex_to_bin
hex_to_intelhex
bin_to_hex
intelhex to hex
hex_to_svf

For example:

C:\Efinity\2021.1\bin\setup.bat
python3 C:\Efinity\2021.1\pgm\bin\efx pgm\export bitstream.py hex to bin new project.hex

test2.bin

Table 23: Modes when Combining Images

[--idcode IDCODE]
[--hir length HIR LENGTH]
[--enter user mode <on or off>]

Combine Bitstreams and Other Files

You may want to store multiple bitstreams or other data into the same flash device on your

board. For example, you can combine files for:

Multi-image configuration using the CBSEL pins

Internal reconfiguration

Programming FPGAs in a daisy chain
Programming a bitstream and other files such as a RISC-V application binary

[--freg FREQ]

You use the Combine Multiple Image Files dialog box to choose files to combine into a
single file for programming. Choose one of the following modes:

Mode Use For Number of Images Refer to
Selectable Flash Multi-image Upto 4 on
Image configuration page 93

Internal Upto 4
reconfiguration on page 94
Daisy Chain Daisy chains Any number of JTAG on page 95
devices including
those from other
vendors
Generic Image A bitstream and other | One bitstream and
Combination files any number of other on page 94

files

SPl Programming

You can program Efinix FPGAs using the SPI interface and a .hex file.

www.efinixinc.com

92

Efinity Software User Guide

Program a Single Image

In single image programming mode, you configure one FPGA with one image.

1.

Click the Select Image File button.

2. Browse to the outflow directory and choose < project name> .hex.
3.
4

. Click Start Program. The console displays programming messages.

Choose SPI Active or SPI Passive configuration mode.

Program Multiple Images (CBSEL)

In this programming mode, you specify up to four images that can configure one FPGA. You
then use the FPGA's CBSEL pins to select which image to use. You can only use active mode.

¥ ®° NS W kDN

Click the Combine Multiple Images button.

Choose Mode > Selectable Flash Image.

Enter the output file name.

Choose the output file location. The default is the project's outflow directory.

Choose External Flash Image.

Click in the table row corresponding to the position for which you want to add an image.
Click Add Image.

Select the image file to place in that location.

Click OK.

10. Repeat steps 6 through 9 as needed. You can add up to four images.

11. Click Apply to generate the combined image file.

12. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.

13. Click Start Program.

Note: For more information on programming multiple images, refer to

on the Downloads page in the Support center.

www.efinixinc.com 93

https://www.efinixinc.com/support/ed/configuring-fpgas-with-multiple-images.php
https://www.efinixinc.com/support/ed/configuring-fpgas-with-multiple-images.php

Efinity Software User Guide

Program Multiple Images (Internal Reconfiguration)

In this programming mode, you specify up to four images that can configure one FPGA. You
then use the FPGA's internal reconfiguration interface to select which image to use. You can
only use active mode.

1. Click the Combine Multiple Images button.

2. Choose Mode > Selectable Flash Image.

3. Enter the output file name.

4. Choose the output file location. The default is the project's outflow directory.
5. Choose Remote Update Flash Image.

@ Note: When using internal reconfiguration, you must choose Remote Update
Flash Image. If you choose External Flash Image, the FPGA reconfigures with the
firstimage as specified by the CBSEL pins instead of the golden image.

6. Click in the table row corresponding to the position for which you want to add an image.
7. Click Add Image.

8. Select the image file to place in that location.

9. Click OK.

10. Repeat steps 6 through 9 as needed. You can add up to four images.
11. Click Apply to generate the combined image file.

12. Click Close to return to the Programmer, which displays the combined image file as the
image to use for programming.

13. Click Start Program.

@ Note: For more information on using the internal reconfiguration feature, refer to

Program Multiple Images (Bitstream and Data)

In this programming mode, you specify one bitstream and one or more data files to combine
into a single file for programming. You can only use active mode.

Click the Combine Multiple Images button.

Choose Mode > Generic Image Combination.

Enter the output file name.

Choose the output file location. The default is the project's outflow directory.

Click Add Image.

Select the image file to place in that location.

Click Open. The image file and flash length are displayed in the table.

Specify the flash address.

¥ ® NS W R wDN =

Repeat steps 5 through 8 as needed.

Note: If you want to combine a bitstream and a RISC-V binary, use 0x00000000 as
the bitstream's flash address and 0x00380000 as the binary's flash address.

10. Click Apply to generate the combined image file.

11. Click Close to return to the Programmer, which displays the combined image file as the
image to use for programming.

12. Click Start Program.

www.efinixinc.com 94

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN010
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN010

Efinity Software User Guide

Program a Daisy Chain

In this programming mode, you specify any number of images to configure a daisy chain of
FPGAs. You can choose active or passive configuration for first FPGA; the rest are in passive
mode.

Click the Combine Multiple Images button.

Select Daisy Chain as the Mode.

Enter the output file name.

Choose the output file location. The default is the project's outflow directory.

Click Add Image to add a file to the daisy chain.

Repeat step 5 to add as many files as you want to the chain. Use the up/down arrows to
re-order the images if needed.

A

7. Click Apply to generate the combined image file.

8. Click Close to return to the Programmer, which displays the combined image file as the
image to use for programming.

9. Click Start Program.

www.efinixinc.com 95

JTAG Programming

Efinity Software User Guide

You can program Efinix FPGAs using the JTAG interface and a .bit file.

JTAG Device IDs

The following table lists the Trion and Titanium JTAG device IDs.

Table 24: Titanium JTAG Device IDs

FPGA Package JTAG Device ID
Ti35 All 0x10661A79
Ti60ES All 0x00360A79
Ti60 All 0x10660A79
Ti90 J361, J484, G400, G529 0x00691A79
L484 0x00688A79
Ti120 J361, J484, G400, G529 0x00692A79
L484 0x0068CA79
Ti180 M484 0x00680A79
J361, J484, G400, G529 0x00690A79
L484 0x00684A79
Ti135 All 0x006A1A79
Ti200 All 0x006A2A79
Ti375 All 0x006A0A79

Table 25: Trion JTAG Device IDs

FPGA Package JTAG Device ID
T4, 78 BGAS81 0x0
T8 QFP144 0x00210A79
T13 All 0x00210A79
T20 WLCSP80, QFP100F3, 0x00210A79
QFP144, BGA169, BGA256
T20 BGA324, BGA400 0x00240A79
T35 All 0x00240A79
T55,T85,T120 All 0x00220A79

Program a Single Image

In single image programming mode, you configure one FPGA with one image.

1. Click the Select Image File button.

2. Browse to the outflow directory and choose < project name> .bit.
3. Choose the JTAG configuration mode.
4

. Click Start Program. The console displays programming messages.

www.efinixinc.com 96

Efinity Software User Guide

Program Using a JTAG Chain

You can program an FPGA that is part of a JTAG chain. The chain can include Trion”
and Titanium FPGAs as well as other devices. You define your JTAG chain using a JTAG
chain file. You import the JTAG chain file into the Programmer to perform programming.
The JTAG chain file is an XML file (.xml) that includes all of the devices in the chain. For

example:

Trion FPGA example:

<?xml version="1.0"?>

<chain>
<device chip num="1" id code="0x00210a79" ir width="4" istr code="1100" />
<device chip num="2" id code="0x00210a79" ir width="4" istr code="1100" />
<device chip num="3" id code="0x00210a79" ir width="4" istr code="1100" />
</chain> B B B B

Titanium FPGA example:

<?xml version="1.0"?>

<chain>
<device chip num="1" id code="0x10661A79" ir width="5" istr code="11000" />
<device chip num="2" id code="0x10661A79" ir width="5" istr code="11000" />
<device chip_ num="3" id code="0x10661A79" ir width="5" istr code="11000" />
</chain>

where:

° chip numis the device order starting from position 1.

° id code is the hexadecimal JEDEC device ID (all lowercase letters)
° ir width is the width of the instruction register in bits

* istr code is the binary IDCODE instruction

@ Note: For Trion FPGAs, use 1100 as the istr code.

@ Note: For Titanium FPGAs, use 11000 as the istr code.

To program using a JTAG chain:
. Create a JTAG Chain File using a text editor.

Open the Programmer.

Choose your USB Target and Image.

Select JTAG as the Programming Mode.
Click the Import JCF toolbar button.
Browse to your JTAG Chain File and click Open.

Select which device you want to program in the drop-down list next to the JTAG
Programming Mode option.

8. Click Start Program.

N S U A LN =

www.efinixinc.com 97

Efinity Software User Guide

Program using a JTAG Bridge (New)

Programming with a JTAG bridge is a 2-step process: first you configure the FPGA to turn it
into a flash programmer (.bit) and second you use the FPGA to program the flash device with
the bitstream (.hex).

The SPI Active using JTAG Bridge (New) mode, is an improved version of the legacy SPI
Active using JTAG Bridge mode, and is available in the Efinity software v2023.2 and higher.
This mode is substantially faster than the legacy mode and has pre-built flash loader (.bit) files
that you can use. However, you can still use your own .bit file if you choose to do so.

Notice: If you would like to incorporate the RTL files for the new and improved flash loader into your own
design, the files are located in the <Efinity directory>/pgm/rtl/spiloaderv2 directory.

The Titanium .bit files include a custom JTAG USERCODE in the bitstream:
* Single flash .bit files—0x96C09A03
* Dual flash .bit files—0xC07FCFE2

Note: For Titanium FPGAs, the Programmer automatically loads the .bit file based on the FPGA target.
For Trion FPGAs, you need to specify the pre-built file to use.

To program using a JTAG bridge:

1. Choose the USB Target.

2. In the Image box, click the Select Image File button to browse for the .hex file to
program the flash device.

3. Choose the SPI Active using JTAG Bridge (New) or
SPI Active x8 using JTAG Bridge (New) programming mode.

4. Turn on the Auto configure JTAG Bridge Image option.
For Titanium FPGAs, the Programmer automatically loads the .bit file. Skip step 5 if you
want to use the pre-loaded .bit file.

5. Specify the .bit file.

a) In the Programming Mode box, click Select Image File.

b) The Open Image File dialog box opens to a directory of available pre-built .bit files.
Choose the file for your FPGA (Trion), or browse to find your own .bit file.
The Programmer remembers which file you specify and uses it automatically the next
time you run the Programmer.

6. Click Start Program. The Programmer first configures the FPGA and then programs the
flash device.

Important: If you are using the Titanium RSA bitstream authentication security feature, you need to use

a signed .bit file. Copy the bundled .bit file from <Efinity version>/pgm/fli/titanium to another directory
and sign it. Then point to the signed .bit file in the Programmer. You can also create your own .bit file if you
prefer.

Refer to on page 111 for information on signing
existing .bit files.

www.efinixinc.com 98

O B

Efinity Software User Guide

Program using a JTAG Bridge (Legacy)

Programming with a JTAG bridge is a 2-step process: first you configure the FPGA to turn it
into a flash programmer (.bit) and second you use the FPGA to program the flash device with
the bitstream (.hex).

The Titanium .bit files include a custom JTAG USERCODE in the bitstream:

Single flash .bit files—0x6212E80D
Dual flash .bit files—0xFA828A 14

To program using a JTAG bridge:

1.
2.

Choose the USB Target.

In the Image box, click the Select Image File button to browse for the .hex file to
program the flash device.

. Choose the SPI Active using JTAG Bridge (Legacy) or

SPI Active x8 using JTAG Bridge (Legacy) mode.
Turn on the Auto configure JTAG Bridge Image option.

For Titanium FPGAs, the Programmer automatically loads the .bit file. Skip step 5 if you
want to use the pre-loaded .bit file.

. Specify the .bit file.

a) In the Programming Mode box, click Select Image File.
b) The Open Image File dialog box opens. Browse to find your own .bit file.

6. Click Start Program. The Programmer first configures the FPGA and then programs the
flash device.
Notice: Refer to the for instructions on creating the .bit file.

Important: If you are using the Titanium RSA bitstream authentication security feature, you need to use a
signed .bit file. Copy the bundled .bit file from <Efinity version>/pgm/fli/titanium to another directory and
sign it. Then point to the signed .bit file in the Programmer. You can also create your own .bit file with the
JTAG Flash Loader IP core if you prefer.

