“EFINIX.

Efinity” Synthesis User Guide

UG-EFN-SYNTH-v3.8
December 2023
www.efinixinc.com

Copyright © 2023. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Efinity Synthesis User Guide

Introduction 4
SystemVerilog and Verilog HDL SUPPROM.......cciiiiiniinineinceneenetnee ettt 4
VHDL SUPPOM .ttt ettt et a et 4
SPECifYiNng LaNGUAGE SUPPOM . .uuiuiiieieiiiirieieie ettt ettt 4
SYNTNESIS ProjJECt SETLINGS. i iviiitiiitiieieet ettt sttt sttt sttt 5
AN = =y = o Y=Y SRS 6

Design Guidelines 7
D P bbbt h b b h e h etk h et bbbttt b et b et bt 7

INTEITING DSPciiiiiiictieteete ettt bbbttt b et bt b ese b ese b ese b ete b ese b ese b esebens 7
Using the DSP BlIoCk EffECHIVEIY.....cviirieiieiiieiiieteieete ettt bbbt 8
Closing Timing with High DSP Block Utilization........c.ccceuevieieieiiiiiceeeeee e 9
o T o R Y o -3 RO RPN 10
FliP-FIOP REPOMING .o titeieiieictt ettt ettt ettt st et seste b e b e b e s enseseeneenens 11
FlIP-FIOP GUIEINES....eeuieiieiieiiciicie ettt ebe bbb ess s enas 11
LT CNES bbbttt ettt 11
RAM ettt btttk et h et h bt btk etk ekt h et b bt h et bt b et b et b et ne e 12
INTEITING RAM. ...ttt b ettt ettt b st b e s b se b es e b ese b ese b ese b eseesens 12
Estimating BlOCk RAM RESOUITES......cuoieiieieiiciieieeieieieeee sttt ene s 17
INFEITING STt REGISTEIS. ... viiiieiciiee ettt se s 19
Tr-SHAtE BUTTEIS...ceieiecceee ettt ettt ettt et et e et et e s e e e eaeereas 20

Synthesis Options 21
Example: --infer-clk-enable. 24
Example: --create-onehot-fSMs OptioN......cococeioriiiiiieet ettt 24
Example: --allow-CoNSt-ram-iNd@X.......cceiririiieiiiriieieiirectete ettt 25
RETIMING e e 26

Synthesis Pragmas 26

Synthesis Attributes 28
E 1Y A Lol ¢ =T TSROSO SURURPRUURTPRRRIt 28
SYN _EXITACT_NADIE ..ttt ettt be bbbt se e e 28
S KB Pttt ettt et ettt e bbbt nt sttt R ek e b e b en b entestese et e eteebeebentenbeneeneeneenn 29
SYNI TSIV . etteiteeteeteettente et eat ekt ett et e et e st e et ent et e eae e bt es e nsees e en b e st eet et e eh e en bt Rt en b ekt e nt e bt enee bt eneen b e st entenes 29
SY N _TAMIAECOM . tiitititeeietetieit ettt ettt ettt et ettt e ebe et e eb e bessestestes s eseeseebessebestesseseaseeseesesesbansensenseseaneesens 30
AT =100 151077 L= YOO OSSOSO PEUSRUSU SRR 30
SY N _TOMNSEY I .ttt ettt ettt ettt ettt e b e st e st e sttt be et e b e b et e st en b st eteebeebeebe b e s enseseeneens 30
]l < T = Y0 o) SO OO SUU SRR 31
SYN _STISTY I ettt ettt b et b e b et s b st et et e te b be b e b st st eneenn 31
ErANS|IAtE 0N, trANSIATE _OFf et e e e 32
LT U I=T =Y e 1] o OO OO USSR 32

Using VHDL Libraries 33
Referencing Efinix VHDL LiDrari@s. ..ottt 34

VHDL 2008 Support 35
Relational Operators (9.2.7). . ettt sttt ae et et e e st eneenea 35
(O] oo T1il oYl @ =Y =N o Yol 20 TSSO SR 35
Vector AGgregates (9.3.3). et 36
Conditional and Sequential Statements (10.5.3, 10.5.4)...cooiiiiiiiiee e 36
Case Statements with Don't Care (10.9)... oot 36
SENSIIVITY LIST (11,3)ittt ettt ettt st et b e ettt be et bt et e b s nee 36

www.efinixinc.com

Generate StatemMENTS (T171.8). i ettt ettt e et e e et e e eae e e eaaeeeeaeeeeaeeas 37

Expressions in Port Maps (171.8)..c..cc ettt 37
Enhanced String LIiterals (15.8). . ittt 37
BlOCK CoOmMMENTS (15.9). ittt ettt et ettt eaaeeaaeeaeesaeesaae e 37
Fixed-Point HandliNg (16.70)....c.c ettt eaenes 38
Minimum() and Maximum() FUNCLIONS (T6.3).....oiiiiiiiieieeeeeee et 38
Where to Learn More 38

Revision History 39

Efinity Synthesis User Guide

Introduction

The Efinity” software is a complete tool for creating RTL designs. The first stage after you
complete your RTL design is synthesis. During synthesis, the compiler takes your design and
turns it into a gate-level netlist.

The software supports the synthesizable subset of the following languages:
* SystemVerilog and Verilog HDL
e VHDL

* Mixed languages (any combination of the above)

SystemVerilog and Verilog HDL Support

The Efinity” software supports the complete IEEE-1800 standard (2017, 2012, 2009, 2005) and
includes regular Verilog (IEEE 1164).

* Supports full SystemVerilog IEEE 1800

* Supports Verilog 2001 and Verilog 1995

* Provides 100% language coverage for analysis
* Supports mixed-language with VHDL

VHDL Support

The Efinity” software supports supports the complete IEEE-1076 standard (2008, 1993, 1987)
for analysis.

* Supports all of VHDL IEEE 1076

* Includes specialized packages for mixed -1993 / -2008 support

* Provides 100% language coverage for analysis

* Supports mixed-language with SystemVerilog and Verilog HDL
 Supports VHDL libraries (Efinity” software v2020.2 and higher)

Specifying Language Support

You can set the language support at the project level or at the file level. In both cases, you
make this setting in the Design tab of the Project Editor dialog box. Open the Project Editor
by choosing File > Edit Project or by clicking the toolbar button.
Verilog HDL Choices VHDL Choices

verilog_2k vhd|_2008

verilog_95 vhd|_1993

SystemVerilog2005

SystemVerilog2009

www.efinixinc.com 4

Efinity Synthesis User Guide

Synthesis Project Settings

You set project-specific synthesis options in the Project Editor > Synthesis tab.

Table 1: Synthesis Project Settings

Setting

Description

Work Directory

Specify a custom directory or use the default (work_syn).

Generate post synthesis netlist

Choose whether the software should create this netlist.

Default: On
Synthesis Options See on page 21.
Include Dir Specify directories to include in your project. If you use the IP Manager

to add IP, the ip/<module> directory is listed here. The software searches
these locations when you use include statements.

Dynamic Parameter

Use this area to add parameters and values that apply to the top-level
module or entity in your project. The value passed into the Dynamic
Parameter field must be the same format as that you would use for
any variable in VHDL or Verilog HDL. For example, string should be in
quotation marks.

Verilog “define Macro

Use this area to add ‘define macros to your project.

Some FPGA EDA tools automatically create a SYNTHESIS macro. If you
want to use the same behavior in the Efinity software, you need to create
it here. For example, click the Add Verilog "define Macro button and then
enter SYNTHESIS in the NAME field and 1 in the Value field. Then if you
want to include simulation only code, use this format:

‘ifndef SYNTHESIS
$display(...)

. some other simulation directives ...
‘endif

You can also use the translate_on and translate_off directives to
accomplish similar functionality.

www.efinixinc.com 5

Efinity Synthesis User Guide

Netlist Pane

The Netlist pane, which is under the Dashboard, shows the design hierarchy and helps
you browse through the elaborated design and synthesized netlist. You can only view the
synthesized netlist after you have performed synthesis. You can right-click the items in the
Netlist pane to open a context-sensitive menu with shortcut actions.

Tip: In Efinity® v2020.2 and higher you can resize the Netlist pane. Grab the blank space between the Netlist pane
and the Console and drag to resize.

