“EFINIX.

Efinity” Timing Closure User
Guide

UG-EFN-TIMING-v5.0
December 2023
www.efinixinc.com

Copyright © 2023. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.


http://www.efinixinc.com

Efinity Timing Closure User Guide

Contents

Introduction 5
ADOUL CONSEIAINTS ..ottt sttt ettt ettt ettt e st et et e st e st et e e st et e et e s s e s eneeneeseeneeseeaeaseaaenseneene 5

ToOlS TOr EXPIOrNG TiMING . ettt 6

SDC File Overview 8
ADOUL SDC FlES ..ttt ettt sttt 8
Create an EMPty SDC File. ..ottt eb e bttt sa s ebeeaesbesensennas 9

Add an SDC File tO YOUT PrOJEC...c.iiiiiiiitiieieieetet ettt ettt ettt et sb s nsesneeas 9

USING MURIPIE SDC FIlES..cuiiiiieiieiieiieiieeeee ettt ettt ettt st et neeseeseebessebessessenens 9
Efinity Files You Use to Create CoNSIraiNtS.....coc.ciievirieriieriietieeteteiesietestet ettt esessesessesessesessesessesens 10
Constraining Clocks 11
DefiNING ClOCKS. ..ttt 11

Using the create_clock ConStraint.......ccoieiiiieieeee et 12

Using the create_generated_clock Constraint.......ccoceceveoereineiineineeee e 14

VUL ClOCKS ottt 14

ClOCK LAtENCY ..ttt etttk ettt sttt 16

GPIO ClOCK LATENCY. ettt ettt 16

PLL Local Feedback Clock LatenCy......cooieiririiiiiininiciiiecteec et 18

PLL Core Feedback Clock LatenCy.......ccceeririieuiiriniiieiiinriciec et 20

PLL External Feedback Clock LatenCy.......cccecrrieuiininiiieiiiniciccnct et 22

PLL Cascading Clock LatenCy......ovueueiriniiieiiiniicieiinec ettt 24

CloCk RelatioNSNIPS....cveviiiiieitiricte ettt 26
Setting Constraints for Unrelated Clocks.... ..o 26

Using the set_clock_groups COoNSLraiNt......c.occirririeuiiinnieieeneeeteneee et 26

Using the set_false_path ConStraint. ..o 27

ClOCK SYNCRIONIZETS ...ttt 28

Metastable Synchronizer CirCUIL.........cccoviieinniiei e 29

How t0 Set Clock UNCEMAINTY . ..coiiiiieieiieieee ettt 29
Constraining 1/0 30
Constraining Synchronous INputs and OULPULS......cc.cireirieiriiineccee e 30
Constraining Unsynchronized Inputs and OUtPULS.......c.ceeiriiiiniiineiecceeceeeeeeee e 33

INput Receive ClOCk Delay....c..ccoiiiiiniiiieinicirec ettt 35

Output Receive Clock Delay.......coiiniiniiiiincceecre ettt 36

Input Forward Clock Delay (GPIO clkOUL)....coviiiiiiiiiiiiieiicirceecccececeeeeee e 37

Output Forward Clock Delay (GPIO clkOUL).....ccovueirieciniiniiiiiiicircetccnecneesceeee 39

Input Forward Clock Delay (GPIO OULPUL)...c.ccreiriireincirctrcneceeeceeee e 40

Output Forward Clock Delay (GPIO OULPUL)..c.coveirieiriiieicincineetneeeeeeieeeieeeie e 42

Timing Exceptions 44
Example: Clock-to-Clock Path with Control.........cooeieieiiiiieieiceeee e 44
Understanding False Paths........ccooeieiiiiieeeeee ettt 45
Understanding Min and Max Delays........cocueieiiiiiiinieieieiese sttt 45
Understanding Multicycle CoNSTraints.......ccooevieieiiiiicierieieieiecee ettt eneeees 47
Shifted Capture WINAOW.....c.c.ciiieiiieiieieiieieec ettt eb e es s st eb et b s s essebeseesens 47

Shifted and Widened WINAOW........ccciiiiiiiiiiiiiiceeicieieeeeie et 47

Constraints between Fast and SIow Clocks.........cceiviiieiininiiiiiiccccccccne 48

SDC Warnings 49
Common Mistakes 49

www.efinixinc.com



SDC Tips and Tricks 50

SDC SYNTAX- 1.ttt et et et 50
WildCard ComMMaNGS.....oiieiiiieiecieee ettt ettt et e s te et e beete e b e s teessesbeessabesssessesseessesseeseans 50
REGUIAT EXPIrESSIONS. ..ttt ettt sttt et 51
INVEIMEA ClOCKS..iiuiitieiiiitctie ettt ettt ettt ettt e et esb e be e st e beessessesasessesbeesbeseessensenssensas 51
Square Brackets in CloCk NAMES......cciiiiiiiieieeeee ettt 51