Refer to

on page 111 for information on signing

existing .bit files.

www.efinixinc.com 99

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=FLASHCTRL-CORE

Efinity Software User Guide

JTAG Programming with FTDI Chip Hardware

These instructions describe how to program Trion” and Titanium FPGAs using the FTDI
Chip FT2232H and FT4232H Mini Modules. Efinix® has tested the hardware for use with
Trion" and Titanium FPGAs.

Note: Efinix does not recommend the FTDI Chip C232HM-DDHSL-0 programming cable due to the
possibility of the FPGA not being recognized or the potential for programming failures.

Open the Efinity” software.
Open the Efinity” Programmer.
Click the Select Bitstream Image button.

Browse to your image and click OK.

oo e

Choose one of the following in the USB Target drop-down list:
* Dual RS232 HS for FT2232H Mini Module

* FT4232H_MM for FT4232H Mini Module

6. Choose JTAG from the Programming Mode drop-down list.
7. Click Start Program.

FDTI Programming at the Command Line

The Efinity” includes a script, ftdi_program.py, which you can use for command-line
programming with FTDI modules. The command is in the format:

ftdi program.py <filename>.bit -m <mode> --url <url> --aurl
<url>

<mode> is the programming mode:

® active,passive
® Jjtag, jtag chain
° jtag bridge new,or jtag_bridge_xS_new(4) (new mode, see
on page 98)
jtag bridge,or jtag_bridge_x8(5) (legacy mode, see
on page 99)

@ Note: To use the JTAG bridge modes, you must have already configured the FPGA with the JTAG SPI
flash loader.

The Efinity software v2023.2 and higher includes pre-built flash loader .bit files in <Efinity installation
directory>/pgm/fli/<family>.

Refer to the for information on using the legacy flash loader.

@ Important: You only need to specify the --url and --aurl options if you have more than one board
with an FTDI chip connected to your computer.

Only supported in T20 (BGA324 and BGA400), T35, T55, and T120 FPGAs.

<url> is in the format:
ftdi://ftdi:<product>:<serial>/<interface>
where:

<product> is the USB product ID of the device

= x8 new mode is only supported in some Titanium FPGAs. Refer to the data sheet for the modes your FPGA supports.
ge x8 mode is only supported in some Titanium FPGAs. Refer to the data sheet for the modes your FPGA supports.

www.efinixinc.com 100

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=FLASHCTRL-CORE

Efinity Software User Guide

<product> Board

232h Trion T8 Development Board

2232h Trion T20 MIPI Development Board
Trion T20 BGA256 Development Board
Trion T120 BGA324 Development Board
Trion T120 BGA576 Development Board

4232h Xyloni Development Board

4232h Titanium Ti60 BGA225 Development Board

<serial> is the serial number of the FTDI chip. (Optional)

* If you only have one Efinix" development board or FTDI device connected to your
computer, you do not need to specify the serial number.

* In the Efinity” software v2020.2 and higher, the Programmer displays the serial number of
the FTDI device in the USB Info string. The serial number is a string beginning with FT.

[Efinity Programmer - O X

File Help

® | & b 4 D

-
()
=t

W

Target
USB Target Trion T120F324 Development Board
USB Info Bus 000 Device 255: 1D 0403:6010 S/M FTSECP6E

Image

Bitstream File FPGA o]

The string after S/N is
the FTDI serial number

< interface> is the interface number. For Efinix” development boards, <interface> is
always 1.

Linux Examples

To program in Linux:

1. Open a terminal and change to the Efinity” installation directory.
2. Type: source ./bin/setup.sh and press enter.
3. Usethe ftdi program.py command.

Example: Titanium Ti60 F225 Development Board as the only board attached to your
computer, use:

ftdi program.py <filename>.bit -m jtag

Example: Titanium Ti60 F225 Development Board with serial number FTSECP6E when
another board with an FTDI chip is connected to your computer, use:

ftdi program.py <filename>.bit -m jtag --url ftdi://ftdi:4232h:FT5ECP6E/1
-—aurl ftdi://ftdi:4232h:FT5ECP6E/1

Example: Xyloni Development Board as the only board attached to your computer, use:

ftdi program.py <filename>.bit -m jtag

www.efinixinc.com 101

Efinity Software User Guide

Example: Trion T120 BGA324 Development Board with serial number FTSECP6E when
another board with an FTDI chip is connected to your computer, use:

ftdi program.py <filename>.bit -m jtag --url ftdi://ftdi:2232h:FTSECP6E/1
--aurl ftdi://ftdi:2232h:FT5ECP6E/1

Windows Examples
To program in Windows:

1. Open a command prompt and change to the Efinity” installation directory.
2. Type: .\bin\setup.bat and press enter.
3. Usethe ftdi program.py command.

Example: Titanium Development board as the only board attached to your computer, use:

SEFINITY HOME$\bin\python3 $EFINITY HOME%\pgm\bin\ftdi program.py <filename>.bit -m jtag

Example: Titanium Ti60 F225 Development Board with serial number FTSECP6E when
another board with an FTDI chip is connected to your computer, use:

SEFINITY HOME$\bin\python3 $EFINITY HOMES$\pgm\bin\ftdi program.py <filename>.bit -m jtag
--url ftdi://ftdi:4232h:FT5ECP6E/1 --aurl ftdi://ftdi:4232h:FT5ECP6E/1

Example: Xyloni Development Board as the only board attached to your computer, use:

SEFINITY HOME$\bin\python3 $EFINITY HOME%\pgm\bin\ftdi program.py <filename>.bit -m jtag

Example: Trion T120 BGA324 Development Board with serial number FTSECP6E when
another board with an FTDI chip is connected to your computer, use:

SEFINITY HOME$\bin\python3 $EFINITY HOMES$\pgm\bin\ftdi program.py <filename>.bit -m jtag
--url ftdi://ftdi:2232h:FT5ECP6E/1l --aurl ftdi://ftdi:2232h:FT5ECP6E/1

www.efinixinc.com

102

Efinity Software User Guide

Using the Command-Line Programmer

To run the Programmer using the command line, use the command:

Example: Command-Line Programmer

Linux:

> efx run.py <project name>.xml --flow program
Windows:

> efx run.bat <project name>.xml --flow program

(Optional) Use these options:

--pgm_opts mode specifies the configuration mode. The available modes are:

— active—SPI active configuration

— passive—SPI passive configuration

— Jjtag—]JTAG programming

— jtag bridge—SPI active using JTAG bridge mode

— jtag bridge x8—SPIactive x8 using JTAG bridge mode (used with 2 flash
devices)©®

In active mode, the FPGA configures itself from flash memory; in passive mode, a CPU
drives the configuration. If you do not specify the mode, it defaults to active. For example,
to use JTAG mode, use the command:

efx run.py <project name>.xml --flow program --pgm opts mode=jtag

--pgm_opts settings file specifies a file in which you have saved all of the
programming options. A settings file is useful for performing batch programming of
multiple devices.

(6)

Used with 2 flash devices. Only supported in some Titanium FPGAs. Refer to the data sheet for the modes your FPGA

supports.

www.efinixinc.com 103

Efinity Software User Guide

Project-Based Programming Options

You specify project-based programming options in the Project Editor > Bitstream
Generation tab in the Efinity” software. Efinix FPGAs support active and passive
configuration in a variety of modes.

Note: Some of these project settings affect bits in the bitstream. Therefore, when you program an FPGA
with the Programmer, the setting you make in the Project Editor should match what you intend to use in
the Programmer.

Table 26: Project-Specific Programming Options

Option

Notes

Active/Passive

Active: SPIl active mode.
Passive: SPI passive mode.

Your choice of active or passive affects the pinout and determines which choices are
available in the Programming Mode box.

JTAG USERCODE

Use this field to specify a 32-bit user electronic signature. The USERCODE is included in
the bitstream. You can read it from the FPGA via the JTAG interface, and you can view the
JTAG USERCODE in the Programmer’s Advanced Device Status dialog box.

Default: OxFFFFFFFF

Clock Source

For Titanium FPGAs, choose whether you want to use the FPGA's internal oscillator or an
external clock source as the configuration clock.

For Trion FPGAs, this option is always Internal Oscillator.

SPI Programming
Clock Divider

Choose the divider for the SPI clock. This setting is reflected in the bitstream file.
Default: DIV8

Clock Sampling
Edge

For Titanium FPGAs, choose whether the configuration clock should sample on the rising
or falling edge. The default is Rising.

For Trion FPGAs, this option is always Rising.

Power down flash
after programming

Enable this option to power down the flash device after the FPGA finishes programming.
This setting is reflected in the bitstream file, and you can only set it here.

Default: On

Use 4-byte
addressing during
configuration

(Titanium only) When you turn this option on, the control block issues 4-byte addresses
when it configures the FPGA.

This option is not supported for Ti35 amd Ti60 FPGAs.

Programming mode

Choose the programming mode and width; the choices depend on the FPGA and
package you are targeting. This setting is reflected in the bitstream file, and you can only
set it here.

Default: SPI <active or passive> x|

Enable Initialized
Memory in User
RAMs

This setting is reflected in the bitstream file, and you can only set it here.
on: The bitstream has initialized memory.

off: The bitstream does not have initialized memory.

smart:

For the Trion family, this option has the same effect as on.

For the Titanium family, this option gives a slightly smaller bitstream.
Default: smart

www.efinixinc.com 104

Efinity Software User Guide

Option

Notes

Release Tri-States
before Reset

During configuration, core signals are held in reset and the I/O pins are tri-stated. These
states are released when the FPGA enters user mode.

On: (default) I/O pins are released from tri-state before the core is released from reset
(use this option when the application is core sensitive).

Off: Core signals are released from reset before the 1/O pins are released from tri-state
(use this option when the application is I/O sensitive).

Enable Bitstream
Compression

(Titanium only) When turned on (default), the software compresses the bitstream.

If you choose Bitstream Encryption or Bitstream Authentication, this option is turned off
and disabled because you cannot compress a bitstream and use the security features
simultaneously.

Bitstream Encryption

(Titanium only)

On: The software generates an encrypted bitstream. You also need to specify the .bin file
in the FPGA Key Data File box.

Off: (default) The software generates a plaintext bitstream.

Randomize IV value
during compilation

(Titanium only) This option is used with bitstream encryption. The encryption/decryption
uses a 96-bit initial vector (IV). If you want the software to generate a random IV for every
compilation, leave this option turned on. If you want to specify an IV, turn this option off
and specify the value in the 96-bit IV Value box.

On (default): Let the software generate the IV value. (The bitstream will be different every
time you compile, even if nothing has changed in your design.)

Off: The software does not generate the IV value; the user will specify it in the 96-bit IV
Value box. (If nothing has changed in your design, when you recompile, the bitstream
remains the same)

96-bit IV Value (Titanium only) Click the refresh button next to this box to generate a random IV value.
You can also enter a value you generate with another program.
Bitstream (Titanium only)

Authentication

On: The software generates a signed bitstream. You also need to specify the .bin file in
the FPGA Key Data File box and the RSA private key (.pem) file in the RSA Private Key
box.

Off: (default) The software generates an unsigned bitstream.

FPGA Key Data File

(Titanium only) Specify the location and name of the .bin file you generated with the
Efinity Bitstream Security Key Generator.

RSA Private Key

(Titanium only) Specify the location and name of the RSA private key file (.pem).

Generate JTAG
configuration file

On (default): Generate a .bit file for JTAG configuration.
Off: Do not generate a .bit file.

Generate JTAG raw
binary configuration

file

On: Generate a .bin file (raw binary) for JTAG configuration.
Off (default): Do not generate a .bin file.

Generate SPI
configuration file

On (default): Generate a .hex file for SPI programming.
Off: Do not generate a .hex file.

Generate SPI raw
binary configuration
file

On: Generate a .bin file (raw binary) for SPI programming.
Off (default): Do not generate a .bin file.