Figure 1: Using the Netlist Pane
Perform

Elaboration

Project | Netlist | Result

Perform Analysis R
Synthesize

[

g a £ <

Hierarchy | Elaborated | Synthesized

Leaf Cells =
Nets

NetBus: Oled(4)

NetBus: Fled(4)

NetBus: Sled(4)

NetBus: Sled_OE(4)

NetBus: n12(4)

NetBus: n26(4)

NetBus: n31(4)

NetBus: n45(4)

NetBus: n50(4) =

Property = Value
NetBus Fled
Size 4

www.efinixinc.com 6

Efinity Synthesis User Guide

Design Guidelines

The following sections provide some general design guidelines.

DSP

Titanium FPGAs have DSP Blocks that support arithmetic functions such as multiplication,
addition, subtraction, accumulation, and 4-bit variable right shifting. The full functionality of
the DSP Block is represented with the EFX _DSP48 primitive. Additionally, the DSP Block
supports a concept of fracturing, in which the software packs two or more multiplications
into a single DSP Block. These fractured blocks are represented with the EFX DSP24 and
EFX _DSP12 primitives.

@ Note: Refer to the Quantum?® Titanium Primitives User Guide for information on the DSP Block primitives.

Inferring DSP

The Titanium DSP Block supports multiply, add, shift, and cascade functions. The following
examples show code to infer them.

Figure 2: Inferring Multipliers

When inferring multipliers, synthesis uses different primitives, depending on the width:
° < =4 infersan EFX DSP12

° < = 8infers an EFX DSP24

° <= 19,18, infers an EFX DSP48

‘define AWIDTH 4
‘define BWIDTH 4
module mult(a, b, x);
input signed [AWIDTH-1:0] a;
input signed [BWIDTH-1:0] b;
output signed [AWIDTH+ BWIDTH-1:0] x;

assign x = a * b;
endmodule

Figure 3: Inferring Multiply-Accumulate

This multiply-add can be packed into a single EFX DSP48 primitive because the width of C
fits into tbe C port.

module dsp multadd s(a, b, c, o);
input signed [17:0] a;
input signed [17:0] b;
input signed [17:0] c;
output signed [35:0] o;
wire signed [35:0] p;

assign p

= a * b;
assign o = p + c;

endmodule

www.efinixinc.com 7

Efinity Synthesis User Guide

Figure 4: Inferring Multiply-Accumulate with Cascading

Generally, a multiply-add cannot be packed into a single EFX DSP48 primitive because the
width of C does not fit into the C port. With the attribute, synthesis uses the
A:B:C cascade of another DSP Block to produce a multiply-accumulate.

module dsp multadd s(a, b, ¢, 0o);
input 51gned [I7:0] a;
input signed [17:0] b;
input signed [35:0] c;

output signed [35:0] o;

wire signed [35:0] p;

(* syn use dsp = "yes" *) wire [35:0] sum;
assign p = a * b;

assign sum = p + c;

assign o = sum;

endmodule

Figure 5: Inferring Multiply-Accumulate with Output Feeding Back to Accumulate

The feedback path can take output of the DSP Block and feed it back for accumulation. You
enable it with the attribute.

module dsp multadd s(a, b, clk, o);
input signed [17:0] a;
input signed [17:0] b;
input clk;

output signed [35:0] o;

wire signed [35:0] p;
(* syn use dsp = "yes" *) reg [35:0] sum;

assign p = a * b;

always @ (posedge clk) begin
sum <= p + sum;

end

assign o = sum;

endmodule

Using the DSP Block Effectively

Fracturing lets the synthesis tool optimize how it packs operations into the DSP block. The
packing density is the percentage of DSP Blocks that are fully occupied with EFX_DSP24
and/or EFX_DSP12 primitives. Theoretically, two EFX_DSP24 primitives or four

EFX DSP12 primitives pack into one EFX DSP48. In practice, there are some restrictions
on how well they can pack: legality constraints and packing quality constraints.

Legality Constraints

Synthesis can only pack EFX_DSP24 and EFX_DSP12 primitives into the same EFX DSP48
if they are the same except for the datapath inputs/outputs. Generally:

* Clock, CE, RST, SHIFT ENA, and OP inputs to the EFX DSP24 and EFX_DSP12 to
be packed together must be identical nets. You can use VCC, GND, or disconnected for
these ports, as long as they match.

* All DSP primitive Verilog HDL parameters must match, including registered ports
(A_REG, B _REG, W_REG) and the mode.

If you are not happy with the DSP Block packing density, you need to modify your design to
allow them to pack more effectively.

www.efinixinc.com 8

Efinity Synthesis User Guide

Quality Constraints

The software avoids packing random DSP Blocks together because it can have a negative
impact on fypax. Instead, it tries to pack DSP blocks that are logically related—for example,
ones that share neighbouring blocks and input nets—resulting in the best clustering that fits
on the FPGA comfortably.

Improving Packing Density
If you want better DSP Block packing, there are some things you can try:

* Tweak the design such that more DSP blocks have identical control signals and mode
settings, and are thus packable. For example, try to avoid letting synthesis infer unique
clock enables for every EFX_DSP24 and/or EFX DSP12 primitive.

 Setting the synthesis options --dspinout-regs-packing, --dsp-output-regs-packing, and --dsp-
mac-packing to O may improve packing density at a cost of increased flipflop and adder
consumption. You set these options in the Project Editor > Synthesis tab.

You can also use these reports to help with debugging:

* place.rpt—This report includes a DSP packing summary that shows the number of DSP
Blocks that would be packable if synthesis ignored control signal and attribute-related
legality constraints. This number helps you understand whether tweaking the design to
improve the packing density is even feasible. In practice, you can get about 50% packing
improvement by tweaking the design. The report also lists the control set and attributes
for each DSP Block. To be packed, EFX DSP24 and EFX DSP12 primitives must have
matching control sets and attributes. Look for DSP Blocks that do not share control sets
or attributes with other blocks, and then look at dsp_control_sets.csv for more detailed
information on how to potentially adjust them.

* dsp_control_sets.csv—This file is a table in .csv format that lists every control signal
and attribute for every DSP Block. You can use a spreadsheet application to review the
data to identify EFX DSP24 and EFX DSP12 primitives that are inferred with unique
settings that make packing illegal.

Closing Timing with High DSP Block Utilization

If your design has a >50% of the DSP Blocks implemented with EFX_DSP24 or

EFX DSP12 prlmmves, the fyrax can vary significantly depending on the placement seed.
Therefore, it is a good idea to try 3 or 4 seeds to see if it helps with timing closure, more so
than for a typical design.

Learn more: Refer to the for information on how to perform seed
sweeping.

www.efinixinc.com 9

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Flip-Flops

Efinity Synthesis User Guide

The Efinity” synthesis tool recognizes flip-flops (or registers) while processing the RTL. Flip-
flops can have these control signals:

Rising or falling edge clocks
Asynchronous set/reset

Synchronous set/reset
Clock enable

Figure 6: EFX_FF Symbol

EFX_FF

D — Q

CE —

CLK —

SR —

Table 2: EFX_FF Ports

Port Direction Description
D Input Input data.
CE Input Clock Enable.
CLK Input Clock.
SR Input Asynchronous/synchronous set/reset.
Q Output Output data.

Flip-flops with active-high synchronous resets and active-high clock enables are described as
sequential processes in VHDL.

library IEEE;
use IEEE. STD_LOGIC_1164 .ALL;

entity D FF VHDL is

port (clk, rst, ce, d : in std logic; g : out std logic);

end entity D FF VHDL;

architecture Behavioral of D _FF VHDL is

begin
process (clk) is
begin
if rising edge(clk) then
if (rst='1l') then

q <= 101;
elsif (ce='l') then
q <= d;
end if;
end 1if;

end process;
end architecture Behavioral;

www.efinixinc.com

10

Efinity Synthesis User Guide

They are described with an always statement in Verilog HDL.

module D FF VERILOG (d, ce, clk, reset, out);
input d;
input ce;
input clk;
input reset;
output out;
reg q;
always @ (posedge clk) begin
if (reset) g <= 1’'b0;
else if (ce) g <= d;
end
assign out = g;
endmodule

Flip-Flop Reporting
The synthesis report (map.rpt) shows flip-flop utilization and optimization. For example:

Equivalent flip-flop removal reporting:
FF|OPT : Flip-flop optimization by equivalence checking

@ "./zipcpu/idecode.v (350)" removed instance : thecpu/instruction decoder/dff 195/i7
@ "./zipcpu/idecode.v (350)" representative instance : thecpu/instruction decoder/dff 196/i7

Clock Enable reporting:

Total number of enable signals: 1199

Enable signal <vcc>, number of controlling flip flops: 256

Enable signal <o dbg stall>, number of controlling flip flops: 35
Flip-flop resource summary:

Resource Summary (begin) ### ###

EFX FF : 35132

Flip-Flop Guidelines

For best optimization during synthesis, follow these guidelines:

* Avoid using flip-flops with asynchronous set/reset. These structures limit the synthesis
tool's ability to optimize the code.