SDC Constraints (Alphabetical) 52
CrEATE_ClOCK CONSIIAINT ettt e et e e et e e e e e e e e e eeeeeeeaeees 52
create_generated_clock CoNSIraiNt.......ccooeieieiiieiceeecteee et 53
GEL_TANOULS CONSIIAINT...cviiitiiitiietiieieietet ettt ettt ettt ettt bess s e s b e s b essesessebessesessebessebessesessesens 53
SEt_ClOCK _groUPs CONSIIAINT. cuiiiiieieieictieteete ettt sttt ettt e s b e ebesbessensenens 54
Set_ClOCK_1atenCy CONSIraINT. i ittt sttt eae b ebe b s ns s e 54
set_clock_uncertainty CoONSIraiNT.......cociiiiiieeieee ettt sbesbe e se s 55
Set_Talse_path CONSraiNt.....cccivieiietiieiietieiet ettt ettt b ettt et bt eb et b ssebessebessebessesens 55
set_input_delay and set_output_delay Constraints.........ccoceeieieinininenieeieeeee e 56
set_max_delay and set_min_delay Constraints.......cccceiieiririerierieieeeeeeeeieee et 57
set_multicycle_path CONStraiNt.......cccveiiieieeeeee ettt ettt ebe b b senens 57
ANTOUGN OPTION ettt ettt ettt ettt et e be b e b e b e st esbeseeteeseebe s e s enbeseeneenas 58
CoNnstraint ObjeCt SPECITIEIS...cuiuiiieieeie ettt senes 58

SDC Examples 59
Example: Dynamic Multiplexers and create_clock -add......c.c.cccceeniiiininneiinnicccnes 59
Example: FPGA Forwarded ClOCK. ...ttt 60
Example: Generated Clock with Clock MUltipleXer.......cccoveiiiniiiinniicccec s 61
Example: SOft SERDES. ...ttt ettt n e eae s 62
Example: Disable IMpossible Paths.........ccociiiiceeee e 63
Interpreting Timing Results 64
Clock FrequenCY SUMMAIY......cciiiiiiiice ettt sttt 64

Clock Relationship SUMMaIY....c.cciiii et 65
CIICAI PathS..ccuviiiciiiieci ettt et ettt e te e b e s beesb e beesbebeeseesbeeseenbesseensesbeeneenns 65
Constraining Logic and Routing Manually (Beta) 67
TStttk h bbbt bbbt bbbt b et b b e 67
WOTrKiNG WIth PrimitiVeS....couicieieieeiciieteeete ettt ettt st e eseeseeaesaessesbenseseaneas 69
Enabling Manual ASSIGNMENTS........cciiiiiiiieieieiet ettt ettt ettt et be et sbe e sseseeneeseeeas 70
ASSIGNIMENT RUIES....iciieiieiieticie ettt ettt sttt ettt e ae et e be s b e s e st esseseeseeseesesbesensensens 71
Creating a Location AssignmMENt File.......ooiiiiiiiiieeeee ettt 71
Constraining Routing Manually (Beta).......c.ccuoieiieieiiieiceceeeeeet et 73
RoUtING CONSEIaiNt FIOW.....oiuiiiiiiieicieie ettt ene s 73

Enabling ROULING CONSIaiNTS....couiiieieieieiieiieticie sttt ettt se s 73

Generate .1Cf TEMPIATE.....civiciiieiieieceee ettt ettt b et eb s b s 74

Creating a Routing Constraint File.......cocoiiiiiiieeeee e 74

Best Practices for Constraining ROULING.......cooveviiiiiiiiiicieieieeteeret ettt 75

Methods for Closing Timing 76
SYNTNESIS OPTIONS....ciiiietiiirit etttk b bttt b et eb s 76
Handling High FanOULS......cccviiiiiccecc et 78
Place-and-RoUte OptioNS.......coviieiiiriiiieirieice ettt 81
BENETiCIal SKEW....ocuiiviiieiceceec ettt ettt et bbb neenas 82

SWEEPING ST vttt ettt ettt ettt 82
OPtiMIZation SWEEPING . .c..cirieiirieiietieteeee ettt 83

SEEA SWEEPING .tttk 83

Closing Timing with High DSP Block UtiliZation........c.ocecceirieiinnieinncieccnseec e 85

Tcl Timing Report and Flow Commands 86

TIMING COMMEANGS ..ttt ettt sttt ettt sa et sa et 86



repPOort_Clocks COmMMENT.....o ittt 86
rePOrt_Path COMMENG. ..ottt sttt sttt 87
repOrt_timing COMMEaNGd.....ccoiiiiiiiiie ettt 88
report_timing_summary COMMEaNG.......cccccrriiiirieiinetet ettt sttt 89
Appendix 90
About the <project>.pt.SAC File. ..ottt 90
About the <project>.pt_timing.rpt File.......cooiiii e 92
Where to Learn More 94
Revision History 95




Efinity Timing Closure User Guide

Introduction

Closing timing is an important part of the design process. The Efinity” software includes
tools and reports to help you understand your design's timing requirements and let you
adjust settings to close timing. This document explains how to set timing constraints using
a Synopsys Design Constraints (.sdc) file, and discusses synthesis, placement, and routing
options to customize the Efinity” flow.

You can explore timing with just an RTL design and an SDC file. This step helps you
understand your design's timing requirements in general terms. If you have not built an
interface yet, the placer auto-assigns the interface signals, which you can use to set constraints.
After you build your interface, the interface signals are constrained according to the
assignments you made in the Interface Designer.

Note: This documentincludes information that was previously provided in AN 008: Setting Trion Timing
Constraints in the Efinity Software.

About Constraints

The Eﬁnity® software supports the Synopsys Design Constraints format for specifying timing
constraints. The software validates the timing performance of your design's core logic using
industry-standard constraint, analysis, and reporting methodology During compilation,

the software generates a timing analysis report. The pins, nets, and ports used with SDC
constraints refer to the post-synthesis netlist.