When you change one of these options, you can simply re-run the bitstream generation flow
step. You do not need to recompile the design.

www.efinixinc.com 105

Efinity Software User Guide

Figure 34: Setting Programming Options (Trion)

3 Project Editor

x

Project ‘ Design ‘ Synthesis | Place and Route ‘ Bitstream Generation | Debugger

JTAG USERCODE
(®) Active) Passive

Active

Clock Source

SPI Programming Clock Divider

Clock Sampling Edge

Power down flash after programming

[Use 4-Byte addressing during configuration

Programming Mode

Enable Initialized Memory In User RAMs

Release Tri-States before Reset

Output
Generate JTAG configuration file
[| Generate JTAG raw binary configuration file
Generate SPI configuration file

[| Generate SPI raw binary configuration file

|OXFFFFFFFF |
|Intemal Oscillator = |
DIVs - |
|Rising - |
|SPI active x1 v ‘
[on]

| OK H Cancel]

www.efinixinc.com

106

Efinity Software User Guide

Figure 35: Setting Programming Options (Titanium)

3 Project Editor %

Project | Design | Synthesis | Place and Route ‘ Bitstream Generation | Debugger

JTAG USERCODE (OXFFFFFFFF |

(®) Active) Passive

Active
Clock Source | Internal Oscillator - |
SPI Programming Clock Divider |DI\.|’8 - |
Clock Sampling Edge | Falling - |

V| Power down flash after programming

Use 4-Byte addressing during configuration

Programming Mode |SPI active x1 - |

Enable Initialized Memory In User RAMs |0ff - |

V| Release Tri-States before Reset

Enable Bitstream Compression

Remarks: Compression must be disabled when security feature is enabled
Bitstream Security

V| Bitstream Encryption

v| Randomize IV value during compilation

96-bit IV Value | | o

Bitstream Authentication

FPGA Key Data File | JiEd
Cert. File | |
Qutput

V| Generate JTAG configuration file
Generate JTAG raw binary configuration file
v| Generate SPI configuration file

Generate SPI raw binary configuration file

-

I OK || Cancel‘

[ﬁ Notice: Refer to the data sheet for your FPGA for information on which configuration options it supports.

Refer to AN 006: Configuring Trion FPGAs or AN 033: Configuring Titanium FPGAs for information on
configuration modes, timing, and board considerations.

www.efinixinc.com 107

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN006
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Software User Guide

Configuration Status Register

Titanium FPGAs have a configuration status register. You can use the Efinity Programmer to
monitor the values in this register to help debug confugration issues. View the register values
in the Advanced Device Configuration Status dialog box, which you open by clicking the
button of the same name.

Table 27: Configuration Status Register

Name

Description

IN_USER")

0: The FPGA is not in user mode.

1: The FPGA is in user mode. IN_USER waits for all internal resets and tri-states
to be released before it goes high.

CDONE

Configuration done, has the same value as the CDONE output pin.
0: The FPGA is not configured.

1: Configuation is complete.

NSTATUS

Configuration status, has the same value as the active-low NSTATUS output pin
if the NSTATUS pin is not driven by user when the FPGA is in user mode.

0: Indicates that the FPGA received a bitstream that was targeted for a different
configuration mode or width, or a CRC error is detected during configuration.
NSTATUS can also go low if there is a mismatch between the bitstream and the
FPGA encryption/authentication keys.

1: During configuration, indicates that the FPGA is in configuration mode.

CRC32_ERROR_CORE

0: No CRC errors were detected in the core configuration bits.

1: One or more CRC errors were detected in the core configuration bits.

RMUPD_ERROR

0: No errors occurred during remote update.

1: An error occurred during remote update configuration. Has the same value
as the remote update error status signal sent to the core fabric.

CONFIG_END

0: Configuration is not complete.
1: Configuration completed (whether successful or not).

SYNC_PAT_FOUND

0: Indicates that the FPGA is not receiving the expected synchronization pattern
at start of the bitstream. Check for board or power issues.

1: Indicates that the FPGA detected a synchronization pattern at start of the
bitstream., and the clock and data connections to the FPGA are acceptable. Any
configuration problems are likely digital or logical in nature.

SEU_ERROR

0: No SEU detection errors were found.

1: An SEU detection error was found when reading back the SEU CRAM. Has
the same value as the SEU detection error status signal to the core fabric.

CRC32_ERROR_PERIPH

0: No CRC errors were detected in the interface configuration bits.

1: One or more CRC errors were detected in the interface configuration bits.

AES256_PASSY)

For an encrypted bitstream:
0: Decryption failed. The encryption keys used in to program the fuses may not
match the ones used to encrypt the bitstream

1: The encrypted bitstream was decrypted successfully.

If the bitstream is not encrypted, this register is always a 1.

/) This bit is not supported in Ti60ES FPGASs.

www.efinixinc.com 108

Efinity Software User Guide

Name

Description

RSA_PASS!)

When using RSA authentication:
0: The signature check failed. The RSA keys used to program the fuses may not
match the ones used to sign the bitstream in the Efinity project.

1: The bitstream signature was verified successfully

If RSA authentication is not used, this register is always a 1.

AES_ACTIVE

After the FPGA is configured, you can check this status bit for encryption:
0: AES is disabled in the current design.
1: AES is enabled in the current design.

RSA_ACTIVE

After the FPGA is configured, you can check this status bit for authentication:
0: RSA is disabled in the current device.
1: RSA is enabled in the current device.

USERCODE

Displays the 32-bit hex JTAG USERCODE.

Veritying Configuration with the Programmer

After you program the flash or configure the FPGA, you can confirm that the bitstream is
loaded and the user design is running successfully using the Programmer. You can also use
a microcontroller or LEDs to verify configuration. Refer to "Verifying Configuration" in

or

www.efinixinc.com 109

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN006
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Software User Guide

Securing Titanium Bitstreams

Titanium FPGAs have built-in security features to help you protect your intellectual
property and to prevent tampering.

* Encryption—Encrypt your bitstream using an AES-256 key.
* Authentication—Sign your bitstream with an RSA-4096 private key.

* Disable [TAG—Disable all JTAG instructions except for IDCODE, DEVICE STATUS, and
BYPASS.

You use the following Efinity tools to implement these bitstream security features:

Table 28: Efinity Tools Used for Securing Bitstreams

Tool Used for

@ Create or specify an AES-256 key.
o-.. Create or specify an RSA-4096 private key.

Bitstream Security | Specify whether to disable JTAG.
Key Generator

11] Program the fuses in the Titanium FPGA with the AES-256 key and/or RSA certificate data.
> After you blow the fuses with an RSA key, the FPGA only accepts a bistream signed with the
correct private key.

SVF Player After you blow fuses with an AES-256 key, the FPGA only accepts a plaintext bitstream or a

bitstream signed with the correct key.
Program the JTAG fuse to disable JTAG function.

After you blow the JTAG fuse, you cannot use any JTAG command except IDCODE,
DEVICE STATUS, and BYPASS.

Bitstream Security Key Generator.

E 9 Turn on bitstream encryption and/or authentication, and specify the .bin file created by the
»

Turn on bitstream authentication and specify the private key (.pem) file to sign the bitstream.
Project Editor

Figure 36: Bitstream Authentication

Use Efinity Bitstream Use Efinity
Security Key Generator Project Editor
Create Keys Sign Bitstream Authenticate Configured
J J 5 Y valid
Private e 3 QR o Senaurel pcain
Key — P we User Mode
Unsigned Signed
Bitstream Bitstream
Invalid
Public Blow Fuses Use Efinity %Fuses Signature SN E
Key —% SVF Player User Mode
Developer’s Computer FPGA in System

The public key is derived from the private key; the .pem is essentially a private/public key
pair. The private key only exists in the .pem. The software uses it to sign the bitstream, but

www.efinixinc.com 110

Efinity Software User Guide

the bitstream and fuses only contain public key information. The FPGA uses the public key
to validate the bitstream's signature; it cannot be used to re-sign a modified bitstream.

Figure 37: Bitstream Encryption

Use Efinity Bitstream Use Efinity
Security Key Generator Project Editor
Create Key Encrypt Decrypt Configured
\ J \ Decryption
= Successful
—> — & — S i S
ﬂKey — User Mode
Plaintext Encrypted T
Bitstream Bitstream Decryption
% Fuses Fails Do Not Enter
e Blow Fuses BB Uscr Mode
~ Use Efinity -
SVF Player

Developer’s Computer FPGA in System

Figure 38: Disabling JTAG

Use Efinity Bitstream
Security Key Generator

Use Efinity

) IDCODE
Disable JTAG SVF Player A DEVICE STATUS

. BYPASS JTAG
.svfFile ——p FRCIAZIEE <

Developer’s Computer FPGA in System

The following sections describe how to use each of these tools to enable security features.

Using the Efinity Bitstream Security Key Generator
The key generator tool simplifies the process of creating encryption keys and generating RSA

certificates. You access this tool in the Efinity main menu at Tools > Open Key Generator.
You can use the key generator without opening a project.

www.efinixinc.com 111

Efinity Software User Guide

@ Note: You can use the Efinity Bitstream Security Key Generator iteratively. That is, you can first use
encryption and later add in RSA authentication, and even later disable JTAG commands. Refer to
on page 115 for more information.

Figure 39: Efinity Bitstream Security Key Generator

Efinity Bitstream Security Key Generator — O x
If you have your own
V| AES-256 Bitstream Encryption 256-bit key, enter it here
AES-256 Key 1679686665750516a01b5d3cc63b3fb77b Randomly Generate button

- . Click to generate a new key
v RSA-4096 Asymmetric Bitstream Authentication

RSAPEM File | demo/demo/demo_10222021 pem | || | & Randomly Generate PEM
File button
JTAG Click to generate a new key
JTAG Disabling |OFF ~ Select PEM File
Tl:;ir;:;ipf Misc If you a_Iready gengrated an
g) RSA private key, click to
on or off Device TGO ~ choose it
Choose * Generate Click to generate key files
the FPGA and a file for use with the
SVF Player
() ()
Fri October 22 21 14:24:24 - Successiully generate PEM Status messages

File: D:#i60f100_security_demofdemof
demo_10222021.pem

1. If you want to use encryption:

a) Turn on AES-256 Bitstream Encryption.

b) Click the Randomly Generate button to generate a 256 bit key. The software
populates the AES-256 Key box with the generated key.

¢) Alternatively, if you already have a key, you can enter it into the AES-256 Key box.
2. If you want to use authentication:

a) Turn on RSA-4096 Asymmetric Bitstream Authentication.

b) Click the Randomly Generate PEM File button.

¢) Inthe Generate AND Save PEM File dialog box, choose a location to save the .pem
file and type a filename in the File name box.

d) Click Open. The tool generates the private key and displays a message in the status
box.

e) Alternatively, click the Select PEM File button to load a private key (.pem) that you
created already.

@ Note: If you use another tool to create a private key, be sure to use the
RSA-4096 algorithm. Titanium FPGA's only support authentication with this
algorithm.

www.efinixinc.com 12

®

Efinity Software User Guide

3. If you are ready to turn off JTAG, choose ON for JTAG Disabling. Otherwise, leave it
set to OFF.

@ Important: Do not disable JTAG unless you are really ready, that is, you are
finished with all JTAG debugging and configuration tasks. After you disable JTAG,
you cannot undo it.

4. Choose your FPGA.

5. Click Generate.

6. In the Select Output File dialog box, choose the location to save the .bin (key data) file
and type a filename in the File name box.

7. Click Open.

The tool creates the following files:

* <filename> .bin—This file contains key information. You specify it in the Project Editor
when you turn on bitstream encryption and/or authentication.

* <filename>.pem—This file contains your RSA private key. You use this file to sign the
bitstream by specifying it in the Project Editor.

* <filename> .svf—This file contains JTAG commands and key information. You use it
with the Efinity SVF Player to blow the FPGA fuses.

Note: Efinix recommends that you save the 256-bit encryption key in a safe place so you have itin case
you want to generate another .svf later (see on page 115). You
need to copy it from the AES-256 Key box and save it into a text file.