* Avoid flip-flops with both a set and a reset signal. The Trion"” and Titanium flip-flop only
has a single set/reset signal. Therefore, to construct a register with both a set and reset
signal, the synthesis must infer additional control logic.

Latches

If you do not assign an output for all possible conditions in an i f or case statement (that

is, incomplete assignment), the software infers a latch. Trion® and Titanium FPGAs do not
support latches natively in hardware. The Efinity” synthesis tool infers look-up tables (LUTSs)
to provide latch behaviour.

Because latches are turned into LUTs, they can use up resources you could be using for
something else. So you want to avoid them when possible.

www.efinixinc.com 11

Efinity Synthesis User Guide

RAM

Efinix® FPGAs have embedded RAM blocks that support simple dual-port memory and true

dual-port memory. The read and write ports are registered. Asynchronous memory reads

(e.g- in asynchronous FIFO or buffer implementation) can be bit-blasted into logic but may

cause high device resource utilization. If you do not use the write port, the primitive acts as a

ROM.

* Trion FPGAs—During synthesis, the memory is mapped to EFX RAM 5K (simple dual
port) or EFX DPRAM 5K (true dual port) primitives.

* Titanium FPGAs—During synthesis, the memory is mapped to EFX RAM10 (simple dual
port) or EFX DPRAMI0 (true dual port) primitives.

The following sections provide code example for inferring these memories.

Learn more: Refer to the for detailed information on the
EFX_RAM_5K and EFX_DPRAM_5K primitives.
Refer to the for information on the EFX_RAM10 and

EFX_DPRAM10 primitives.

Inferring RAM

The following sections provide example for simple and true dual-port inferencing.
Simple Dual-Port Memory Examples

The following example infers a 512 x 8 RAM. Because both writes and reads are performed
with a blocking statement and the write occurs before the read in the always block, the
software infers a simple dual ported RAM in WRITE FIRST mode.

Figure 7: Simple Dual-Port RAM in WRITE_FIRST Mode

module ram512x8 sp(wdata, addr, clk, we, rdata);
parameter AWIDTH OF]
parameter DWIDTH 8;
localparam DEPTH 1 << AWIDTH;
localparam MAX DATA = (1<<DWIDTH)-1;
input [DWIDTH-1:0] wdata;
input [AWIDTH-1:0] addr;
input clk, we;
output reg [DWIDTH-1:0] rdata;

reg [DWIDTH-1:0] mem [DEPTH-1:0];

// Blocking Statement and order indicates write before read
always@ (posedge clk) begin
if (we) begin

mem[addr] = wdata;
end
rdata = mem[addr];
end
endmodule

If the read and write clocks are different, the software configures the memory primitive as
READ_UNKNOWN. That is, if you read and write to the same address at the same time,
the read data is indeterministic.

www.efinixinc.com 12

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM

Figure 8: Simple Dua

module ram512x8 sp(
parameter AWIDTH
parameter DWIDTH
localparam DEPTH
localparam MAX D
input [DWIDTH-1:
input [AWIDTH-1:
input rclk,
output reg [DWID

reg [DWIDTH-1:0]

// different rea

Efinity Synthesis User Guide

I-Port RAM in READ_UNKNOWN Mode

wdata, addr, rclk, re, wclk, we, rdata);
OF
8;
= 1 << AWIDTH;
ATA = (1<<DWIDTH)-1;
0] wdata;
0] addr;
re, wclk,

TH-1:0]

we;
rdata;

mem [DEPTH-1:0];

d and write clock, forces READ UNKNOWN mode

always@ (posedge wclk) begin

if (we) begin

mem [addr]
end

end

always@ (posedge

= wdata;

rclk) begin

if (re) begin
rdata = mem[addr];
end
end
endmodule

Figure 9: Simple Dual-Port RAM with Byte Enable (Verilog HDL) (Titanium)

// 1l6-bit wide,

512 depth, byte-enabled

// fits into 1 Titanium 10K blockram
module ramlO bel # (

);

reg

wrAddressWidth =
wrDataWidth = 16,
wrMaskWidth = 2,
rdAddressWidth =
rdDataWidth = 16

parameter
parameter
parameter
parameter
parameter

integer
integer
integer
integer
integer

9, // 512 depth

// 16-bit wide

9,

input
input
input
input
input
input

wr_clk,

wr_en,

[wrMaskWidth-1:0] wr mask,
[wrAddressWidth-1:0] wr addr,
[wrDataWidth-1:0] wr_data,

rd clk,

input rd en,

input [rdAddressWidth-1:0] rd addr,
output [rdDataWidth-1:0] rd data

[wrDataWidth-1:0] ram block [(2**wrAddressWidth)-1:0];

integer i;
localparam COL WIDTH = wrDataWidth/wrMaskWidth;

always @

(posedge wr_clk) begin
if (wr_en) begin
for (i=0;i<wrMaskWidth;i=i+1) begin
if (wr mask[i]) begin // byte-enable

ram _block[wr_addr] [1*COL_WIDTH +: COL_WIDTH] <=

wr_data[i*COL WIDTH +:COL_WIDTH];

end

reg

end
end
end

[rdDataWidth-1:0] ram rd data;

always @ (posedge rd clk) begin

end
assign rd data =

if (rd_en) begin
ram _rd data <= ram block[rd addr];
end

ram_rd _data;

endmodule

www.efinixinc.com 13

Efinity Synthesis User Guide

Figure 10: Simple Dual-Port RAM with Byte Enable (VHDL) (Titanium)

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.NUMERIC STD.ALL;

-- 512 x 32, with 4 byte-enable signals

entity Memory is
generic (ADDR WIDTH: integer := 9);
Port (DBOut : out STD_LOGIC_VECTOR (31 downto 0);
DBIn : in STD LOGIC VECTOR (31 downto 0);
AdrBus : in STD_LOGIC VECTOR (ADDR_WIDTH—l downto 0);
ENA : in STD LOGIC;
WREN : in STﬁ_LOGIC_VECTOR (3 downto 0);
CLK : in STD LOGIC
)i
end Memory;

architecture Behavioral of Memory is

constant SIZE : natural := 2**ADDR WIDTH;
type tRam is array (0 to SIZE-1) of STD LOGIC_VECTOR (31 downto 0);
subtype tWord is std logic vector (31 downto 0);

signal ram : tRam;
signal DOA,DIA : tWord;
signal WEA : STD LOGIC VECTOR (3 downto O0);

begin
DIA<=DBIn;
DBOut<=DOA;
WEA<=WREN;

process (clk)
variable adr : integer;

begin
if rising edge(clk) then
if ena = 'l' then
adr := to_integer (unsigned (AdrBus));
for i in 0 to 3 loop
if WEA(i) = '"1l' then
ram(adr) ((i4+1) *8-1 downto 1*8)<= DIA((i+1l)*8-1 downto i*8);
end 1if;
end loop;
DOA <= ram(adr);
end 1if;
end 1if;

end process;

end Behavioral;

www.efinixinc.com 14

Efinity Synthesis User Guide

True Dual-Port Memory Examples

In true dual-port RAM, the two ports have independent read and write functions. Each port
supports different write modes. The following example shows how to implement a 512 x 8
RAM block with READ FIRST write mode for port A and WRITE FIRST mode for port
B.