Trion® and Titanium FPGAs feature interface blocks—I/O logic and buffers, I/O banks,
PLLs, etc.—that connect the core logic to the package pins. You use the Efinity” Interface
Designer to configure these interface blocks for your design. After you configure these
blocks, you generate a constraint template file (< project > .pt.sdc) that you use as the basis
for your design's SDC file. You can also refer to report files for the interface blocks, which
you can view in the Results tab under the Efinity” Dashboard.

* For synchronous (registered) interfaces, the template defines clocks and sets input and
output delays for your design. You simply copy and paste the relevant lines from the SDC
template file to your own SDC file and adjust the timing as needed.

* For non-synchronous (unregistered) interfaces, you need to determine the interface timing
and board timing and add those to your core settings.

@ Important: Unlike traditional FPGAs, with Trion® and Titanium FPGAs you make timing constraints at the
core level, not the interface or package level.

Efinix recommends that you use registered interfaces as much as possible to simplify the SDC you need.

www.efinixinc.com 5



®

@

Efinity Timing Closure User Guide

Figure 1: Set Constraints at the Core Level

FPGA
Input Core | [ Input B
Interface  Output Output » Interface
Block _ | Clock Output Clock Output N Block
Constrain signals to/from interface and core
Note: Referto on page 52 for a list of supported SDC constraints and

object specifiers.

Tools for Exploring Timing

You use static timing analysis (STA) to measure the timing performance of your design.
The software generates a timing report based on the design’s place and route results and the
project’s SDC file. The software provides several tools for viewing and cross-probing timing
results:

* The Timing Browser helps you explore your design’s critical paths and the cells of those
paths.

* The Floorplan tool shows the locations of the paths and cells in the fabric.

* The Tcl Command Console helps you analyze and explore timing.

To explore timing, open the Tcl Command Console, the Timing Browser, and the Floorplan
Editor. In the Tcl Command Console, enter commands to query timing reports. The
software reports specific timing paths based on their slack or propagation delay. For example:

* Use the report path command to query propagation delays between the specified end
points.
* Usethe report timing command to query the slack between the specified end points.

Specify the details of the timing path that you want to analyze. You can specify the starting
and ending points explicitly or leave them as implicit. The software analyzes the timing path
based on the arguments provided to the constraints.

The software displays Tcl reports in the Timing Browser.

* Click on the report name to view details.

* Click on cell names under Data Path Cell to view the location of the cell in the
Floorplan Editor.

* Turn on Show Timing Path or Show Timing Delay in the Floorplan Editor to see the
path and delay for a particular cell.

Note: The place-and-route data for your project has to be loaded for you to use the Timing Browser
and Floorplan tool. Refer to "Auto-Load Place-and-Route Data" in the for
instructions on loading it.

www.efinixinc.com 6


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE

Efinity Timing Closure User Guide

Figure 2: Using the Timing Browser

Tcl Command Enter Tcl
Console Commands

Efinity Software

File Flow Tools Floorplan Help N N
® & EHME aaLe Q@ © B P o> L RR O N
Project : r4000 — * Floorplan Editor
g Console . H R o
a v v 2
e dashbzg,-ard b2l Clock Name Period (ns) Frequency (MHz) Edge A .= @
CIk 5.90777 169.269 (R-R) 4 1 I°S
g Launch Clock  Capture Clock  Constraint (ns) Slack " .=
{1 N = (ns)  Edge ' H e
Clk Clk 6.6 6.692232 v m
B (R-R) g ¥
n n il
Project | Netlist ‘ Result ‘ i T ®
' u
Simulation Tue May 16 17 ©9:42:22 - Flow data refreshed. Elapsed time = : "] ol
om 1.3785 VM : 781.172 MB RSS : 209.428 MB v mEn ‘@‘
~ Synthesis Tue May 16 17 09:42:22 - Running automated flow starting " =
14000.map.v from synthesis done. Total duration = Om 11.451s lm e || &
] [] -
14000.map.rpt Tue May 16 17 09:42:32 - Floorplan loaded. Elapsed time = om | | |t u Q
r4000.map.out 9.128s VM : 781.16 MB RSS : 209.46 MB H n
¥ Placement " -m -~
'14000.place Tue May 16 17 12:07:26 - Floorplan loaded. Elapsed time = om| | |! ] +
== ©.19s VM : 802.784 MB RSS : 230.584 MB N mm
14000.place.rpt i T @
14000.place.out Tue May 16 17 12:13:50 - Floorplan loaded. Elapsed time = Om ' 1l
o 0.95 VM : 806.544 MB RSS : 234.444 MB L]
~ Routing "
1 m o
14000.route.rpt Te1 8.6 1 H Toggle Show
4000 timing.rpt Execute command : Enter Key, Ctrl+R o n a8 T .
Move cursor to end of line : Ctrl+E o min Path
14000 route.out Clear command : Ctrlsd ' L] o 9
~ Bitstream Recall command from history : Up/Down Key i [ L} L} -
r4000.hex General help : help " o I N
14000.pgm.out Help for specific category help -category <category_name> H am '
gL Help for specific command <command_name> -help H g I !
il (] a1 '
L ‘@ 2
T e T pe tcl command |
< > fry |/Block: (35.92) type=cft routethru=1 name=Instruction[ 16]~FF | ‘m+ -
Timing Browser ® H
~ Report 0 Prope: Value E
e —  [099/¢ Show
: sink PCI21]-FF|CE Timing Delay
N Launch Clock Clk (RISE) -
' Data Path Cell | Cell Delay (ns) Net Delay (ns) Cumulative Delay (ns) [=
N 0.1100 0.6639 0.7739
H ) |0.0781 0.1696 1.0197
. : 01301 0.2525 1.4022 =
© Message(0.1.7) | Timing | H