Blowing Fuses with the SVF Player

The Efinity SVF Player is a JTAG SVF player that sends JTAG commands to an FPGA. The
player reads the JTAG commands from a serial vector format (.svf) file. You can use the SVF
Player without opening a project. The Efinity SVF Player requires a JTAG cable or mini-
module with the FTDI #232H chipset.

The Efinity Bitstream Security Key Generator creates an .svf that you use with the SVF
Player to blow fuses in Titanium FPGAs. These fuses contain key information for bitstream
encryption and/or RSA authentication, and also control JTAG access to the FPGA.

The .svf used for blowing fuses performs a variety of JTAG commands.

o Tt checks the FPGA's IDCODE and compares it to the .svf to ensure that the player is
targeting the correct FPGA.

* For AES encryption, the key is sent in eight 32-bit words, followed by a validation step.

* For RSA authentication, the key is sent in twelve 32-bit words, followed by a validation
step.

e It has commands to blow the JTAG fuse.

The .svf only has commands for the bitstream security features that you turned on in the
Efinity Bitstream Security Key Generator.

Important: You can only blow the fuses once, and you cannot undo it after you have blown them. So
make sure that you are really ready before you take this step.

www.efinixinc.com 113

Efinity Software User Guide

Figure 40: SVF Player

" Efinity SVF Player — O X

File Help

Target

USB Target | Ti60 F225 Development Board v || Click to refresh the search for a
USB Info ID: 0403:6010 S/N FT5M8ZDJ connected board

SVF File |D:/ig0f225_demortis0f225_security_feature. svi 21k Click to refresh the _svf file

1 TRST OFF; n

2 ENDIR IDLE; Load an .svf file
3 ENDDR IDLE:

4 STATE RESET:

5 STATE IDLE;

6 FREQUENCY 1000000 HZ,

7

8

9

TIR O;

HIR 0; ;

TDR 0: The contents of the .svf display
10 HDR0; in the console

12 // CHECK IDCODE
13 SIR 57TDI (03);
14 SDR 32 TDI (00000000) TDO (10660A79) MASK (FFFFFFFF);

15 //
18 [/ CONEIGLIRING NPTINOMN RECISTER b’

> .

Fri October 22 21:14:48:19 - Last execution line: 193(EQF)
Fri October 22 21:14:46:19 - Finish Execution! Status messages

Stop the player
Step through the JTAG commands
Play the .svf

To blow fuses with the SVF Player:

1. Choose a USB Target. Ensure that your board is connected to your computer and turned
on. Click the Refresh button to search for newly connected boards.

2. Click the Open SVF File button to load the .svf that you generated with the Efinity
Bitstream Security Key Generator. The content of the .svf displays in the console.

@ Note: If you make changes to the .svf, you can reload it using the Reload button.

3. Click the Play button to play the .svf file. It takes a very short amount of time to blow
fuses.

4. Toggle CRESET N or power cycle your board for the new fuse settings to take effect.

@ Important: Do not try to blow the same fuses a second time (for example, do not run the same .svf twice
in arow).

Typically, you will not receive any errors when running the SVF Player. However, you may
receive a TDO mismatch error in the following situations:

* You are trying to blow fuses that are already blown.

* You are trying to blow fuses for the wrong FPGA, that is, the FPGA you selected in the
Efinity Bitstream Security Key Generator is not the same as the one on your board.

www.efinixinc.com 114

Efinity Software User Guide

Enabling Security for Your Project

You set bitstream security options for your project in the Project Editor. After you enable
these options, you only need to generate a new bitstream to apply them. You do not need to
re-compile the design.

Table 29: Project Options for Security

Option

Description

Bitstream Encryption (Titanium only)

On: The software generates an encrypted bitstream. You also need to specify the
.bin file in the FPGA Key Data File box.

Off: (default) The software generates a plaintext bitstream.

Bitstream Authentication (Titanium only)

On: The software generates a signed bitstream. You also need to specify the .bin file
in the FPGA Key Data File box and the RSA private key (.pem) file in the RSA Private
Key box.

Off: (default) The software generates an unsigned bitstream.

FPGA Key Data File (Titanium only) Specify the location and name of the .bin file you generated with the

Efinity Bitstream Security Key Generator.

RSA Private Key

(Titanium only) Specify the location and name of the RSA private key file (.pem).

Workflow for Using Security Features

This topic describes some of the potential workflows you might use when developing
applications that include bitstream security. You do not have to use all of the bitstream
security features simultaneously. You can enable them sequentially or only use some of the
features if that suits your workflow.

This iterative process has two parts: blowing fuses and securing the bitstream.
Blowing Fuses lteratively

You can blow fuses in any order, and blow only some of them in any iteration. For example,
you can:

Blow fuses for only AES-256.

Blow fuses for only RSA authentication.

Blow fuses for AES-256 after doing step 2.

Blow fuses for RSA authentication after doing step 1.

Blow fuses for both AES-256 and RSA authentication, but do not blow JTAG fuse.

Blow fuses for AES-256 and RSA authentication, and blow JTAG fuse (#// in mode where
you turn on everything).

7. Blow JTAG fuse after doing steps 1, 2, 3, 4, or 5.

AN S

@ Important: Once you blow the JTAG fuse (steps 6 or 7), you cannot perform any further iterations!

Each time you want to blow fuses for a new iteration, you use the Efinity Bitstream Security
Key Generator to create a new .svf file with the new options that you want to enable.

@ Important: Do not enable options that you have already turned on. For example, if you already blew the
AES-256 fuses, do not try to blow them again.

www.efinixinc.com 115

Efinity Software User Guide

Example 1: Blow Fuses for AES-256 First, Fuses for RSA Authentication Later
You already blew fuses for AES-256 and now you want to blow fuses for RSA authentication:

1. Open the Efinity Bitstream Security Key Generator.
2. Turn off the AES-256 Bitstream Encryption option.

3. Turn on the RSA-4096 Asymmetric Bitstream Authentication option and generate or
select a .pem.

4. Click Generate to create a new .svf; discard the .bin file.
5. Use the new .svf with the SVF Player to blow the RSA fuses; discard the .bin file.

Example 2: Blow Fuses for AES-256 and RSA Authentication First, Fuse for Disabling
JTAG Later

You already blew fuses for AES-256 and RSA authentication and now you want to blow the
JTAG fuse:

1. Open the Efinity Bitstream Security Key Generator.

Turn off the AES-256 Bitstream Encryption option.

Turn off the RSA-4096 Asymmetric Bitstream Authentication option.
Choose ON for JTAG Disabling.

Click Generate to create a new .svf; discard the .bin file.

Use the new .svf with the SVF Player to blow the JTAG fuse.

S EewD

Securing Bitstreams lteratively

You can secure the bitstream with encryption and/or authentication. When you enable either
option (or both) in the Project Editor, you need to specify the .bin file you create with the
Efinity Bitstream Security Key Generator.

Note: When working iteratively, you need to make sure that you use the same key data that you used in
the previous iteration.

Example 3: Secure Bitstream for AES-256 First, RSA Authentication Later
You already enabled for AES-256 and now you want to enable RSA authentication:

1. Open the Efinity Bitstream Security Key Generator.

2. Turn on the AES-256 Bitstream Encryption option and enter the key from the previous
iteration (this is why you should save it).

3. Turn on the RSA-4096 Asymmetric Bitstream Authentication option and generate or
select a .pem.

4. Click Generate to create a new .bin file; discard the .svf file.

5. Specify the new .bin file in the Project Editor.

6. Generate the bitstream.

Example 1 and Example 3 both start with AES-256 and later add RSA authentication.
However, you turn off AES-256 for Example 1 and turn on AES-256 for Example 3.

Therefore, you need to run the Efinity Bitstream Security Key Generator twice: the first time
with settings for blowing fuses; the second time with settings for bitstream security.

Example 2 only blows the JTAG fuse, so you use the .svf file with the SVF Player and
discard the .bin file.

www.efinixinc.com 116

Efinity Software User Guide

Verifying Security Settings

You may want to verify that your Titanium FPGA is correctly using the security features
that you enabled. You can use the Advanced Device Configuration Status dialog box
(Programmer) to view the security status signals. See on page
108 for details.

Note: With the AES encryption feature enabled, Titanium FPGAs accept both encrypted and unencrypted
bitstreams as valid. So you can configure the FPGA with a plaintext bitstream even after you blow its fuses
with an AES key.

Conversely, if you have blown fuses for RSA authentication, the FPGA only accepts a bitstream signed with
the private key you blew into the fuses.

Figure 41: Advanced Device Configuration Status Security Signals

') Advanced Device Configuration Status X

Signal Status
IN_USER

0 0
1 |CDONE 0
2 NSTATUS 0
3 |CRC32 ERRO... 0
4 RMUPD_ERROR 0
5 |CONFIG END 1
6 SYNC_PAT FO__ 1
7 'SEU_ERROR
8 CRC32_ERRO...
9 AES256 PASS 1
Security 10 RSA_PASS 0
Signals 11RSA_ACTIVE 0
12 AES ACTIVE 0

\ Update \

You can also test out the bitstream security features by trying to program the FPGA with

a bitstream that you signed with the wrong RSA key, an unsigned bitstream, or a bitstream
encrypted with the wrong key. If the Titanium FPGA detects a key mismatch, it will not go
into user mode.

www.efinixinc.com 117

Efinity Software User Guide

Chapter 10

Working with JTAG .svf Files

Contents:

The JTAG serial vector format (.svf) file is a vendor-independent ASCII text file of JTAG
commands. You can use an .svf file for JTAG debugging, boundary-scan testing, and
programming with any .svf-compatible JTAG hardware.

The Efinity Programmer can convert a bitstream file to .svf so that you can use third-party
JTAG hardware to program an Efinix FPGA. Refer to on page 91.

JTAG programming with an .svf file is supported in all Efinix FPGAs except for:
e T4,T8, and T13 in any package
* 20 in W80, Q144, F169, and F256 packages

Using the Efinity SVF Player

The Efinity SVF Player is a JTAG SVF player that sends JTAG commands to an FPGA. The
player reads the JTAG commands from a serial vector format (.svf) file. You can use the SVF
Player without opening a project. The Efinity SVF Player requires a JTAG cable or mini-
module with the FTDI #232H chipset.

You can use the SVF Player to execute any JTAG commands on the following Efinix
FPGAs:

* Trion T20 in F324 and F400 packages

® Trion T35 in any package

Trion T55, T85, and T120 in any package
e All Titanium FPGAs in any package

You can use the the SVF Player to execute any JTAG command except PROGRAM for the
following Trion FPGAs:

e T4,T8, and T13 in any package
o T20 in W80, Q144, F169, and F256 packages

www.efinixinc.com 118

Efinity Software User Guide

You can also use the SVF Player to execute JTAG commands for non-Efinix devices in a

JTAG chain.

Figure 42: SVF Player

" Efinity SVF Player

File Help

Target

USB Target Tie0 F225 Development Board
USB Info 1D: 0403:6010 S/N FT5M8ZDJ

SVF File D:ftisof225_demo/tisof225_security_feature.svf

1 TRST OFF;
2 ENDIR IDLE;
3 ENDDR IDLE:
4 STATE RESET:
5 STATE IDLE;
6 FREQUENCY 1000000 HZ;

7 TIRO;

8 HIRO;

9 TDRO;

10 HDRO;

1

12 // CHECK IDCODE

13 SIR 57TDI (03);

14 SDR 32 TDI (00000000) TDO (10660A79) MASK (FFFFFFFF);
15

1A H CONEIGLIRING NPTINM RECISTER

) ||

Fri October 22 21:14:48:19 - Last execution line: 193(EQF)
Fri October 22 21:14:46:19 - Finish Execution!

Stop the player
Step through the JTAG commands
Play the .svf

To use the SVF Player:

B)

Click to refresh the search for a
connected board

Click to refresh the .svf file

Load an .svf file

The contents of the .svf display
in the console

Status messages

1. Choose a USB Target. Ensure that your board is connected to your computer and turned
on. Click the Refresh button to search for newly connected boards.

2. Click the Open SVF File button to load the .svf. The content of the .svf displays in the

console.

@ Note: If you make changes to the .svf, you can reload it using the Reload button.