module ram512x8 tdp mix (wdataA, addrA, clkA, weA, rdatahA, wdataB, addrB, clkB, weB, rdataB);
parameter AWIDTH 9;
parameter DWIDTH 8;
localparam DEPTH = 1 << AWIDTH;
localparam MAX DATA = (1<<DWIDTH)-1;

input [DWIDTH-1:0] wdataA, wdataB;
input [AWIDTH-1:0] addrA, addrB;

input clkA, weA;

input clkB, weB;

output reg [DWIDTH-1:0] rdataA, rdataB;
reg [DWIDTH-1:0] mem [DEPTH-1:0];
integer i;

initial begin
// The memory is initialized with
// decreasing values startingfrom MAX DATA
for (i1=0;i<DEPTH;i=i+1)
mem[i] = MAX DATA - i;
end

always@ (posedge clkA) begin
// Use blocking assignments to for read-first
rdataA = mem[addrA];
if (weA) begin
mem[addrA] = wdataA;
end
end

always@ (posedge clkB) begin
// Use blocking assignments to force write-first
if (weB) begin

mem[addrB] = wdataB;
end
rdataB = mem[addrB];
end
endmodule
Initializing RAM

Initialize the memory content with the Verilog HDL $readmemh or $readmemb routines.
Figure 11: Initializing RAM in Verilog HDL

module ram 256x16 (wdata, waddr, wclk, we, raddr, rclk, re, rdata);
localparam addr_width 8;
localparam data width 16;
input [data width-1:0] wdata;
input [addr width-1:0] waddr, raddr;
input wclk, we;
input rclk, re;
output reg [data width-1:0] rdata;

reg [data width-1:0] mem [(1<<addr width)-1:0];

integer i
initial begin
// Initialize memory with external file
Sreadmemh ("ram256x16b.inithex", mem) ;
end

always@ (posedge wclk) begin

if (we)
mem[waddr] <= wdata;
end
always@ (posedge rclk) begin
if (re)
rdata <= mem[raddr];
end

endmodule // ram 256x16

www.efinixinc.com 15

Efinity Synthesis User Guide

The memory file should be simple hexadecimal numbers ($ readmemh) or binary numbers
($readmemb) without any comments or prefixes.

Figure 12: Example Memory File

Inferring Output Registers

Synthesis packs registers that immediately follow the read data into the output registers of the
BRAM if the control logic is compatible:

* The read clock is the same as the register clock signal.
° Enables:
— Trion FPGAs—The register must always be enabled (no explicit clock enable control).
— Titanium FPGAs—The register's clock enable must be the same as the BRAM's read
enable signal.
* Resets:
— Trion FPGAs—The register cannot have a reset signal.
— Titanium FPGAs—If the read port has a reset signal, and if the register has a reset
signal, they must match. Additionally, the Titanium output register only supports
asynchronous reset logic.

Address Enable (Titanium)

The Titanium BRAM supports an address enable feature. However, synthesis does not infer
these signals;for inferred BRAM these signals are always tied high. To use the address enable,
instantiate the primitive (EFX RAM10 and EFX _DPRAM10),

Resetting RAM (Titanium)

Titanium RAM supports a reset option on the RAM output and output register.
Figure 13: RAM Output with Asynchronous Reset

module ramlO arst (wdata, waddr, wclk, wclke, rclk, we, re, raddr, rdata,
rst);

parameter AWIDTH = 11; // 2048 depth

parameter DWIDTH = 4; // 4-bit wide

localparam DEPTH = 1 << AWIDTH;

input [DWIDTH-1:0] wdata;

input [AWIDTH-1:0] waddr, raddr;
input wclk, wclke, we, rclk, re, rst;
output reg [DWIDTH-1:0] rdata;

reg [DWIDTH-1:0] mem [DEPTH-1:0];

always@ (posedge wclk) begin
if (wclke) begin
if (we)
mem [waddr] <= wdata;

end

end

always@ (posedge rclk or posedge rst) begin
if (rst)

rdata <= 0;
else if (re)
rdata <= mem[raddr];
end
endmodule

www.efinixinc.com 16

Efinity Synthesis User Guide

Estimating Block RAM Resources

The Efinity” software v2020.2 (patch 2020.2.299.2.6) and higher includes a Block RAM
Resource Estimator that helps you determine how many block RAM resources the
software needs for a given memory size. You run this tool at the command line using the
efx map ramest command. The estimator uses these options:

Table 3: Block RAM Resource Estimator Options

Option

Description

--help

Display the help.

--family <family name>

Specify the family:

Quantum: for Quantum® cores.
Trion: for Trion FPGAs.
Titanium: for Titanium FPGAs.

--device <FPGA name>

Optional. Specify the FPGA you are targeting.

--mode <mode>

Specify the decomposition mode, speed, area, or power.

--size <memory size>

Specify the memory size as <depth>x<width>.

--size2 <memory size>

If using true dual-port, specify the second port's memory size as
<depth>x<depth>.

The following code examples show how to estimate RAM for Trion and Titanium RAM
blocks of varying sizes.

Simple Dual-Port RAM Example (Trion)
The following example command runs the estimator for a Trion FPGA, 10240 X 16 RAM

size, and optimizing for area:

efx map_ramest --family Trion --mode area --size 10240x16

The command outputs:

Efinix Block Ram Resource Estimator
Version: 2020.2.299
Compiled: Dec 30 2020.

Copyright (C) 2013 - 2020 Efinix Inc. All rights reserved.

FPGA Family : Trion

Block Ram Size : 5K

Input Memory Size : 10240x16

Mode : area

Result : 33 block rams required to implement the above memory size.

www.efinixinc.com

17

Efinity Synthesis User Guide

True Dual-Port RAM Example (Trion)

The following example command runs the estimator for a Trion FPGA, 10240 X 16 RAM
size, 5120 x 32 RAM size, and optimizing for power:

efx map ramest --family Trion --mode power --size 10240x16 --size2 5120x32

The command outputs:

Efinix Block Ram Resource Estimator
Version: 2020.2.299
Compiled: Dec 30 2020.

Copyright (C) 2013 - 2020 Efinix Inc. All rights reserved.

FPGA Family : Trion

Block Ram Size : 5K

Input Memory Size : 10240x16

2nd Memory Port Size : 5120x32

Mode : power

Result : 33 block rams required to implement the above memory size.

Simple Dual-Port RAM Example (Titanium)

The following example command runs the estimator for a Titanium FPGA, 10240 X 16
RAM size, and optimizing for area:

efx map ramest --family Titanium --mode area --size 10240x16

The command outputs:

Efinix Block Ram Resource Estimator
Version: 2020.2.299
Compiled: Dec 30 2020.

Copyright (C) 2013 - 2020 Efinix Inc. All rights reserved.

FPGA Family : Titanium

Block Ram Size : 10K

Input Memory Size : 10240x16

Mode : area

Result : 17 block rams required to implement the above memory size.

True Dual-Port RAM Example (Titanium)

The following example command runs the estimator for a Titanium FPGA, 10240 X 16
RAM size, 5120 x 32 RAM size, and optimizing for area:

efx map ramest --family Titanium --mode area --size 10240x16 --size2 5120x32

The command outputs:

Efinix Block Ram Resource Estimator
Version: 2020.2.299
Compiled: Dec 30 2020.

Copyright (C) 2013 - 2020 Efinix Inc. All rights reserved.

FPGA Family : Titanium

Block Ram Size : 10K

Input Memory Size : 10240x16

2nd Memory Port Size : 5120x32

Mode : area

Result : 17 block rams required to implement the above memory size.

www.efinixinc.com 18

Efinity Synthesis User Guide

Inferring Shift Registers

Efinity” synthesis can infer shift register functions that use the XLR cell's 8-bit shift register
function. You do not need to set any synthesis options. For example, synthesis infers the
following code as a simple shift register:

// 12-bit shift register example
module srll2 (CLK, SI, DO);
input CLK, SI;

output DO;

localparam DATAWIDTH = 12;

reg [DATAWIDTH-1:0] data;

// initializing the shift register content
initial begin

data = 12'h800;
end

always @ (posedge CLK)
begin
data <= {data[DATAWIDTH-2:0], data[DATAWIDTH-1]};
end
assign DO = datal0];

endmodule

The shift register reset is constructed with extra flipflops.

The following example shows a shift register with a reset:

// 12-bit shift register with reset example
module srll2 rst (CLK, DI, RST, DO);
input CLK, DI, RST;
output DO;
localparam DATAWIDTH = 12;
reg [DATAWIDTH-1:0] data;
initial begin
data = 12'h800;
end

always @ (posedge CLK)

begin
if (RST)
data <= 0;
else
data <= {data[DATAWIDTH-2:0], DI};
end

assign DO = data[DATAWIDTH-1];

endmodule

www.efinixinc.com 19

N7

Efinity Synthesis User Guide

Tri-State Buffers

Typically, you infer a tri-state buffer in your RTL code. For example:

module tri state buf original (a);
inout a;
wire Db;
wire oe;
assign a = (oe ? b : 1'bZ);
endmodule

In the Efinity® software, however, tri-state buffers are implemented as GPIO blocks in
the Interface Designer. The following figure shows a tri-state buffer model in the Efinity
software. The Interface Designer promotes all of the internal signals of tri-state buffer to
input and output ports of the RTL design (a_ena, a_in,and a_out).