Timing Reports Click Cell Name
Generated by to View In
Tcl Commands Floorplan Editor

Note: Refer to Tcl Timing Report and Flow Commands on page 86 for more information on available
commands. For help on available Tcl commands, type help -category <sdc or timing> inthe Tcl
Command Console.

www.efinixinc.com 7



Efinity Timing Closure User Guide

SDC File Overview

Generally, the steps you follow when creating a new SDC file are:

2. (You can also add multiple files.)

N ook

The following sections go over these steps in detail with examples.

About SDC Files

An SDC file is simply a text file with one constraint per line; however, you need to keep
some rules in mind when creating it:

* The order of the constraints in the SDC file is important. If there are dependencies
between any of the constraints, you must ensure that you have written them in the
correct order for them to be valid.

* If a constraint has incorrect syntax, the software ignores it and issues a warning message.
* For some constraints, the argument order is important for the constraint to be valid.
* The minimum content required in an SDC file is a create clock constraint. You

should always set a clock constraint—even if it is a virtual clock—whenever you create an
SDC file.

@ Important: SDC is case sensitive. If you are using VHDL, which is not case sensitive, be careful when
declaring net names. The Efinity software converts all names to lowercase letters during synthesis.
Therefore, the SDC should use lowercase letters not mixed case or uppercase.

If you do not define an SDC file, the software defaults to creating clocks with a period of 1 ns
for every clock source in your design and does not constrain any I/O pins. It assumes that all
of the clocks it finds are related. The Efinity® timing analyzer then identifies the critical path
based on this default constraint.

Constraint Order

First, define the clocks and other timing assertions in this order:

Primary clocks
Virtual clocks
Generated clocks
Clock groups

A

Input and output delays
Then, define any timing exceptions, in this order:

1. False paths
2. Maximum and minimum delays
3. Multicycle paths

www.efinixinc.com 8



Efinity Timing Closure User Guide

Create an Empty SDC File

You can use the Efinity” Code Editor or any text editor to create an SDC file and save it into
your project directory.

If you are working with a new project, start by creating an empty SDC file. Then, copy and
paste the Interface Designer-generated SDC constraints into this empty file and modify them
to meet your timing requirements.

If you are porting an existing design to Efinix FPGAs, you may already have an SDC file.
You may still want to start with an empty SDC file, copy the Interface Designer-generated
constraints to the new file and modify them as needed, and then add in any additional
constraints from your existing SDC file.

Add an SDC File to Your Project

Add one or more SDC files to your project using these steps:

Choose File > Edit Project.
Click the Design tab.
Click the Add SDC file button next to the SDC box.

Browse to the file you created and click Open.
Click OK.

g oR e

If you add multiple SDC files, the software processes them in the order shown in the table.

Tip: As a shortcut, in the Project pane you can right-click <project name> > Constraint to pop-up a context-
sensitive menu. Choose Add if you already have an SDC file or Create if you want to create a new empty file.

Using Multiple SDC Files

The Efinity software v2023.1 and higher allows you to use multiple SDC files in your project.
You add additional SDC files in the Project Editor. SDC files are processed in the order listed.

During compilation, the software reads the SDC files in order starting from the first listed file
and continuing to the next one(s). The same constraint order rules apply to the SDC file list.
The software displays messages about the SDC file(s) in the Console. The software reads the
files at the beginning of the routing stage. If the software detects any errors in the SDC file(s),
it shows the error, file name, and line number.

www.efinixinc.com 9



Efinity Timing Closure User Guide

Efinity Files You Use to Create Constraints

When you generate constraints in the Interface Designer or compile your project, the
Interface Designer generates the and files in
the outflow directory. You use these files as a reference when you create your SDC file.

. has timing constraints for the design's interface that you build with
the Interface Designer.

°  <project> .pt_timing.rpt is a timing report that shows the timing details for the design's
interface that you built with the Interface Designer. The report groups the timing
information by block type.

This following sections explain how to use these files to create your SDC.

For more information on these files, refer to:
[ ]

For more information on using the Interface Designer, refer to:
°

www.efinixinc.com 10


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF

Efinity Timing Closure User Guide

Constraining Clocks

The first task when building an SDC file is to define your design's clocks and their
relationships. You set constraints to define the clocks and any relationships they have to each
other. Then, you can constrain the I/O pins relative to each clock as needed. The following
sections explain the theory behind defining clocks and their relationships.

[:Q Learn more: The following application notes provide information on clock and reset guidelines:

Defining Clocks

Clock sources can come from interface blocks like PLLs or oscillators, or they can come
from your board to the core through GPIO pins. You define and identify clocks using the
create clockand create generated clock constraints.

The create clock constraint defines a real or virtual clock with a specific duty cycle and
period (ns). Each target can have multiple clocks associated with it.