3. Click the Play button to play the .svf file.

You can also step through the .svf file line by line using the Step Over button. This feature is
useful for debugging. To stop playing the file, click the Stop button.

www.efinixinc.com 119

Efinity Software User Guide

Chapter 11

Working with Remote Hardware

The Efinity software includes the Efinity Hardware Server that allows you to communicate
with a development board that is attached to a remote host machine. For example, you may
want to use your Efinix development board in a lab environment and let several developers
access it from their own computers. With the Efinity Hardware Server, you can connect the
board to the lab machine and then program or debug it from a remote networked computer.
The Efinity Hardware Server is supported in the Programmer, Debugger, and SVF Player.

@ Important: The Efinity Hardware Server is beta in the Efinity software v2021.2, v2022.1, and 2023.1.
Please excuse any random bugs, we will fix them.

Known issue: Currently, the hardware server does not arbitrate between multiple requests. Therefore,
if more than one person tries to connect to the board, there will be a conflict and all users will see
errors in the Programmer console or the Programmer may crash or hang. If the board is in the middle of
programming when multiple requests occur, programming aborts in an unfinished state.

Start the Efinity Hardware Server

You start the Efinity Hardware Server using the efinity_hw_server.py command-line tool.

efinity hw server.py [-h] [-a <address>] [-p <port>]

Where:
* -h shows help.

° <address> is the server address; if you do not specify an address, the Efinity Hardware
Server defaults to 0.0.0.0 (that is, all IPv4 addresses on the local machine).

° <port> is the server port number; if you do not specify a port, the Efinity Hardware
Server defaults to 8080.

The tool issues the message Running Server at <IP address>:<port> when the
Efinity Hardware Server begins running.

Windows:
Use the following commands in a Command Prompt to start the server:

<Efinity path>\bin\setup.bat
<Efinity path>\bin\python3.bat <efinity path>\pgm\bin\efx pgm
\efinity hw server.py

Linux:
Use the following commands in a terminal to start the server:

source <Efinity path>/bin/setup.sh
python3 <Ffinity path>/pgm/bin/efx pgm/efinity hw server.py

Stop the Efinity Hardware Server
In the terminal or Command Shell, enter Ctrl+C to stop the server.
Connect the Board to the Server

For Efinix development boards, connect the board to the server using a USB cable. When
you connect to the remote host from your computer, the board name appears in the
Programmer's USB Target list.

www.efinixinc.com 120

Efinity Software User Guide

For your own board, use a JTAG Mini-Module or JTAG cable to connect the board to the
server. When you connect to the remote host from your computer, the module or cable
name appears in the Programmer's USB Target list. (Refer to

on page 100.)

Connect to a Remote Host

You use the Edit Remote Host dialog box to manage the list of remote server hosts. You
access this dialog box from Programmer, Debugger, or SVF Player tools.

AN

6.

Click the Edit Remote Host List button to open the Edit Remote Host dialog box.
Press the + button.

Double-click the cell under Address and enter the server's IP address.

Double-click the cell under Port and enter the port.

Click the + button to add another row. Click the - button to remove a selected row.

Click OK.

The software refreshes the USB Target list; any boards connected to remote hosts appear in
the list. Simply choose the board that you want to program or debug as usual.

www.efinixinc.com 121

Efinity Software User Guide

Appendix: Installing USB Drivers

©

®

To program Trion” and Titanium FPGAs using the Efinity” software and programming
cables, you need to install drivers.

Efinix development boards have FTDI chips (FT232H, FT2232H, or FT4232H) to
communicate with the USB port and other interfaces such as SPI, JTAG, or UART. Refer
to the Efinix development kit user guide for details on installing drivers for the development

board.

Note: If you are using more than one Efinix development board, you must manage drivers accordingly.
Refer to for more information.

Notice: The Trion T8 BGA81 Development Boards do not have FTDI chip for USB communication. Refer
to the T8 BGA81 Development Kit User Guide for more information about installing its Windows USB

driver.

For your own development board, Efinix suggests using the FTDI Chip FT2232H or
FT4232H Mini Modules for JTAG programming Trion® and Titanium FPGAs. (You can use
any JTAG cable for JTAG functions other than programming.)

@ Note: Efinix does not recommend the FTDI Chip C232HM-DDHSL-0 programming

cable due to the possibility of the FPGA not being recognized or the potential for
programming failures.

Table 30: USB Programming Connections

Board Connect to Computer with
Efinix development boards USB cable
Your own board FTDI x232H programming kit. For example:

® FT2232H Mini Module
® FT4232H Mini Module

Note: The FTDI Chip Mini Module supports 3.3 V I/0O voltage only. Refer to the for
more information about the modules.

Installing the Linux USB Driver

The following instructions explain how to install a USB driver for Linux operating systems.

1. Disconnect your board from your computer.
2. In aterminal, use these commands:

> sudo <installation directory>/bin/install usb driver.sh
> sudo udevadm control --reload-rules

@ Note: If your board was connected to your computer before you executed these
commands, you need to disconnect and re-connect it.

www.efinixinc.com 122

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN050
https://ftdichip.com/products/ft2232h-mini-module/

Efinity Software User Guide

Installing the Windows USB Driver

On Windows, you use software from Zadig to install drivers. Download the Zadig software
(version 2.7 or later) from . (You do not need to install it; simply run the
downloaded executable.)

Important: For some Efinix development boards, Windows automatically installs drivers for some
interfaces when you connect the board to your computer. You do not need to install another driver
for these interfaces. Refer to the user guide for your development board for specific driver installation
requirements.

To install the driver:

1. Connect the board to your computer with the appropriate cable and power it up.
2. Run the Zadig software.

Note: To ensure that the USB driver is persistent across user sessions, run the
Zadig software as administrator.

3. Choose Options > List All Devices.

4. Repeat the following steps for each interface. The interface names end with (Interface N),
where N is the channel number.

* Select libusb-win32 in the Driver drop-down list.
* Click Replace Driver.
5. Close the Zadig software.

Note: This section describes how to install the libusb-win32 driver for each interface separately. If you
have previously installed a composite driver or installed using libusbK drivers, you do not need to update
or reinstall the driver. They should continue to work correctly.

www.efinixinc.com 123

https://zadig.akeo.ie

Efinity Software User Guide

Appendix: Connecting Programming
Hardware

SPI Programming Connections

The following figure illustrates the connection required when programming the SPI flash
with FTDI FT2232H and FT4232H Mini Module.

Figure 43: SPI Flash Programming with FTDI FT2232H and FT4232H Mini Module
Connections (Trion FPGAs)

FT2232H or FT4232H Board
Mini Module Header FPGA

CN2pin7(ADO) —» CCK ———&» CCK
USB CN2pin10(AD1) —» CDI0 ——— et » CDIO
PC e CN2pin 9 (AD2) —» CDI1 » CDI1
CN2pin 12 (AD3) —» SS . » SS N
CN2 pin 14 (AD4) —» CRESET_N » CRESET_N
CN2 pin 16 (AD6) —» CDI3 » CDI3
CN2pin2 (GND) —— GND
SPI Flash
L SCK
L » sDI
L »sDO
L »CS

———» HOLD

Figure 44: SPI Flash Programming with FTDI FT2232H and FT4232H Mini Module
Connections (Titanium FPGAs)

Refer to the voltage level translator data sheet for the capacitor values.

1.8V

FT2232H or Board
FT4232H I 1
Mini Module I I Header FPGA
CN2pin 7 (ADO) ———» yoppage — > CCK —————e»CCK
USB CN2pin 10 (AD1) ——> | g — > CDIO » CDIO
PC mmmm CN2pin 9 (AD2) — > Translator > CDI1 » CDI1
CN2 pin 12 (AD3) ———» — SS » SSL_N
CN2 pin 14 (AD4) ———» ———» CRESET_N » CRESET_N
CN2 pin 16 (AD6) ———» — CDI3 » CDI3
CN2 pin 2 (GND) ———— GND
SPI Flash
L » SCK
——» sDI

—»CS
————— P> HOLD

www.efinixinc.com 124

Efinity Software User Guide

JTAG Programming Connections (Trion FPGASs)

Connecting a JTAG Cable

Efinix does not recommend using the FTDI cable C232HM-DDHSL-0 for JTAG
programming due to the possibility of the FPGA not being recognized or the potential for
programming failures.

Connecting a JTAG Mini Module

When programming T4, T8, T13, T20WLCSP80, T20QFP100F3, T20QFP144, T20BGA256,
and T20BGA169 FPGAs, use this connection:

Figure 45: Connect FT2232 Mini Module to JTAG Pins plus CRESET_N and SS_N

FT2232H CE

Mini Module JTAG Header FPGA
CN3 pin 26 (BDO) —» TCK —>» TCK
USB CN3pin 25 (BD1) —» TDI — TDI
PC = CN3 pin 24 (BD2) +—— TDO <+<— TDO
CN3 pin 23 (BD3) —» TMS —» TMS
CN3 pin 2 (GND) —— GND

Header
CN2 pin 14 (AD4) —>» GPIO0O —» CRESET_N
CN2 pin 12(AD3) —» GPIO1 —» SS_N

Figure 46: Connect FT4232 Mini Module to JTAG Pins plus CRESET_N and SS_N

FT4232H Board
Mini Module JTAG Header FPGA
CN2pin 18 (BDO) — > TCK —» TCK
USB CN2pin17(BD1) —» TDI —» DI

PC =mmmm CN2pin20(BD2) «— TDO <— TDO
CN2pin19(BD3) —> TMS —>» TMS
CN2pin2(GND) —— GND

Header
CN2 pin 14 (AD4) —» GPIOO —>» CRESET_N
CN2 pin 12 (AD3) —» GPIO1 —» SS_N

@ Note: This figure uses the CRESET N and SS_N pins in addition to the standard JTAG pins. However,
this setup is only needed for JTAG configuration. You can use the standard 4 JTAG pins and any cable for
other JTAG functions.

www.efinixinc.com 125

Efinity Software User Guide

When programming T20BGA324, T20BGA400, T35, T55, T85, and T120 FPGAs, use this
connection:

Figure 47: Connect FT2232 Mini Module to JTAG Pins

FT2232H Board
Mini Module JTAG Header FPGA
CN3pin26 (BDO) — > TCK —» TCK
USB CN3pin25(BD1) —» TDI —» TDI

PC wmmmm CN3pin24(BD2) «— TDO <+— TDO
CN3pin23(BD3) —» TMS —» TMS
CN3pin2(GND) —— GND

Figure 48: Connect FT4232 Mini-Module to JTAG Pins

FT4232H HEENE
Mini Module JTAG Header FPGA

CN2pin 18 (BDO) —» TCK —» TCK
USB CN2pin 17 (BD1) —» DI —» DI
PC wmmmm CN2pin20(BD2) «— TDO <— TDO
CN2pin 19 (BD3) —» TMS —» TMS
CN2pin2 (GND) —— GND

JTAG Programming Connections
(Titanium FPGAS)

Efinix does not recommend using the FTDI cable C232HM-DDHSL-0 for JTAG
programming due to the possibility of the FPGA not being recognized or the potential for
programming failures.

www.efinixinc.com 126

Efinity Software User Guide

Connecting a JTAG Mini Module
When programming Titanium FPGAs with a JTAG Mini Module, use this connection:

Figure 49: Connect FT2232 Mini-Module to JTAG Pins

FT2232H Board
Mini Module JTAG Header FPGA
CN3pin26 (BDO) — > TCK —» TCK
USB CN3pin25(BD1) —» TDI —» TDI

PC wmmmm CN3pin24(BD2) «— TDO <+— TDO
CN3pin23(BD3) —» TMS —» TMS
CN3pin2(GND) —— GND

Figure 50: Connect FT4232 Mini-Module to JTAG Pins

FT4232H Board
Mini Module JTAG Header FPGA
CN2pin 18 (BDO) —» TCK —» TCK
USB CN2pin17(BD1) — » TDI —» TDI
PC wmmmm CN2pin20(BD2) «— TDO <— TDO
CN2pin 19(BD3) — > TMS —>» TMS
CN2pin2(GND) —— GND

www.efinixinc.com 127

Appendix: Efinity Tools

Efinity Software User Guide

This topic provides a list of tools included with the Efinity software.