®

Figure 14: Tri-State Buffer

internal_tri_state_buf out

a_in
internal_tri_state buf ena
a_ena - = == Pad
internal_tri_state buf in
a_out = = ==

To target Trion” and Titanium FPGAs, you map the inout port to three internal nodes
(a_ena,a in,and a out), export all signals to the top-level module, and then assign the
ports to GPIO. The following Verilog HDL code creates the tri-state buffer:

module tri state buf (a in, a out, a ena,
internal tri state buf in,
internal tri state buf out,
internal tri state buf ena);

// Split the initial inout port a to three wrapper ports of tri-state buffer
input a in;

output a_out;

output a_ena;

// Act as the internal tri state buffer signals.
output internal tri state buf out;

input internal tri state buf in;

input internal tri state buf ena;

// Modification from traditional way of inferring
assign internal tri state buf out = a in;
assign a_out = internal tri state buf in;

assign a_ena = internal tri state buf ena;

endmodule

Download: To download a code example, go to the topicin the
Support Center Knowledgebase.

www.efinixinc.com 20

https://www.efinixinc.com/support/kb/faq.php?id=23

Efinity Synthesis User Guide

Synthesis Options

You can set project-wide synthesis options to control the design flow. You set these options
in the Project Editor's Synthesis tab. Most options apply to all FPGA families; however,
some are specific to Trion or Titanium FPGAs as shown in the following tables.

Table 4: Synthesis Options (All Families)

Name Choices Description

--allow-const-ram-index 0,1 Infer RAM if an array is accessed through constant indices. This
option can be useful if memory is written such that a constant
index refers to each segment (e.g., in a byte-enable read/write).

0: Default. Do not infer.

1: Infer.

--blackbox-error 0,1 Generate an error when synthesis encounters an undefined
instance or entity.

0: No error.
1: Default. Generate error.

--blast_const_operand_adders 0,1 If one of the operands to an arithmetic operation is constant,
implement it as logic instead of adders.

0: Disable.
1: Default. Enable.

--bram_output_regs_packing 0,1 Enables the software to pack registers into the output of BRAM.
0: Disable.
1: Default. Enable

--create-onehot-fsms 0,1 Create onehot encoded state machine when appropriate.
Synthesis can only create these state machines if the state
variables do not have explicit encoding in the HDL. If a state
machine is coded using onehot encoding, a new section

in the map report (<project>.map.rpt) shows the encoding
information.

0: Default. Disabled.
1: Enabled.

--fanout-limit Oton If something is high fanout, the tool duplicates the fanout
source.

0: Default. Disable.
n: Indicate the fanout limit at which to begin duplication.

--hdl-compile-unit 0,1 When considering multiple source files, resolve ‘define or
parameters independently or across all files. This option only
works with SystemVerilog files.

0: Across all files.
1: Default. Independently.

--infer-clk-enable 0,1,2,3,4 |Inferflip-flop clock enables from control logic.
0: disable.
1, 2, 3, 4: Effort levels.

www.efinixinc.com 21

Efinity Synthesis User Guide

Name Choices Description

--infer-sync-set-reset 0,1 Infer synchronous set/reset signals.

0: Disable.
1: Default. Enable.

--max_ram -1,0,n -1: Default. There is no limit to the number of RAM blocks to

infer.
0: Disable.
n: Any integer.

-—-max_mult -1,0,n -1: Default. There is no limit to the number of multipliers to
infer.

0: Disable.
n: Any integer.

--min-sr-fanout 0,n Infer the flipflop's synchronous set/reset signal from control
logic if the set/reset signal fanout is greater than n. This option
is useful if the design has a lot of small fanout set/reset signals
that may create routing congestion.

0: Default. Disable.
n: Signal fanout.
--min-ce-fanout 0,n Infer the flipflops clock enable from c ontrol logic if the clock
enable signal fanout is grester than n.
0: Default. Disable.
n: Signal fanout.
--mode speed, speed: Default. Optimizes for fastest fyax.
area, areaZ | grea: Optimizes for smallest area.
area2: Uses techniques that help to optimize large multiplexer
trees.

--mult-auto-pipeline 0,1,-1 Performs automatic pipelining for wide multipliers to increase
performance at the cost of extra latency. The software inserts
pipeline registers at the output of partial multiplies and partial
sums. For Titanium FPGAs, these pipeline registers are packed
into the DSP48 as P and W registers. Additional registers are
inserted at the input and output of the multiplier to balance
latency issues caused by the insertion of the previous registers.
0: Default. Disabled.

1: Insert registers after partial multiplies creating 1 extra cycle of
latency.

-1: Insert registers after partial multiplies and sums creating 2

or more extra cycles of latency depending on the width of the
multiplier. For example, the software adds 4 latency cycles for a
32 x 32 multiplier.

--mult-decomp-retime 0,1 Perform retiming after decomposition of a wide multiplier to
improve performance.
0: Default. Disable.

1: Enable.

--operator-sharing 0,1 Extract shared operators
0: Default. Disable
1: Enable

--optimize-adder-tree 0,1 Optimize skewed adder trees

0: Default. Disable
1: Enable

www.efinixinc.com 22

Efinity Synthesis User Guide

Name

Choices

Description

--optimize-zero-init-rom

0,1

Opitmize ROMs that are initialized to zero.
0: Disable
1: Default. Enable

--retiming

0,1

Perform retiming optimization. Software moves registers to
balance the combinational delay path.

0: Disable.
1: Default. Enable.

--seq_opt

0,1

Turn on sequential optimization. This option can reduce LUT
usage but may impact fyax-

0: Disable.
1: Default. Enable.

--seq-opt-sync-only

0,1

Sequential synthesis only considers synchronous reset flipflops.
0: Default. Consider all flipflops.
1: Consider synchronous flipflops only.

--use-logic-for-small-mem

Oton

Set the size limit of small RAM blocks implemented in LEs. The
number is the maximum number of LEs used.

0: Disable.
64: Default.

--use-logic-for-small-rom

Oton

Set the size limit of small ROM blocks implemented in LEs. The
number is the maximum number of LEs used.

0: Disable.
64: Default.

Table 5: Synthesis Options (Titanium)

Name

Choices

Description

--dsp-input-regs-packing

0,1

Allow packing of DSP input registers.
0: Disable.
1: Default. Enable.

--dsp-output-regs-packing

0,1

Allow packing of DSP output registers.
0: Disable.
1: Default. Enable.

--dsp-mac-packing

0,1

Allow multiplier packing, the software packs adder pairs using
multipliers (Trion) or DSP Blocks.

0: Disable.
1: Default. Enable.

-—-insert-carry-skip

0,1

Enable carry-skip optimization for long adders. This option can
be useful for designs that have long carry chains. It implements
the carry chain with carry skip instead of ripple carry, which can
improve performance at the cost of increased area by splitting

the carry chains into shorter ones.

0: Default. Disabled.
1: Enable.

--pack-luts-to-comb4

0,1,2

Pack compatible LUTs into COMB4 primitives.
0: Default. Disable

1: Effort level 1

2: Effort level 2

www.efinixinc.com 23

Efinity Synthesis User Guide

Table 6: Synthesis Options (Trion)

Name Choices Description
--mult-input-regs-packing 0,1 Allow packing of multiplier input registers.
0: Disable.
1: Default. Enable.
--mult-output-regs-packing 0,1 Allow packing of multiplier output registers.
0: Disable.
1: Default. Enable.

Example: --infer-clk-enable

The --infer-clk-enable synthesis option infers the flip-flop clock enable signal from control
logic. This option has three effort levels, or you can disable it.

For example, if you choose effort level 1, this code:

always @ (posedge clk) begin
if (el | e2) g <= d;
end

infers or (el,e2) asthe CE pin of a flop with d in the D pin and g in the Q pin.

In a more complex case, this code:

always @ (posedge clk) begin
if (el) g <= dl;
else (e2) g <= d2;

end

does not result in an inferred clock enable.