Example: Define a Clock
This constraint creates a clock, c1k1, with a period of 10 ns:

create clock -period 10 -name clkl [get ports clkl]

Tip: As you may remember from physics class, the clock period is the inverse of the frequency (T = 1/f). So if you
want to specify the period in ns for a 50 MHz clock frequency, you use this calculation:

T =(1/50 MHz) * 1000 Hz/MHz = 20 ns
The -wave form option lets you define the clock's rising and falling edges.

Example: Define a Clock with a Waveform

This example defines a clock with a 10 ns period and 50/50 duty cycle, but the first rising clock edge is phase
shifted 25% to start at 2.5 ns.

create clock -period 10.00 -waveform {2.50 7.50} -name clkl [get ports clkl]

The create generated clock constraint defines a relationship between an internally
generated clock and its source clock. This constraint only supports the divide by,
multiply by,duty cycle, and invert options.

www.efinixinc.com 11


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN040
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN042
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN044
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN046

Efinity Timing Closure User Guide

Example: Creating Clocks

The following example shows the constraints for the base clock c1k and the internally generated clock c1kdiv2.
D Q—

sat S0 N
clkdiv2 clkdiv2 ’—‘ ’—|
clk f

Ons 10 ns 20 ns 30 ns

create clock -name clk -period 10 [get ports clk]
create generated clock -source clk -divide by 2 clkdiv2

Virtual clocks are clocks that are not assigned to a timing node. They are used to represent
off-chip clocks and are used in set _input delayand set output delay constraints.

For more details, refer to:
° on page 52
° on page 53

Using the create_clock Constraint

Any interface block that can be a clock source (PLL, GPIOs, MIPI RX Lane, MIPI
RX/TX PHY, and JTAG) has an auto-generated create clock constraint in the
<project> .pt.sdc. There are several cases:

* Constraints where the software knows the clock value. <project > .pt.sdc includes the
number.

* Constraints where you have to define the clock value (typically, GPIO resources being
used as GCLK, RCLK, and JTAG TCK). These constraints are commented out and have
a placeholder for you to add in the number.

A GPIO with a connection type other than GCLK, RCLK, or JTAG TCK does not have
a template (because the software thinks they are not clocks). You need to write your own
create clock command.

Tip: Common mistakes when using create clock SDC command:

Using the -name option without a target (e.g., get ports) and thereby creating a virtual clock by mistake. The
Efinity software prints an info message when it finds a virtual clock definition.

Using the instance name instead of the clock pin name. The clock pin name you use in the Interface Designer is
the name used in the core timing netlist.

Example: PLL

The PLL Timing Report section shows the details about the clock generated by PLLs in the
interface. Details including clock period, phase shift, and whether the clock is inverted are
listed in the section. You copy the constraints from < project >.pt.sdc into your SDC file,
you do not need to change them.

# PLL Constraints

A A A

create clock -period 10.0000 i hbramClk fb

create_clock -waveform {1.2500 3.7500} -period 5.0000 i_hbramC1k90

Example: GPIO Clock (GCLK and RCLK)

The following sections have create clock constraint templates that you need to modify:

*  GPIO Constraints
* HSIO GPIO Constraints (Titanium only)

www.efinixinc.com 12



Efinity Timing Closure User Guide

To constrain these clocks, replace <USER PERIOD> in the create clock template line
with the clock period and uncomment the line. If necessary, you can define the waveform if
the clock is not using a standard 50/50 duty cycle.

Example: Template

# GPIO Constraints
FHEHA AR
# create clock -period <USER PERIOD> [get ports {clock}]

Example: Your SDC File

create clock -period 10 [get ports {clock}]

Example: Regular GPIO Used as a Clock

You need to use a regular GPIO as a clock, for example if you need a bidirectional signal
that sometimes acts as a clock. In this case you need to write your own create clock
command because the software cannot generate a template for it.

@ Note: If the Efinity software detects a signal that it thinks is a clock but you have not specified the GPIO as
a GCLK or RCLK, the software gives a warning.

@ Important: Efinix does not recommend using a regular GPIO as a clock for Trion FPGAs because it will
have to route to the global clock network (GCLK), which results in additional and variable delay.

For simple inputs and outputs, the instance name and pin name are usually the same (just
to make things easier). A GPIO in inout mode has three pins with different names. The
following example has instance bc1k with 3 pin names for the input, output, and output
enable.

Example: Timing Report for GPIO in inout Mode

—————————— 1.1 HSIO GPIO Timing Report (begin) ----------

Non-registered HSIO GPIO Configuration:

o o o o o +
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
o fom fom fomm fom +
| bclk | bclk IN | GPIO IN | 0.828 | 0.552

| bclk | bclk OUT | GPIO OUT | 2.205 | 1.470 |
| bclk | bclk OE | GPIO _OUT | 1.953 | 1.302

o o o o o +

For this case, the create clock constraint is:

create clock -period 10 -name bclk [get ports bclk IN]

@ Note: The constraint does not use bclk for get ports, it uses the pin name not the instance.

www.efinixinc.com 13



Efinity Timing Closure User Guide

Using the create_generated_clock Constraint

The Interface Designer does not create SDC constraints for generated clocks. Typically, you
implement the generated clock in the core design by dividing down interface clocks. You
need to add constraints for these clocks.