Table 31: Efinity Tools

Tool Description Read More

Bitstream Security Key Simplifies the process of creating encryption

Generator keys and generating RSA certificates (for on
Titanium FPGAs only). page 111

BRAM Initial Content Updater | Lets you quickly update the initial memory
saved in the FPGA's BRAM without performing on page 87
a full compile.

Code Editor Basic editor for viewing code or report files.
You should use your own editor for real coding
work.

Debugger Use to probe signals in your FPGA design via on page 70
the JTAG interface.

Debug Wizard Provides an automated flow for adding a logic on page 76
analyzer core to your design.

Floorplan Editor Provides a graphical view of the logic and
routing in your design.

Interface Designer Used to build the peripheral portion of your
design such as PLLs, GPIO, MIPI, DDR, etc. on page 44

IP Manager Interactive wizard that helps you customize and on page
generate Efinix IP cores. 36

JTAG SVF Player JTAG SVF player that sends JTAG commands
to an Efinix FPGA. on page 118

Log Message Tool to sort and browse through all of the
messages resulting from the compilation flow. | on page 32

Message Browser Shows synthesis-specific messages that result
when you elaborate the netlist. on page 32

Netlist Viewer Displays and analyzes your design's on page
netlist, including all components and their 29
connections (nodes and nets).

Package Planner Provides a visual representation of the FPGA
package pins. on page 51

Programmer Select bitstream images and program the on
FPGA directly or the flash device on a board. page 84

Tel Command Console

Enter Tcl commands to analyze and explore
timing.

Timing Browser

Helps you explore your design'’s critical paths
and the cells of those paths.

www.efinixinc.com 128

Efinity Software User Guide

Appendix: Efinity Project Files

The following sections describe the important files the Efinity software uses and generates.
Files in the work* directories are typically intermediate files used by the tools, and do not
provide useful information for the user.

Efinity Source Files for Version Control

If you want to put your project under revision control, the files you need to store (in addition
to your RTL) are:

Bitstream Generation

<project>.hex

In GUI Result pane > Bitstream menu

In file system <project>/outflow

Created by Efinity software during the bitstream generation step
Design source? No

The Efinity software creates this file during the bitstream generation step. This file is the .hex
file you use to program in SPI active or SPI passive modes.

<project>.bit

In GUI Result pane > Bitstream menu

In file system <project>/outflow

Created by Efinity software during the bitstream generation step
Design source? No

The Efinity software creates this file during the bitstream generation step. This file is the .bit
file you use to program in JTAG mode.

www.efinixinc.com 129

Efinity Software User Guide

<project>.pgm.out

In GUI

Result pane > Bitstream menu

In file system

<project>/outflow

Created by

Efinity software during the bitstream generation step

Design source?

No

The software creates this file after bitstream generation; it contains all of the messages output

to the Console.

Debugger

debug_profile.wizard.json

In GUI

Project Editor > Debuging tab

In file system

<project>

Created by

Efinity Debug Wizard

Design source?

Yes

The Efinity software creates this file when you use the Debug Wizard to add a logic analyzer
core to your design. This file contains all of the settings you made in the wizard. For more

information in the wizard and settings, refer to

dbg_top.v

on page 76.

In GUI

Result pane > Debugger menu

In file system

<project>/outflow/work_dbg

Created by

Efinity Debug Wizard

Design source?

Yes

The Efinity software creates this file when you use the Debug Wizard to add a logic analyzer
core to your design. This file has the RTL logic for the debug core.

debug_TEMPLATE.v

In GUI

In file system

<project>/outflow/work_dbg

Created by

Efinity Debugger

Design source?

Yes

The Efinity Debugger creates this file when you create a logic analyzer or virtual I/O debug
core manually. This file has the module for the debug profile you created.

Refer to

for more information.

on page 72 or on page 74

www.efinixinc.com 130

Efinity Software User Guide

Interface Designer

<project>.peri.xml

In GUI

In file system

<project>

Created by

Interface Designer when you create an interface

Design source?

Yes

The Interface Designer creates this file when you create a new interface for your project. This
file contains all of the settings that you specified in the Interface Designer for I/O banks,
GPIO, LVDS, PLLs, MIPI, DDR, etc. You should not edit this file directly!

<project>.interface.csv

In GUI

Result pane > Interfaces menu

In file system

<project>/outflow

Created by

Interface Designer when generating constraints

Design source?

No

The Interface Designer creates this file when you generate constraints. This file shows
the constraints for the FPGA design pins used in the interface between the core and the
periphery in a comma-separated values (.csv) file.

<project>.pt.rpt

In GUI

Result pane > Interfaces menu

In file system

<project>/outflow

Created by

Interface Designer when generating constraints

Design source?

No

The Interface Designer creates this file when you generate constraints. This file provides
details of the blocks used in the interface, including I/O banks, global connections, clock
region usage, GPIO and dual-function configuration pins used, PLLs, LVDS, etc.

<project>.pinout.rpt

In GUI

Result pane > Interfaces menu

In file system

<project>/outflow

Created by

Interface Designer when generating constraints

Design source?

No

The Interface Designer creates this file when you generate constraints. This file provides
the board design pinout with pin number, signal name, pin name, I/O bank, etc. in a nicely
formatted text file format.

www.efinixinc.com 131

Efinity Software User Guide

<project>.pinout.csv

In GUI

Result pane > Interfaces menu

In file system

<project>/outflow

Created by

Interface Designer when generating constraints

Design source?

No

The Interface Designer creates this file when you generate constraints. This file provides the
board design pinout with pin number, signal name, pin name, I/O bank, etc. in a comma-
separated values (.csv) format.

<project>.pt_timing.rpt

In GUI

Result pane > Interfaces menu

In file system

<project>/outflow

Created by

Interface Designer when generating constraints

Design source?

No

The Interface Designer creates this file when you generate constraints. This file shows
the interface’s timing requirements based on the <project>.pt.sdc. The report has these

sections:

* PLL Timing Report—Shows period and phase shift of output clocks from PLL.
* GPIO Timing Report—The report shows the following GPIO data:
— The clock network delay, including the delay from GPIO_GCLK_IN to the core's
global network and the delay from the PLL's clkout to GPIO_GCLK_OUT.
— The output delay for GPIO configured as clock outputs (GPIO_CLK_OUT).
— The delays for non-registered GPIO.
— The delays for registered GPIO, including Timing Requirement of both Setup time
and Hold time for path from FPGA pins to FPGA interface and the path delay from
FPGA interface to FPGA pins.

* JTAG Timing Report—If you added a debug core to your design, this section shows the

JTAG signal delay.

<project>.pt.sdc

In GUI

Result pane > Interfaces menu

In file system

<project>/outflow

Created by

Interface Designer when generating constraints

Design source?

No

The Interface Designer creates this file when you generate constraints. The file is a template
SDC that you use to create your own SDC file. You copy and paste the constraints into your
own SDC and modify it as needed.

There are several types of contraints:

Clock constraints—These constraints define the clocks and virtual clocks in your design.
The file has create_clock constraints for the PLL clocks (the SDC file defines a clock
period) and any GPIO clocks, that is, GPIO used as GCLK (you need to define the clock

period for these).

www.efinixinc.com 132

Efinity Software User Guide

* GPIO constraints—These constraints define the input delay and output delay from
registered IO to core as well as input delay and output delay from non-registered IO to

core.

° Periphery constraints—These are constraints for any interfaces, such as LVDS, MIPL, DDR,

etc.

Learn more: See
instructions on using this file.

in the

<project>_or.ini

for

In GUI

Result pane > Interfaces menu

In file system

<project>/outflow

Created by

Interface Designer when generating constraints

Design source?

No

The Interface Designer creates this file when you generate constraints. This file contains
bitstream configuration settings (option register settings) related to features you enable in
the Interface Designer such as SEU and remote update. The Programmer uses this file when

creating the bitstream.

<project>_template.v

In GUI

Result pane > Interfaces menu

In file system

<project>/outflow

Created by

Interface Designer when generating constraints

Design source?

No

The Interface Designer creates this file when you generate constraints. This file provides
the a template Verilog HDL file defining the FPGA design pins based on the interface
configuration. You can use this file as the starting point for the Efinity synthesis top-level
target. The port list in the file matches the

. To use this file:

1. Save the file with a different name to the directory where you keep your source files, such
as your project directory.

2. Add the new file to you project as a design file.

3. Change the top-level entity in the Efinity project to be the module name given in this
file. For example, if the module name is pt _demo, change the top-level entity name to
pt_demo in Project Editor > Design tab > Top Module/Entity.

4. Add the design content.

www.efinixinc.com 133

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

IP

<module>.define

In GUI -

In file system <project>/ip/<module>

Created by IP Configuration wizard

Design source? No

When you generate an IP core, the IP Configuration wizard creates this file. The file contains
all of the settings you specified for the IP core.

settings.json

In GUI -

In file system

<project>/ip/<module>

Created by

IP Configuration wizard

Design source?

Yes

When you generate an IP core, the IP Configuration wizard creates this file. The file has the

configuration settings for the IP core.

You can use this settings file to create another instance of the core with the same settings, or
you can modify it to create another core with slightly different settings. For example, you can

quickly create FIFOs of varying depths by re-using an existing settings.json file.

Learn more: Referto
instance of an IP core.

on page 42 for instructions on using this file to create another

<module>_tmpl.v

In GUI

In file system

<project>/ip/<module>

Created by

IP Configuration wizard

Design source?

No

When you generate an IP core, the IP Configuration wizard creates this file. The file has the
Verilog HDL template you can use to instantiate the IP in your RTL design.

<module>_tmpl.vhd

In GUI

In file system

<project>/ip/<module>

Created by

IP Configuration wizard

Design source?

No

When you generate an IP core, the IP Configuration wizard creates this file. The file has the
VHDL template you can use to instantiate the IP in your RTL design.

www.efinixinc.com 134

Efinity Software User Guide

<module>.v

In GUI -

In file system <project>/ip/<module>
Created by IP Configuration wizard
Design source? Yes

When you generate an IP core, the IP Configuration wizard creates this file. The file source
code for the IP core.

Placement

<project>.place

In GUI Result pane > Placement menu

In file system <project>/outflow

Created by Efinity software during the placement step
Design source? No

The Efinity software creates this file during the placement step. This file has the detailed
placement report (block name, x,y coordinates, sub-block, and block number) for all of the
logic blocks in the design shown in a nicely formatted text layout.

<project>.place.rpt

In GUI Result pane > Placement menu

In file system <project>/outflow

Created by Efinity software during the placement step
Design source? No

The Efinity software creates this file during the placement step. This file shows the resources
used after placement for inputs, outputs, clocks, LEs, memory, and multipliers (Trion) or
DSP Blocks (Titanium).

The report's Resource Summary section shows how many core resources (inputs, outputs,
clocks, etc.) the design uses. In this context, the inputs and outputs are the connections
between the core and the periphery (or interfaces); they do not represent package pins.
Different versions of software model these connections differently, which can cause the
number of available input or output connections to change from one release to the next.

For example, the Efinity software v2022.2 includes a ~-reference pin option for the
set _input delayand set output delay constraints for Trion FPGAs. To model
these pins, the software adds more clock connections from the core to the interface to the
report's I/O counts. Therefore, for the same design, you may notice a higher number of
inputs and outputs in the report file in the Efinity software v2022.2 or higher.

To find the number of GPIO used (meaning the number of package I/O pins as inputs and
outputs), refer to the Result pane's GPIO Periphery Resource field or <project > .pt.rpt in
the outflow folder.

www.efinixinc.com 135

Efinity Software User Guide

<project>.place.out

In GUI

Result pane > Placement menu

In file system

<project>/outflow

Created by

Efinity software during the placement step

Design source?

No

The Efinity software creates this file during the placement step. This file shows the messages
output to the Console during placement. Review all SDC messages and adjust your
constraints as needed. Warning messages flag issues that can affect timing closure.