With the effort level 3 option, which is the default, the synthesis tool traces multiplexer
connections to look for a loop back to the Q pin of the flip-flop. If the tracing is successful,
the software extracts the condition pins of the multiplexer path to form the clock enable
signal. So in our complex example previously, the software infers or (el, e2) inferred as
the clock enable. The level 3 option reduces the number of LUTSs by about 4-5% compared to
the level 1 option.

Example: --create-onehot-fsms Option

The following code snippet shows an example of the FSM encoding section in the map.rpt
file.

#4## ### Finite State Machine Report (begin) ### ### ###
Module apb3 slave

Recognized state machine 'busState' with states :

"oo" 8 IDLE
"o1" 3 SETUP
"io" 3 ACCESS

Module axi4_ slave

Recognized state machine 'busState' with states :

TREO™ g IDLE
"oo1" 3 PRE_WR
"100" : PRE RD
TELE™ g WR
WHLLT 3 WR_RESP
0y Q@L@ : RD

www.efinixinc.com 24

Efinity Synthesis User Guide

Example: --allow-const-ram-index

The following code snippet demonstrates code that can benefit from the --allow-const-ram-
index option. Lines 13, 15, 23, and 25 use a constant index to address the first dimension of
the memory:

subtype t diml is std logic vector (7 downto 0);

type t diml vector is array(natural range <>) of t diml;
subtype t dim2 is t diml vector (0 to 511);

type t_dim3 vector is array(natural range <>) of t dim2;
subtype t dim3 is t dim3 vector (0 to 3);

signal RAM : t dim3 := (others => (others => (others => '0')));
RAM3Proc t : process (Clk)
begin
if (rising edge (Clk)) then
if (WriteEn = '1') then
RAM(3) (to integer (unsigned(Addr))) <= WriteData3 t;
end 1if; - -
ReadData3 t <= RAM(3) (to integer (unsigned(Addr)));
end if; - -

end process RAM3Proc_ t;

RAM2Proc_t : process (Clk)

begin
if (rising_edge (Clk)) then
if (WriteEn = '1') then
RAM(2) (to_integer (unsigned(Addr))) <= WriteData2 t;
end if;
ReadData2 t <= RAM(2) (to_integer (unsigned(Addr)));
end 1if;

end process RAM2Proc_t;

Setting the --allow-const-ram-index option to 1 (enable) instructs the synthesis tool to infer
the code as a RAM block.

www.efinixinc.com 25

Efinity Synthesis User Guide

Retiming

The Efinity” software includes an option for retiming. You enable it by setting the —-retiming
option to 1 in Project Editor > Synthesis tab.

When this option is turned on, the software moves registers forward or backward to improve
the design's performance. Because the XLR cell comprises both logic and routing, the
software can efficiently relocate registers with fine granularity.

Figure 15: Retiming with XLR Cells
Without Retiming

—» ——»lLogic

XLR Cell Plogc—= +—p >

—» ——plogic

With Retiming
———p» ——plogic— T
XLR Cell Logic— -—»

——p» ——plogic—+

Synthesis Pragmas

The Efinity software supports these synthesis pragmas. Put the pragma in a comment,
preceded by the synthesis keyword.

synthesis on, synthesis off
This attribute directs synthesis to compile or skip a section of the RTL
full _case

This attribute directs synthesis to interpret case statements as full case (similar to the
Synopsys full case pragma). If youuse a full case pragma, synthesis assumes that the
listed cases are the only possible conditions. All other input combinations are don’t care and,
therefore, synthesis does not generate logic for them

www.efinixinc.com 26

Efinity Synthesis User Guide

In the following example, the full case pragma directs synthesis to treat the condition
sel = 2’'bl1 asdon’t care. The net effect is that the logic used to implement this case
statement is simpler.

always @(a or b or c or sel) // synthesis full case
case (sel)

2'b00: v = a;

2'b01: y = b;

2'p10: y = c;
endcase

parallel_case

This attribute directs synthesis to interpret case statements as parallel case (similar to the
Synopsys parallel case pragma). If you use the parallel case pragma, synthesis
does not assume that the case conditions are mutually exclusive, that is, they can be true at
the same time.

In the following example, if sel 37111, all three of the conditions match, and a, b,

and c are assigned to 1’ b1.

always @ (sel)

begin
{a, b, c} = 3'b0;
casez (sel) // synthesis parallel case
3'bl??: a = 1'bl;
3'b?1l?: b = 1'bl;
3'b??1l: ¢ = 1'bl;
endcase
end

www.efinixinc.com 27

Efinity Synthesis User Guide

Synthesis Attributes

You use synthesis attributes to guide the Efinity” software to perform (or not perform)
certain actions during the synthesis step. The following sections describe the attributes the
software supports.

on page 29

async_reg

This attribute applies to register outputs; it designates registers as synchronizers.

When async_reg is true, synthesis does not perform optimization to reduce, merge,
or duplicate these registers. During place and route, the software keeps these registers close
together to improve synchronization between asynchronous clock domains.

Verilog HDL:
(* async_reg = "true" *) reg [1:0] x;
VHDL.:

attribute async_reg: boolean;
attribute async reg of x : signal is true;

syn_extract_enable

You use this signal attribute on register outputs. To use this attribute, set it to (false, no,
or 0). During synthesis, the software will not infer an active clock enable (except when there
is a gated clock) on registers with this attribute set.

Verilog HDL:

(* syn_extract enable="false" *) reg [3:0] cnt;

VHDL.:

attribute syn extract enable: boolean;
attribute syn extract enable of cnt : signal is false;

www.efinixinc.com 28

Efinity Synthesis User Guide

syn_keep

This attribute applies to signals or wires. It is similar to syn _preserve except it keeps
more than just the signal itself. When it is set to true, yes, or 1, the synthesis tool keeps
the driver and the loads of the signal through optimization (synthesis does not minimize or
remove them).

Verilog HDL:

(* syn_keep = "true" *) wire x;

VHDL.:

attribute syn keep: boolean;
attribute syn keep of x : signal is true;

Note: A signal with syn_keep usually has it's name preserved through synthesis flow. However, if the
signal is connected directly to a top-level port, the name in the map.v netlist may be changed to that of the
top-level port name.

syn_preserve

This attribute applies to signals. When it is set to true, yes, or 1, synthesis keeps the
signal through optimization, that is, synthesis does not minimize or remove the signal.
This attribute can be helpful when you want to simulate or view a signal in the Debugger.
Although the signal is kept, synthesis may still choose to implement downstream functions
that depend on this signal independent of this preserved signal.

In the Efinity software v2022.2 and higher, the syn preserve attribute is supported on a
user hierarchy instance. The effect is equivalent to tagging all boundary signals of the instance
with syn preserve.

Verilog HDL:

(* syn preserve = "true" *) wire x;

VHDL.:

attribute syn preserve: boolean;
attribute syn preserve of x : signal is true;

Note: A signal with syn preserve usually has it's name preserved through synthesis flow. However, if
the signal is connected directly to a top-level port, the name in the map.v netlist may be changed to that of
the top-level port name.

www.efinixinc.com 29

Efinity Synthesis User Guide

syn_ramdecomp

This attribute applies to a RAM or ROM signal and controls how synthesis decomposes the

RAM or ROM.

* When this attribute is not set, synthesis always chooses data-width decomposition for
better performance.

* When set to area. synthesis decomposes the RAM or ROM for minimum area (least
number of RAM block primitives), but it favors data-width decomposition.

® When set to power, synthesis decomposes the RAM or ROM for minimum area, but it
favors address decomposition.

Verilog HDL:
(* syn _ramdecomp = "area" *) reg [DWIDTH-1:0] mem [DEPTH-1:0];
(* syn ramdecomp = "power" *) reg [DWIDTH-1:0] mem [DEPTH-1:0];

VHDL.:

attribute syn ramdecomp: string;
attribute syn ramdecomp of mem : signal is "power";

@ Note: You can use the Block RAM Resource Estimator to explore the number of blocks synthesis will use
for various settings. Refer to on page 17 for details.

syn_ramstyle

You apply this attribute to RAM signals:
* Theblock ram value assigns the signals to block RAM.
° The registers value assigns the signals to registers.