Figure 3: Divide Down Clock

Interface

—»D Q—=o
>
divelk
en_clk
Interface < gen_
Logic
Core
Logic
SDC Commands:
create clock -period 10 -name clk0 [get ports clkin]
create generated clock -source [get ports clkin] -divide by 2 [ get pins divclk|Q ] -name

gen_clk0

Virtual Clocks

A virtual clock represents a system clock that is on the board but is off-chip from the FPGA.
In your SDC files, you should use a virtual clock as a reference clock for the input and output
delay instead of the board clock. The virtual clock provides a clean interface clock and means
you do not have to worry about the shifted waveform on the board. Additionally, the virtual
clock prevents timing analysis from treating the I/O path with overly tight and unrealistic
requirements.

The following figure shows a virtual clock used with the set input delay command.
The oscillator drives the clock pad, c1k in, and the clock pin of an external off-chip
flipflop. The path from the oscillator to the c1k_in pad on the core is through the interface.
The Interface Designer can add extra clock latency and clock uncertainty to that path. To

www.efinixinc.com 14



Efinity Timing Closure User Guide

remove any extra clock latency and uncertainty for the data in pad, you use a virtual
clock.

Figure 4: Virtual Clock with set_input_delay Example

On Board Interface || Core

(Outside FPGA)

data_in
D Q—>» Datapath —»D Q

> >
FF1 FF2

Example: SDC Commands

create clock -period 40 -name clk in [get ports clk in]
create_clock -period 40 -name virtual clk

set input delay -clock virtual clk -max 0.3 [get ports data in]
set input delay -clock virtual clk -min 0.1 [get ports data in]

Notice that virtual clock has the same period and characteristics as c1kin but it does not
have a clock target referring to a net, port, or pin in the netlist. The Efinity software displays
an info message for the virtual clock.

The following figure shows how to use a virtual clock with the set output delay
command.

Figure 5: Virtual Clock with set_output_delay Example

On Board Interface || Core

(Outside FPGA)
—»D Q]

>
FF2

Off Chip Datapath ﬁ
D Q
e clk_in N

FF1

data_out

Example: SDC Commands

create_clock -period 40 -name clk in [get ports clk in]

create clock -period 40 -name virtual clk

set output delay -clock virtual clk -max 0.4 [get ports data out]
set _output delay -clock virtual clk -min 0.3 [get ports data out]

Note: In your SDC file, put the virtual clock and core clock in the same clock group so they are related.
The software can then analyze the transfers from virtual clkto/from clk in. See Clock Relationships
on page 26.

www.efinixinc.com 15



Efinity Timing Closure User Guide

Clock Latency

The source clock latency represents the time it takes to get from the clock source on the
board to the global clock tree on the FPGA. This delay includes the board delay, buffer
delay, and any PLL delay (including PLL compensation delay, which is negative, see

).

Most of the time you do not need to use set _clock latency. However, it is required
when you want to constrain external signals to core registers to capture the latency effect of
the clock signal transferring onto the FPGA.

You need to calculate the delay based on the GPIO mode, PLL mode, and any board delays.

The Efinity software v2023.2 and higher creates a template for the set clock latency
constraint in the <project > .pt.sdc file. The following topics explain how to calculate clock
latency for GPIO and PLL clocks and how to use the template to create the SDC constraints.

GPIO Clock Latency

When using a GPIO as a clock source you need to account for the any board delay and the
GPIO input buffer delay.

Figure 6: GBUF to Register Delay

Interface Core
Global
Clock Tree

From Pad —»ﬁ
GCLK >
PN ]
GPIO Delay Clock
Network
Delay |
Clock Insertion Delay

The SDC constraint formulas for the receive clock delay are:

set clock latency -source -setup <max calculation> <clock ports>
set clock latency -source -hold <min calculation> <clock ports>

The equations are:
<max calculation> = <max board constraint> + GPIO_CLK INj.x
<min calculation> = <min board constraint> + GPIO_CLK INi,

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 16


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN042
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN042

Efinity Timing Closure User Guide

Example: Setting GPIO Clock Latency

You need to define the clock latency before the core clock pin c1k. This example assumes that the clock and data
traces on the board are well matched; therefore, there is no external board delay.

The GPIO clock buffer delays are shown in the Excerpt of <project>.pt_timing.rpt: (non-registered GPIO table):

Non-registered HSIO GPIO Configuration:

o o B et e tom tom +
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
o R ittt B o o +
| clk | clk | GPIO CLK IN | 0.828 | 0.552
| i | i | GPIO_IN | 0.828 | 0.552
| o | o | GPIO OUT | 2.205 | 1.470
e B it fommm ————— R ittt R ittt +

The <project>.pt.sdc template is:

# Clock Latency Constraints
igddsasisssssiai sz isdisdsti
# set clock latency -source -setup <board max + 0.828> [get ports {clk}]
# set _clock latency -source -hold <board min + 0.552> [get ports {clk}]
There is no board delay in this example, therefore, the equations are:
<max calculation> =0+ 0.828 = 0.828
<min calculation> =0 + 0.552 = 0.552
The resulting constraints are:

set _clock latency -source -setup 0.828 [get ports clk]
set clock latency -source -hold 0.552 [get ports clk]

www.efinixinc.com 17



Efinity Timing Closure User Guide

PLL Local Feedback Clock Latency

When using a PLL as a clock source you need to account for the any board delay, the GPIO
input buffer delay (for the PLL's reference clock pin), and the PLL compensation delay.