Project

<project>.sdc

In GUI Project pane > Constraint menu
In file system <project>

Created by User defined

Design source? Yes

This file is the Synopsys Design Constraints (.sdc) file you use to constraint your design to
meet timing requirements. It is too much information to explain how to do that here, so refer

to

<project>.xml

for the full details.

In GUI

In file system

<project>

Created by

Efinity software when you create a project

Design source?

Yes

The Efinity software creates this file when you create a new project. This file contains all of
the information about your project, including any settings you make in the Project Editor.
You should not edit this file directly!

Routing

<project>.pnr.rpt

In GUI

Result pane > Routing menu

In file system

<project>/outflow

Created by

Efinity software during the routing step

Design source?

No

The Efinity software creates this file during the routing step. This file shows the resources

used after placement and routing for inputs, outputs, clocks, LEs, memory, and multipliers
(Trion) or DSP Blocks (Titanium).

www.efinixinc.com 136

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

<project>.route.rpt

In GUI

Result pane > Routing menu

In file system

<project>/outflow

Created by

Efinity software during the routing step

Design source?

No

The Efinity software creates this file during the routing step. This file shows the routing
report, including global control information.

<project>.route.out

In GUI

Result pane > Routing menu

In file system

<project>/outflow

Created by

Efinity software during the route step

Design source?

No

The software creates this file after routing; it contains all of the messages output to the
Console. This file shows detailed information about the number of routing iterations and cost
time when routing your design. If your design does not route, you can try adjusting the place-
and-route optimization level for congestion.

Learn more: See

inthe for information on

using the options for optimization level.

<project>.timing.rpt

In GUI

Result pane > Routing menu

In file system

<project>/outflow

Created by

Efinity software during the route step

Design source?

No

The software creates this file after routing. This static timing analysis report contains detailed
information about your design's critical paths. The report has severl sections:

Clock Frequency Summary—Shows a summary of the clocks in your design and their
constraints. It uses the critical paths to show the maximum clock frequency that each
clock can achieve. In the summary you can check the clock constraints defined in your

SDC file, the maximum frequency of the clocks in your design, and the edge of the launch
clocks and capture clocks.

Clock Relationship Summary—Lists the related clocks, their constraints, and the slack. The
report shows measurements using the active clock edge. This report shows how many
pairs of launch clocks and capture clocks are involved when routing your design and the
slack of the most critical setup path among related clocks. If any of the clock relationships
have negative slack, your design has not closed timing.

Path Details for Max Critical Paths—Shows the critical paths for the maximum (setup)
critical paths. The report only shows the most critical path for each relationship. This
section gives detailed information for the Launch Clock Path, Capture Clock Path, Data
Path (including Clock To Q + Data Path Delay). Usually, the most efficiency way to
reduce the data path delay is to fix negative slack.

Path Details for Min Critical Paths—Shows the critical paths for the minimum (hold)
critical paths. The report only shows the most critical path for each relationship.

www.efinixinc.com 137

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

[ﬂ Learn more: Referto

in the

Synthesis

Efinity Software User Guide

and

<project>.map.v

In GUI

Result pane > Synthesis menu

In file system

<project>/outflow

Created by

Efinity software during the synthesis step

Design source?

No

The Efinity software creates this file during the synthesis step. This file has the post-mapping
netlist that you use for simulation.

<project>.map.rpt

In GUI

Result pane > Synthesis menu

In file system

<project>/outflow

Created by

Efinity software during the synthesis step

Design source?

No

The Efinity software creates this file during the synthesis step. This file contains all of the
reporting for the synthesis step. It give the top-level entioty, the files in the design as well as
results of pre-optimization and mapping, post-optimization and re-synthesis, and estimates
for the resource usage for each module.

<project>.map.out

In GUI

Result pane > Synthesis menu

In file system

<project>/outflow

Created by

Efinity software during the synthesis step

Design source?

No

The Efinity software creates this file during the synthesis step. This file has all of the messages
the synthesis tool outputs to the Console, including any synthesis warnings or errors.

www.efinixinc.com 138

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

<project>.res.csv

In GUI

Result pane > Synthesis menu

In file system

<project>/outflow/work_syn

Created by

Efinity software during the synthesis step

Design source?

No

The Efinity software creates this file during the synthesis step. This file has the resource usage
for all of the modules in the design. When you double-click on this file in the Result pane >
Synthesis menu, the report opens with two tabs:

* The Hierarchy tab shows a tablular view of the modules and the resources used. You can
filter the list using the filter field at the top.

* The Text tab shows a plain text view of the same data.

www.efinixinc.com 139

Appendix: Shortcuts

Efinity Software User Guide

This section provides a list of shortcuts when working with the Efinity software.

Table 32: Shortcuts

Action

Shortcut

To launch the Efinity GUI with a project already loaded

Use this command in a terminal or command prompt:

SEfinity$\bin> setup.bat --run
efinity --project <project name>.xml

To add a design file to your project

Go to Dashboard > Project pane and right-click
Design. Choose Add from the pop-up menu, browse
for the file, and click Open.

To add an SDC file to your project

Go to Dashboard > Project pane and right-click
Constraint. Choose Add from the pop-up menu,
browse for the file, and click Open.

To open the file system folder where your project
resides

Go to Dashboard > Project pane and right-click the
filename. Choose Open Containing Folder.

To open a design file with your chosen text editor

Go to Dashboard > Project pane and right-click the
filename. Choose Open with User Editor.

(Make sure you have set the path to your editor first in
File > Preferences > External text editor.)

To delete a file from your project

Go to Dashboard > Project pane and right-click the
filename. Choose Delete.

www.efinixinc.com

140

Appendix: Icon List

Dashboard Icons

Synthesize Place Route Generate Hex Stop
Bitstream
-3 0 H @ ®
00 U
e 4 9
Success g 1 i::q @
0 T /8
E
v & o O
. e 9
Warning % i-f
U= o | \01/
Disabled ;% ‘B '’ \')
= =[] _/

@ Toggle Automated Flow

General Icons Property Icons

7 Filter Expand Al
Q Search |§|—| Collapse All
@ General Tool Preferences E(:) Toggle Properties Panel

@ Help

(X) Exit

Project Icons
Open Project
New Project
Close project

m Edit Project

Choose Project Directory
Remove a File from a Project

Add a file to a Project

50 G

Flow Icons

@ Run Complete Flow ':' Route

E Synthesize E:E Place & Route @
O-m

G-a Place

Import Design & Constraint Files

@ Stop

Efinity Software User Guide

Log Icons
Q§ Message Browser

d§| Log Browser

H Save

O Results are out
of sync with settings

Generate Bitstream File

www.efinixinc.com 141

Efinity Software User Guide

Floorplan Icons

EEE View Floorplan @ Zoom In (fD Show Timing Delay

@ Show Cell Browser @ Zoom Out I:I Show All Nets

@ Show Cell Browser Filter +:+ Fit View I\\‘.\ Trace Nets (Open Net Tracer)
“E Toggle Floorplan Filter/lLegend < Show Fanin I(\ Clear Net Trace

7'5 Filter Floorplan View [Show Fanout @ World View (Dragon’s Eye View)
@ Floorplan Legend ._:'-) Show Timing Path Load Place and Route Data

Timing & Console Icons

6-) Toggle Timing Browser $® Lock Scrolling

% Toggle Tcl Command Console Toggle Console

@ Run Tcl Command ZT_| Clear Console

é% Clear Tcl Command Load Place and Route Data

Interface Designer Icons

»®? Interface Designer " Export GPIO Assignments Resource Assigner
|:|+ Add Block v Import GPIO Assignments |§| Toggle Instance View and Resource View
" Create a GPIO bus Ex Clear Design X Clear Resource
Delete Block d Check Design for Errors % Clear All Resources
E‘. Show or Hide Block Editor EI:» Export Settings ? Show/Hide Filter
E- Resource Assigner & Generate Constraints File ? Clear Filter
IE; Package Planner
Tools Icons
ﬁ IP Catalog 09 Key Generator SVF Player
ﬁ IP Editor & Randomly Generate PEM File 'M Open SVF File
@ Netiist Viewer Q= Select PEM File Z| Reload
% Show Dashboard @ Run
‘oY Step Over
@ Stop
Programmer Icons
Eﬁ) Programmer @r Add Image File DI:I Remote Hardware Server
Ig_“? Import JTAG Chain File (JCF) @x Delete Image File Advanced Device Configuration Status
ﬁi’ Export z Combine Image Files
,=’, Edit Header |m| Select Image File

www.efinixinc.com 142

Efinity Software User Guide

Debugger Icons

Debugger " Add Probe - Add Net
% Debugg Y ik

;&_\ Debug Wizard E Add Source —|_x Remove Net
3&+ Add Debug Core __,,i Remove Probe or Source ﬂ Active High
;&.x Remove Debug Core *& Import Debug Profile -|_F Active Low

@ Connect Debugger ('V Refresh USB Target ﬂ_ Toggle High
}72 Disconnect Debugger % Select Waveform File —B Toggle Low

Advanced Device Configuration Status

Package Planner Icons

(X) Exit €83 Show/Hide View Config ¥ Left Rotate
{3 Refresh @ World View (¥ Right Rotate
@ Help @ Zoom In Reset Orientation
@ Zoom Out @ Legend
+ . . oo .
+ + Fit to Window < ¢ Pin Browser
Show Bottom View ;;j Export Diagram

Show Package Top

[B +

www.efinixinc.com 143

Efinity Software User Guide

Revision History

Table 33: Document Revision History

Date

Version

Description

April 2024

13.5

Added bitstream support for F100 package for the Ti35 and Ti60 FPGAs.
Pinout is final for F100 package for the Ti35 and Ti60 FPGAs.
Q3 timing model is final for the Ti90, Ti120, and Ti180 FPGAs in the J484 package.

March 2024

13.4

Added F100 and F256 packages for the Ti35 and Ti6é0 FPGAs.
Added F256 package for the T35 FPGAs.

February 2024

13.3

Updated table of supported Titanium FPGAs.

February 2024

13.2

Added note in Generated Files-Testbench. (DOC-1691)

January 2024

13.1

Added Ti135 and Ti200 to device support and machine memory requirements.
(DOC-1660)

Added JTAG device IDs for Ti135, Ti200, and Ti375.

Added note explaining that you should make a backup of your existing project
before opening it in a newer software version because the project files are not
backwards compatible. (DOC-1632)

Added note about Windows %PATH% variable to
on page xii. (DOC-1687)

December
2023

13.0

Updated device support and new in v2023.

Updated machine memory requirements.

For Windows, a 64-bit operating system is required. 32-bit systems are not
supported.

Added explanation about the input and output numbers listed in the Core
Resoures section of the Result pane and in the <project>.place.rpt file.

You can open multiple Debugger windows by clicking the Debugger icon multiple
times.

Added information on how to reference Trion and Titanium VHDL primitive
libraries.

November
2023

12.2

Added bitstream support for G400 packages.
Added note to use only ASCII characters. (DOC-1522)

August 2023

121

Added G400 package support. (DOC-1393)

June 2023

12.0

Updated device support and new in v2023.

Added section about the Netlist Viewer tool.

Added section about the BRAM Initial Content Updater.

Updated description for Preferences dialog box.

Added topic on how to preserver place-and-route for a portion of your design.
Added additional information on design migration.

Added appendix describing all tools included with the Efinity software.

December

2022

Updated device support and new in v2022.2.

Added section on constraining routing manually.
EFX_COMBA4 not available in Trion FPGAs. (DOC-1074)
Added description of Debugger Options menu. (DOC-1029)

Added topics on how to constrain routing (beta).

www.efinixinc.com 144

Efinity Software User Guide

Date Version Description

September 10.1 Updated Project-Based Programming Options topic for new options.