Verilog HDL:

(* syn ramstyle
(* syn ramstyle

"block ram" *) reg [DWIDTH-1:0] mem [DEPTH-1:0];
"registers" *) reg [DWIDTH-1:0] mem [DEPTH-1:0];

VHDL.:

attribute syn ramstyle: string;
attribute syn ramstyle of mem : signal is "block ram";

syn_romstyle

You apply this attribute to ROM signals:
* Theblock rom value assigns the signals to block ROM.
* The logic value assigns the signals to logic.

Verilog HDL:
(* syn romstyle = "block rom" *) reg [DWIDTH-1:0] mem [DEPTH-1:0];
(* syn romstyle = "logic" *) reg [DWIDTH-1:0] mem [DEPTH-1:0];

VHDL:

attribute syn romstyle: string;
attribute syn romstyle of mem : signal is "block rom";

www.efinixinc.com 30

Efinity Synthesis User Guide

skip_ram_init

This attribute applies to an instantiated block RAM instance. When set to 1 or true,
synthesis instructs the bitstream generation module to skip including default RAM
initialization values to reduce the bitstream size. When the FPGA is configured, the RAM
content is not initialized and must be written before being read.

Verilog HDL:

(*skip_ram init = 'true'*) EFX RAMIO dut (...);
VHDL:

attribute skip ram init : boolean;

attribute skip ram init of u0 : label is true;
syn_srlstyle

This attribute, when applied to a register signal, directs the synthesis inference step to choose
between shift register (srl), simple register (registers), or first register + shift register
(reg srl).

Note: Shift registers are only available in the Titanium family; therefore, you should only use this attribute
when targeting Titanium FPGAs.

Verilog HDL:

(* syn_srlstyle = "registers" *) reg [WIDTH-1:0] d;

VHDL.:

attribute syn srlstyle: string;
attribute syn srlstyle of d : signal is "registers";

www.efinixinc.com 31

Efinity Synthesis User Guide

translate_on, translate_off

You use these directives to tell the synthesis tool to ignore the code within them. You should
use these together; a translate off should have a corresponding translate on.

For example, the FPGA's flipflop powers up to a 0 value. For simulation, you need to
initialize the registers to O for the simulation to match this behavior. Using this directive
allows the synthesis tool to demonstrate the FPGA's default behavior.

Verilog HDL:

module in shifter #(parameter N=2)
(

input data,

input clk,

output reg [N-1:0] out

)i

reg [N-1:0] shift reg;

// synthesis translate off
initial begin
shift reg = 0;
out = 0;
end
// synthesis translate on

always @ (posedge clk)
begin
shift reg <= {shift reg[N-2:0],data};
out <= shift reg;
end
endmodule // in_shifter

syn_use_dsp

You use this attribute on multiplier output signals.

* When set to true, yes, or 1, the synthesis tool implements the multiply function using
hard multipliers (that is, the EFX MULT primitive).

° When set to false, no, or 0, the synthesis tool generates adders and logic for the
multiply function.

In Titanium FPGAs, applying this attribute to the output of an adder that is driven on one
side by a multiplier tells synthesis to try to pack the adder into the DSP Block by:

* Using an extra DSP Block to feed the other operand through the cascin/cascout path.

o If possible, pack a feedback loop through the N-SEL path so that the multiply-accumulate
is implemented in a single DSP Block.

Verilog HDL:

(* syn use dsp = "yes" *) signed [27:0] x;

VHDL:

attribute syn use dsp: boolean;
attribute syn use dsp of x : signal is true;

www.efinixinc.com 32

Efinity Synthesis User Guide

Using VHDL Libraries

In the Efinity” software v2020.2 and higher, you can use VHDL libraries to organize and

reference commonly used packages and entities.

Create a Library

To create a library for your project:

SANRANF ol A

@ Note: In VHDL, the work library refers to the current library in the design. When

Open the Project Editor.
Click the Design tab.
Add the design file(s) that have the packages you want to use. You can add multiple files.
Double click the cell under Library.

In the drop-down menu, choose Add New.
Enter the library name and click OK.

assigning a library name to a VHDL design file, you are encouraged not to use the

word work as the library name only (instead use a variable like name, example:

my_work). Doing so will cause an error in synthesis. Leave it blank (or default) if the
file is part of the current library in the design project.

7. (Optional) If you add more than one library file to your project, double-click in the
Library cell for each file and either choose the library name or add a new one.

Library names are saved across projects.
Add a File to a Library

You add a file to a library in the Project Editor > Design tab. Double-click the Library cell
for the file and choose the name from the drop-down list.

Reference a Library

You use the 1ibrary and use VHDL language constructs to reference your new library.
The following simple code example shows a new library file for the package mylibrary:

Example: mylibrary.vhd

--! Use standard library
library ieee;

use ieee.std logic 1164.all;

use ieee.numeric_std.all;

package mylibrary is
--! factor width

constant DF_WIDTH : integer

end package mylibrary;

After you add this file to your project and create a library for it, you can refer to the file in

your code:

= 12;

Example: Referring to the Package

--! Use standard library
library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

--! Use costum library
library mylibrary;

use mylibrary.mylibrary.all;

www.efinixinc.com

33

Efinity Synthesis User Guide

--! Multiplier entity brief description

—--! Detailed description of this
--! multiplier design element.
entity multiplier is

port (
a : in signed (DF WIDTH-1 downto 0); --! Multiplier first factor
b : in signed (DF _WIDTH-1 downto 0); --! Multiplier second factor
result : out signed (2*DF WIDTH-1 downto 0) --! Multiplier result
);
end entity;

Reference Trion and Titanium Primitive Libraries

The Efinity” software includes VHDL libraries for Trion and Titanium primitives. You use
the 1ibrary and use VHDL language constructs to reference these libraries:

library efxphysicallib;
use efxphysicallib.efxcomponents.all;

[ﬂ Learn more: The following documents provide example code for these libraries:

Referencing Efinix VHDL Libraries

The Efinity” software includes VHDL libraries for Trion and Titanium primitives. You use
the library and use VHDL language constructs to reference these libraries:

library efxphysicallib;
use efxphysicallib.efxcomponents.all;

The following code shows how to reference the Efinix library:

Example: Referring to the Efinix Library

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

library efxphysicallib;

use efxphysicallib.efxcomponents.all;

entity LUT4 VHDL is
port
(
din : in std logic vector (3 downto 0);
dout : out std logic
):
end entity LUT4 VHDL;

architecture Behavioral of LUT4 VHDL is
begin

EFX LUT4 inst : EFX LUT4
generic map (
LUTMASK => x"8888"
)

port map (
IO => din(0),
I1 => din(1),
I2 => din(2),
I3 => din(3),
O => dout

)

end architecture Behavioral;

www.efinixinc.com 34

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES

Efinity Synthesis User Guide

VHDL 2008 Support

process (ALL)

Begin
if A(0) then
C(0)<='1"
else
c(0)<='0";
end 1if;

end process;

C(l) <= '1]' when A(l) else '0';

The Efinity” software supports the synthesis subset of the VHDL 2008 standard. The

following sections highlight support for new features from an Efinity”™ perspective. This list is

not exhaustive.

Relational Operators (9.2.1)

The software supports these relational operators.

Operator Description Usage Type Returned

= aisequaltob a=b Boolean

/= anotequaltob a/=b Boolean

< alessthanb a<b Boolean

<= aislessthanorequal |la<=b Boolean
tob

> ais greater than b a>b Boolean

>= a is greater than or a>=b Boolean
equaltob

7= aisequaltob a?=b Bitor std logic

?/= aisnotequaltob a?=b Bitor std logic

7< aislessthanb a?<b Bitor std_logic

7<= aislessthanorequal |a?<=b Bitor std_logic
tob

7> ais greaterthan b a?™>b Bitor std logic

7>= a is greater than or a?™>=b Bitor std logic
equalto b

In this example, the output is 1 if A(14) is equal 1 and B(14) is equal to 1; otherwise the

output is 0.

output <= A (14)

'l1' and B(14);-

Condition Operator (9.2.9)

The software supports the condition operator, as shown in the following code example.

-- converts std logic

-- simplify sensitivity list VHDL 2008;

(A(0)) 1,H to boolean

True, other will be False

www.efinixinc.com 35

c (15 downto 8)

(C(39),C(40))<=

Efinity Synthesis User Guide

Vector Aggregates (9.3.3)

In VHDL 2008, you can use slices in an array aggregation, and you can use aggregates as
targets.