When the PLL is in local feedback mode, the compensation delay is zero.

Figure 7: PLL Local Feedback Mode Delay

From Pad
pll_clkin

Interface __Core Clocks are in phase, shifted by the
Global clock insertion delay
Clock Tree
CLKOUT :
—>> Delay —» «— : : :

- CLKOUT

Clock Insertion Delay
The SDC constraint formulas for the receive clock delay are:

set _clock latency -source -setup <max calculation> <clock ports>
set clock latency -source -hold <min calculation> <clock ports>

The equations are:
<max calculation> = <max board constraint> + GPIO_INy.x - <PLL compensation >
<min calculation> = <min board constraint> + GPIO_IN,y;, - <PLL compensation >

The Efinity software v2023.2 and higher calculates the GPIO input buffer and PLL
compensation delays and provides them in a template in the <project > .pt.sdc file. You still
need to add any board delays if needed.

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 18



Efinity Timing Closure User Guide

Example: Setting PLL Local Feedback Clock Latency

In this example, the PLL clock output is called c1k. This example assumes that the clock and data traces on the
board are well matched; therefore, there is no external board delay.

For the GPIO_IN delays, this example uses the values for the i pin.

The PLL compensation delay is 0 in this mode.

Excerpt of <project>.pt_timing.rpt:

Non-registered HSIO GPIO Configuration:

o o B et e tom tom +
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
o o o o o +
| i | i | GPIO_IN | 0.828 | 0.552
| o | o | GPIO_OUT | 2.205 | 1.470
o o B o o +

The <project>.pt.sdc template is:

# Clock Latency Constraints
igddsaasissasa sttt
# set clock latency -source -setup <board max + 0.828> [get ports {clk}]
# set clock latency -source -hold <board min + 0.552> [get ports {clk}]
There is no board delay in this example, therefore, the equations are:
<max calculation> = 0 + 0.828= 0.828
<min calculation> =0 + 0.552 = 0.552
The resulting constraints are:

set clock latency -source -setup 0.828 [get ports clk]
set _clock latency -source -hold 0.552 [get ports clk]

www.efinixinc.com 19



Efinity Timing Closure User Guide

PLL Core Feedback Clock Latency

When using a PLL as a clock source you need to account for the any board delay, the GPIO
input buffer delay (for the PLL's reference clock pin), and the PLL compensation delay.

Figure 8: Core Feedback Mode Delay

Interface Core Clocks are in phase, shifted by the
Tciobal clock insertion delay
Clock Tree
From Pad CLKOUT piekin || [ [ ]|
pll_clkin : : : : :
> Delay—» a— | i
owour | | [ 1 [ 11|
—_——— ; ; ; ; ;

Clock Insertion Delay

When the PLL is in core feedback mode, the compensation delay is equal to the clock

network delay.

The SDC constraint formulas for the receive clock delay are:

set clock latency -source -setup <max calculation> <clock ports>
set_clock latency -source -hold <min calculation> <clock ports>

The equations are:
<max calculation >

<min calculation >

<max board constraint> + GPIO_IN, - <PLL compensation >

<min board constraint> + GPIO_INyi, - <PLL compensation >

The Efinity software v2023.2 and higher calculates the GPIO input buffer and PLL
compensation delays and provides them in a template in the <project>.pt.sdc file. You still
need to add any board delays if needed.

www.efinixinc.com 20



Efinity Timing Closure User Guide

Example: Setting PLL Core Feedback Clock Latency

In this example, the PLL clock output is called c1k. This example assumes that the clock and data traces on the
board are well matched; therefore, there is no external board delay.

Excerpt of <project>.pt_timing.rpt:

—————————— 1. PLL Timing Report (begin) ----------

B it R ittt o B ittt T e e o +
| PLL | Resource | Reference | ... | PLL Compensation | PLL Compensation |
| Instance| | Clock | ... | Delay Max (ns) | Delay Min (ns)

B it R ittt o e o +
| pll | PLL TRO | external | | 4.310 | 2.155

Fo— = fom fom R e o +
t-————— B et e o +

| Clock | Period (ns) | Phase Shift (degrees) |

o B B it ettt e +

| clk | 10.0000 | 0

o fom e o +

Non-registered GPIO Configuration:

o o tom— tom tom +

| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
o R ittt o o o +

| i | i | GPIO IN | 1.396 | 0.698 |

| refclk | refclk | GPIO IN | 1.476 | 0.738

| o | o | GPIO OUT | 3.829 | 1.915 |
o o tom— tom tom +

The <project>.pt.sdc template is:

# Clock Latency Constraints
G
# set clock latency -source -setup <board max -2.834> [get ports {clk}]
# set clock latency -source -hold <board min -1.457> [get ports {clk}]
The equations are:
<max calculation>=0-2.834 = -2.834
<min calculation> =0 - 1.457 = -1.457
The numbers are negative because the PLL compensation is so much larger than the input delay.
The resulting constraints are:

set clock latency -source -setup -2.834 [get ports clk]
set clock latency -source -hold -1.457 [get ports clk]

www.efinixinc.com 21



@ Note: Trion FPGAs do not have external feeddback mode.