2022 Updated PFGA support for Efinity patch 2022.1.226.1.9.

August 2022 10.0 Added new project-based programming option for 4-byte addressing.
Updated the available options for theProject Editor > Place and Route tab.
(DOC-889)
Clarified the instructions for instantiating debug cores. (DOC-883)
Clarified that when using internal reconfiguration you must use Programmer
> Combine Multiple Image Files > Image Type > Internal Flash Image option.
(DOC-874)
Added topic on verifying configuration with the Programmer.
When editing the bitstream header, do not remove any auto-generated data or the
Programmer may not recognize the bitstream.
Removed support for C232HM-DDHSL-0 cable. (DOC-860)
Added a topic on the concurrent debug feature.
Updated supported IP cores.
Updated Installing USB Drivers topics.
Updated supported IP cores.

June 2022 9.2 Pointed to new sourceforge location for GTKWave download. (DOC-797)

April 2022 9.1 Added Program using a JTAG Bridge topic.
Added topic on combining a bitstream and other data into a single file for
programming.
Re-organized topics about working with bitstreams.
Moved topics on installing USB drivers and connecting programming hardware to
the appendix.
The minimum operating frequency of the debug cores is 2 times the JTAG TCK
frequency. (DOC-754)
Added CORDIC core to the list of supported IP (included with Efinity patch
v2021.2.323.2.18).

December 9.0 Added Efinity Hardware Server documentation. (DOC-598)

2021 Added support for FTDI FT4232H Mini Module. (DOC-597)
Added the JTAG USERCODE option to the Project-Based Programming Options
topic.
With the Efinity software v2021.2 and higher, you must use .hex for SP| and .bit for
JTAG. (DOC-638)
When importing an IP configuration .json file, specify the module name in the IP
Configuration wizard. (DOC-611)
Updated machine memory requirements (RAM).
You may need to re-compile when upgrading from an older version.
Added appendix of project file definitions.

November 8.2 Added instructions on using the Titanium bitstream security features.

2021

Added instructions for using the Efinity SVF Player.

Described how to export a bitstream to serial vector format (.svf).
When using the stand-alone Programmer on 64-bit Windows, install both the x86
and x64 libraries. (DOC-576)

Added instructions for importing IP cores. (DOC-584)

www.efinixinc.com 145

Efinity Software User Guide

Date Version Description

October 2021 8.1 Added topic on flash programming modes.
Added topic on the Titanium configuration status registers. (DOC-487)
Added note that FTDI Chip FT2232H Mini Module supports 3.3 V I/0 voltage only.
(DOC-495)
Added description of command to convert bitstream files from .hex to .bin to
Exporting to Raw Binary Format topic. (DOC-527)
JRE required for running the DMA Controller in the IP Manager. (DOC-549)
Added a note that you need to specify the path when simulating with testbench
files that are not in the project's root directory. (DOC-468)

June 2021 8.0 Added support for Titanium family.
Supported Ubuntu version is v18.04 or higher. v16.04 is end of life. (DOC-433)
Added the Java runtime environment as a software requirement for configuring the
Sapphire SoC in the IP Manager.
Described more detail on the Enable Initialized Memory in User RAMs option in the
Project Editor > Bitstream Generation tab. (DOC-458)
Added table of IP cores supported by family.
Updated the FTDI command-line programming topic. Added the command-line
programmer configuration mode options. (DOC-430)

January 2021 7.1 Corrected JTAG chain file code example. (DOC-368)

December 7.0 Added a new chapter on using the IP Manager.

2020 Added instructions on using VHDL libraries.
Explained how to resize the Project, Netlist, and Result panes.
Described the context-sensitive menus in the Project, Netlist, and Result panes.
Added requirement to install the Microsoft Visual C++ 2015 x86 runtime library for
the standalone Programmer. (DOC-315)
Updated instructions for performing JTAG programming at the command line.
(DOC-323)
Corrected JTAG Mini Module pin names for T4, T8, T13, T20BGA256, and
T20BGA169 connection setup.
Clarified Undefined clock domain signals in the Debug Wizard.
Added table of files shown in the Result pane. (DOC-277)
Interface scripting file now supports PLL.

November 6.1 Updated instructions on installing Windows USB drivers.

2020

Added FTDI cable and module connection for T20BGA400.
Added JTAG device IDs for T20BGA324 and T20BGA400.

Removed the FTDI2232 from About USB Drivers topic making the description
applicable to other FTDI chips.

Corrected the command for using --pgm_opts with the command-line
programmer.

www.efinixinc.com 146

Efinity Software User Guide

Date Version Description

June 2020 6.0 Updated for v2020.1 release.
Windows 7, Red Hat v6, and CentOS v6 no longer supported.
Removed the chapters on SDC constraints and Tcl commands. This content is now
in the Efinity Timing Closure User Guide.
Added a topic on Efinity synthesis.
Added a topic on project migration.
Updated Programmer content to reflect new GUI and features.
Consolidated and updated content on installing USB drivers for boards, C232HM-
DDHSL-0 cable and FTDI FT2232H module.
Added support for FTDI FT2232H module for JTAG programming.
Added a topic on the various ways to view messages and logs.
Added topic on the Interface Designer/s Resource View.
Added a topic on using an API for scripting an interface design.
Added topic on Interface Scripting File (.isf).

December 5.0 Updated for v2019.3 release.

2019 Added chapter on using the Debugger.
Added explanation that 2 unassigned pairs of LVDS pins should be located
between and GPIO and LVDS pins in the same bank.

August 2019 4.5 Updated for v2019.2 release.
Added information on enhanced Resource Assigner.
Added information on JTAG programming.
Added command-line instructions for using the Windows efx_run.bat file.

April 2019 4.4 Updated for v2019.1 release.
Added information on new project manager capabilities.
Updated set false path usage.

January 2019 4.3 Updated for v2018.4 release.
Added more information on simulation and waveform viewing.
Added instructions for installing Windows USB driver.
Updated Programming information.

October 2018 4.2 Added a note pointing to AN 006: Configuring Trion FPGAs for more information
about using multiple images and daisy chaining for configuration.
Added Python 3 to the software requirements list as an option. For Windows, if
you do not have a full version of Python, the .py extension may not be correctly
associated with Python.

June 2018 4.1 Removed Python requirement; as of this release, Python is included with the
software.
Added the requirement that Windows users install the Microsoft Visual C++ 2015
x64 runtime library.

April 2018 4.0 Updated for v2018.0 release.
Added “Constraining Logic and Assigning Pins” topic, which replaces section on
fine-tuning your design.
Updated information on device configuration.

Novenber 3.1 Minor updates.

2017

May 2017 3.0 Updated for v2017.0 release.

Described new Floorplan Editor tools.

Updated SDC constraint information.

www.efinixinc.com 147

Efinity Software User Guide

Date Version Description
May 2016 2.0 Updated for v2016.0 release.
Documented the Timing Browser.
Documented the Tcl Command Console and available Tcl commands.
Updated SDC constraint information.
July 2015 1.1 Minor updates.
May 2015 1.0 Initial release.

www.efinixinc.com

148

	Contents
	Figures
	Tables
	Introduction
	New in v2023.2
	Using an Existing Project with a New Software Version
	Where to Learn More

	Hardware and Software Requirements
	1. Setting Up
	Efinity Quick Start
	Setting General Tool Preferences
	Auto-Load Place-and-Route Data

	Efinity Main Window

	2. Managing Projects
	Project Editor
	Project Pane
	Migrating a Project to another FPGA
	Using VHDL Libraries

	3. Running the Tool Flow
	Run the Flow with the Dashboard Controls
	Run the Flow from the Command Line
	About Efinity® Synthesis
	Netlist Pane
	Netlist Viewer (Beta)
	Opening the Netlist Viewer
	Zooming
	Highlighting and Marking
	Viewing the Netlist Hierarchy
	Finding Elements
	Viewing a User-Defined Element
	Viewing an Element's Connectivity
	Viewing the Action History

	Viewing Messages and Logs
	Result Pane
	Viewing Place-and-Route Results

	4. Using the IP Manager
	Supported IP Cores by Family
	Using the IP Configuration Wizard
	Generated Files
	Instantiating IP in Your Project
	Managing IP in Your Project
	IP Settings File
	Getting Updated IP

	5. Constraining Logic and Assigning Pins
	About the Interface Designer
	Get Oriented
	Using the Resource Assigner
	Resource View
	Importing and Exporting Assignments
	Interface Scripting File
	.csv File for GPIO Blocks

	Scripting an Interface Design
	Viewing the Package Pinout
	Selecting a Pin
	Browsing for Pins

	Constraining Logic and Routing Manually (Beta)
	Tiles
	Working with Primitives
	Enabling Manual Assignments
	Assignment Rules
	Creating a Location Assignment File
	Constraining Routing Manually (Beta)
	Routing Constraint Flow
	Enabling Routing Constraints
	Generate .rcf Template
	Creating a Routing Constraint File
	Best Practices for Constraining Routing

	6. Analyzing Timing
	7. Simulating
	Simulation Models
	Changing the Default Testbench Names
	Simulate with the iVerilog Simulator
	View Waveforms

	Simulate with the ModelSim Simulator
	Simulate with the NCSim Simulator

	8. Debugging
	Profile Editor Perspective
	Virtual I/O Debug Core
	Logic Analyzer Debug Core

	Debug Wizard
	Debug Perspective
	Logic Analyzer Perspective
	Understanding Capture Control

	Virtual I/O Perspective

	Debugger Options
	Concurrent Debugging
	Resource Usage
	Disable the Debug Core

	9. Configuring an FPGA
	FPGA Configuration Modes
	Flash Programming Modes
	About the Programmer GUI
	Edit the SPI Active Clock

	Generate a Bitstream (Programming) File
	About the BRAM Initial Content Updater
	Updating the BRAM Initial Content
	Using the Example Files
	Command-Line Interface

	Working with Bitstreams
	Edit the Bitstream Header
	Bitstream Compression
	Export to Raw Binary Format
	Export to .svf Format
	Convert to Intel Hex Format at the Command Line
	Combine Bitstreams and Other Files

	SPI Programming
	Program a Single Image
	Program Multiple Images (CBSEL)
	Program Multiple Images (Internal Reconfiguration)
	Program Multiple Images (Bitstream and Data)
	Program a Daisy Chain

	JTAG Programming
	JTAG Device IDs
	Program a Single Image
	Program Using a JTAG Chain
	Program using a JTAG Bridge (New)
	Program using a JTAG Bridge (Legacy)
	JTAG Programming with FTDI Chip Hardware
	FDTI Programming at the Command Line

	Using the Command-Line Programmer
	Project-Based Programming Options
	Configuration Status Register
	Verifying Configuration with the Programmer
	Securing Titanium Bitstreams
	Using the Efinity Bitstream Security Key Generator
	Blowing Fuses with the SVF Player
	Enabling Security for Your Project
	Workflow for Using Security Features
	Verifying Security Settings

	10. Working with JTAG .svf Files
	Using the Efinity SVF Player

	11. Working with Remote Hardware
	Appendix: Installing USB Drivers
	Installing the Linux USB Driver
	Installing the Windows USB Driver

	Appendix: Connecting Programming Hardware
	SPI Programming Connections
	JTAG Programming Connections (Trion FPGAs)
	JTAG Programming Connections (Titanium FPGAs)

	Appendix: Efinity Tools
	Appendix: Efinity Project Files
	Efinity Source Files for Version Control
	Bitstream Generation
	<project>.hex
	<project>.bit
	<project>.pgm.out

	Debugger
	debug_profile.wizard.json
	dbg_top.v
	debug_TEMPLATE.v

	Interface Designer
	<project>.peri.xml
	<project>.interface.csv
	<project>.pt.rpt
	<project>.pinout.rpt
	<project>.pinout.csv
	<project>.pt_timing.rpt
	<project>.pt.sdc
	<project>_or.ini
	<project>_template.v

	IP
	<module>.define
	settings.json
	<module>_tmpl.v
	<module>_tmpl.vhd
	<module>.v

	Placement
	<project>.place
	<project>.place.rpt
	<project>.place.out

	Project
	<project>.sdc
	<project>.xml

	Routing
	<project>.pnr.rpt
	<project>.route.rpt
	<project>.route.out
	<project>.timing.rpt

	Synthesis
	<project>.map.v
	<project>.map.rpt
	<project>.map.out
	<project>.res.csv

	Appendix: Shortcuts
	Appendix: Icon List
	Revision History