<= (others =>'1") when A (8) else --means "11111111"
('yr','1','0"'",'1L', others =>'0') when A(9) else --means "1101000"
(11=>'1"', others =>'0") when A(10) else --means "00001000"
("1101" , others =>'0") 3 --means "1101000"

A (1 downto 0); -— C(39) becomes A(l) , C(40) becomes A(0)

Conditional and Sequential Statements (10.5.3,
10.5.4)

VHDL 2008 supports conditional and selected sequential statements.

DFFwithReset inst: Process(All)

begin
if clk'event and clk='1l' then
c(26)<= '0' when reset else A(ll); -- c(26) is Q and A(1l) is D
end 1if;

end process;

Case Statements with Don't Care (10.9)

VHDL 2008 permits a don’t care, -, in a case? statement.

process (ALL)

begin
case? A(3 downto 0) is
when "1---" => c(24) <= '1"';
when "01--" => c(25) <= '1"';

when others => null;
end case?;
end process;

Sensitivity List (11.3)

You use sensitivity lists to specify a set of signals on which to act. To simplify the sensitivity
list and be more comparable with simulation, you can add the keyword ALL to the sensitivity
list. The ALL setting adds all signals to the sensitivity list.

process (ALL)

www.efinixinc.com 36

sig (5 downto 0)

Efinity Synthesis User Guide

Generate Statements (11.8)

In VHDL 2008 you can use case statements in generate statements, and else/elsif in if
statements.

generate test: case sel generate -- sel must be a constant
when "00" =>
compl: entity work.testl (behave)
port map(B(13),A(13),C(27));
when "01" =>
compl: entity work.test2 (behave)
port map(B(13),A(13),C(27));
when others =>
end generate;

Expressions in Port Maps (11.8)

VHDL 2008 allows expressions in port maps.

instl : entity work.testl (behave)
port map (A=>(B(13) AND A(13)), B=> B(1l5),C=>C(41));

Enhanced String Literals (15.8)

VHDL-2008 enhances bit string literals:

* They may have an explicit width

* They may be declared as signed or unsigned
* They may include meta-values ('U', 'X', etc.)

<= 6x"0F" when A(2) else --means 6 bit value "001111"
6x"OF" when A(3) else --means "001111"
6Sx"F" when A(5) else --means "111111" -- sign extension
6UxX"F" when A (6) else --means "001111" -—- zero extention
6SB"11" when A(7) else --means "111111" -- binary format
6uo"7"; --means "000111" -- octal format

Block Comments (15.9)

VHDL you can use single-line comment or delimited comments.

* Single-line—These comments begin with two adjacent hyphens —-, and the comment
extends to the end of the line.

* Delimited—These commnents consist of text surrounded with delimiters. The comment
begins with /* and continues until */

Begin

if A(0) then -- here is a single line comment
Cc(0)<="1"

else
C(0)<='0";

end if;

end process;
/* here is a delimited comment
that spans two lines */

www.efinixinc.com 37

Efinity Synthesis User Guide

Fixed-Point Handling (16.10)

VHDL 2008 has fixed-point handling.

LIBRARY IEEE;
USE IEEE.std logic 1164.all;
USE IEEE.fixed pkg.all;

Entity test is

Port (
sl : in ufixed (21 downto -2);
s2 : in ufixed (20 downto -3);
sum : out ufixed (22 downto -3);

prod : out ufixed (42 downto -5)
) 7
end test;

Architecture behave of test is
Begin

sum <= sl +S2;

prod <= S1*S2;

end behave;

Minimum() and Maximum() Functions (16.3)

The software supports the new functions minimum () and maximum (), which were added

in VHDL 2008.
min val <= minimum(a,b) -- if a > b, b is returned
max val <= maximum(a,b) -- if a > b, a is returned

Where to Learn More

The Efinity” software includes documentation as PDF user guides and on-line HTML help.
This documentation is provided with the software. You can also access the latest versions of
PDF documentation in the Support Center:

¢ Efinity Software User Guide

¢ Efinity Synthesis User Guide

¢ Efinity Timing Closure User Guide

¢ Efinity Software Installation User Guide
e Efinity Trion Tutorial

¢ Efinity Debugger Tutorial

¢ Titanium Interfaces User Guide

¢ Trion Interfaces User Guide

¢ Efinity Interface Designer Python API

¢ Quantum® Trion Primitives User Guide
¢ Quantum® Titanium Primitives User Guide

In addition to documentation, Efinix field application engineers have created a series of videos
to help you learn about aspects of the software. You can view these videos in the Support
Center.

www.efinixinc.com 38

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTDBG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM

Efinity Synthesis User Guide

Revision History

Table 7: Revision History

Date

Version

Description

December 2023

3.8

Added the --use-logic-for-small-mem, --use-logic-for-small-rom,
and --mult-auto-pipeline synthesis options. (DOC-1484)

Corrected quotation marks in the synthesis attribute examples (now using
straight quotes instead of curly). (DOC-1420)

Added topic (on page 34) describing which
Efinix VHDL libraries to reference when using Efinix primitives. (DOC-1455)

June 2023

3.7

Added syn_keep synthesis attribute.

Added --mult-decomp-retime, ——optimize-zero-init-rom, and --
insert-carry-skip synthesis options.

Provided an example for the --allow-const-ram-index synthesis option.

May 2023

3.6

Added description about possibility of bit-blasting certain RAM operations but at
the cost of FPGA resource. (DOC-1231)

December 2022

3.5

Described synthesis rules for inferring output registers. (DOC-1020)
Updated the synthesis options. (DOC-1020)

The syn_preserve attribute is not supported on a user hierarchy instance.
(DOC-1020)

Added synthesis pragmas. (DOC-1020)

November 2022

3.4

Added note in "Using VHDL Libraries" about the work library. (DOC-957)

August 2022

3.3

Added new synthesis options. (DOC-870)

December 2021

3.2

Added new synthesis options.
Added more detail about the Synthesis project settings. (SYN-549)

October 2021

3.1

The default for the -blast_const_operand_adders and -seq_opt synthesis options
is 1 for Efinity v2021.1 and higher. (DOC-481)

June 2021

3.0

Updated for Efinity software v2021.1.

Added support for Titanium FPGAs.

Described how to infer Titanium DSP Blocks, shift registers, and RAM.
Added Titanium synthesis options.

Added topic on retiming.

Added the syn_srlstyle attribute.

Added the area?2 value for the mode synthesis option.

January 2021

2.1

Added information on RAM inferencing.
Described the Block RAM Resource Estimator.

December 2020

2.0

Described new support for VHDL libraries.
Added async_reg, skip_ram_init, syn_srlstyle, syn_ramdecomp, and syn_srlstyl
synthesis attributes.

June 2020

1.0

Initial release.

www.efinixinc.com 39

	Contents
	Introduction
	SystemVerilog and Verilog HDL Support
	VHDL Support
	Specifying Language Support
	Synthesis Project Settings
	Netlist Pane

	Design Guidelines
	DSP
	Inferring DSP
	Using the DSP Block Effectively
	Closing Timing with High DSP Block Utilization

	Flip-Flops
	Flip-Flop Reporting
	Flip-Flop Guidelines

	Latches
	RAM
	Inferring RAM
	Estimating Block RAM Resources

	Inferring Shift Registers
	Tri-State Buffers

	Synthesis Options
	Example: --infer-clk-enable
	Example: --create-onehot-fsms Option
	Example: --allow-const-ram-index
	Retiming

	Synthesis Pragmas
	Synthesis Attributes
	async_reg
	syn_extract_enable
	syn_keep
	syn_preserve
	syn_ramdecomp
	syn_ramstyle
	syn_romstyle
	skip_ram_init
	syn_srlstyle
	translate_on, translate_off
	syn_use_dsp

	Using VHDL Libraries
	Referencing Efinix VHDL Libraries

	VHDL 2008 Support
	Relational Operators (9.2.1)
	Condition Operator (9.2.9)
	Vector Aggregates (9.3.3)
	Conditional and Sequential Statements (10.5.3, 10.5.4)
	Case Statements with Don't Care (10.9)
	Sensitivity List (11.3)
	Generate Statements (11.8)
	Expressions in Port Maps (11.8)
	Enhanced String Literals (15.8)
	Block Comments (15.9)
	Fixed-Point Handling (16.10)
	Minimum() and Maximum() Functions (16.3)

	Where to Learn More
	Revision History