Figure 9:

From Pad
pll_clkin

From Pad
extfb

Efinity Timing Closure User Guide

PLL External Feedback Clock Latency

When using a PLL as a clock source you need to account for the any board delay, the GPIO
input buffer delay (for the PLL's reference clock pin), and the PLL compensation delay.

External Feedback Mode Delay

Interface Core
Global

4’>

Zero Delay from the FPGA, only Board Trace Delay

To Pad

Clock Tree K
CLKOUT > clkout  Clocks are in phase and in sync

pll_clkin

PLL ’ ' ' |
owour L | LI LT L] 1]

When the PLL is in external feedback mode, the compensation delay is equal to GPIO_IN
plus the clock network delay plus GPIO CLK_OUT.

The SDC constraint formulas for the receive clock delay are:

set clock latency -source -setup <max calculation> <clock ports>
set clock latency -source -hold <min calculation> <clock ports>

The equations are:

<max calculation> = <max board constraint> + GPIO_INy,, - <PLL compensation >

<min calculation> = <min board constraint> + GPIO_INy;i, - <PLL compensation >

The Efinity software v2023.2 and higher calculates the GPIO input buffer and PLL
compensation delays and provides them in a template in the <project>.pt.sdc file. You still

need to add any board delays if needed.

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 22



Efinity Timing Closure User Guide

Example: Setting PLL External Feedback Clock Latency

In this example, the PLL clock output is called c1k. This example assumes that the clock and data traces on the
board are well matched; therefore, there is no external board delay.

Excerpt of <project>.pt_timing.rpt:

fomm B it fomm R e ettt e e e B +
| PLL | Resource | Reference | ... | PLL Compensation | PLL Compensation |

| Instance| | Clock | ... | Delay Max (ns) | Delay Min (ns)

fomm B it fomm R ittt T o +

| pll | PLL BLO | external | ... | 5.379 | 3.541

B it R i o B ittt T e e o +

o fom e o o fom +
| Clock | Period (ns) | Enable Dynamic Phase Shift | Phase Shift (degrees) | Inverted |
fommm = o o o B it +
| clk | 10.0000 | False | 0.0 |  false |
o B o B it it R ittt +
—————————— PLL Timing Report (end) ----------

—————————— 2.1 HSIO GPIO Timing Report (begin) ----------

Clkout GPIO Configuration:

o o B ettt L e o o o +
| Instance Name | Clock Pin | Parameter | Max (ns) | Min (ns) | Reference Pin Name |
o fom e fom - fomm fomm o +
| clkout | clk | GPIO CLK OUT | 2.205 | 1.470 |  c¢lk~CLKOUT~18~1

| refclk |  refclk |  GPIO_IN | 0.828 | 0.552 |

| pll fbk | pll fbk | GPIO_IN | 0.828 | 0.552 |

o o B ittt e e o o o +

The <project>.pt.sdc template is:

# Clock Latency Constraints
ifdddsssasdddsddadddddddddddi
# set clock latency -source -setup <board max -4.551> [get ports {clk}]
# set clock latency -source -hold <board min -2.989> [get ports {clk}]
The equations are:
<max calculation> =0 - 4.551 = -4.551
<min calculation> =0 - 2.989 = -2.989
The numbers are negative because the PLL compensation is so much larger than the input delay.
The resulting constraints are:

set clock latency -source -setup -4.551 [get ports clk]
set clock latency -source -hold -2.989 [get ports clk]

www.efinixinc.com 23



Efinity Timing Closure User Guide

PLL Cascading Clock Latency

When using cascaded PLLs as a clock source you need to account for the any board delay,
the GPIO input buffer delay (for the PLL's reference clock pin), and the PLL compensation

delay.

Note: You should cascade a maximum of 1 PLL, that is, the source PLL and the
cascaded one.

Figure 10: PLL Cascade Delay

Interface Core

[ Global
Clock Tree

From Pad
pll_clkin

CLKOUT

CLKOUT

>

Clock Insertion Delay
The SDC constraint formulas for the receive clock delay are:

set clock latency -source -setup <max calculation> <clock ports>
set clock latency -source -hold <min calculation> <clock ports>

The equations for the source PLL are:

< max calculation> = <max board constraint> - <source PLL clock latency >

<min calculation> = <min board constraint> - <source PLL clock latency >

The equations for the cascaded PLL are:

<max calculation> = <source PLL clock latency > n.x + <cascaded PLL clock latency > yax
<min calculation> = <source PLL clock latency> wmin + < cascaded PLL clock latency > wmin

The Efinity software v2023.2 and higher calculates the GPIO input buffer and PLL
compensation delays and provides them in a template in the <project > .pt.sdc file. You still
need to add any board delays (if needed).

For the cascaded PLL, the software includes the clock network delay in the PLL
compensation delay value.

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 24



Efinity Timing Closure User Guide

Example: PLL Cascading Clock Latency

In this example, the PLL clock output is called c1k. This example assumes that the clock and data traces on the
board are well matched; therefore, there is no external board delay.

Excerpt of <project>.pt_timing.rpt:

—————————— 1. PLL Timing Report (begin) ----------

B ittt L e R ittt B ittt L e +- B ittt e e e T
o +
| PLL Instance | Resource | Reference Clock | ... | PLL Compensation Delay Max (ns) | PLL
Compensation Delay Min (ns) |
B ettt tom Bt it +- —
o +
| src_pll | PLL BLO | external | | 2.340
1.519 |
| casc pll | PLL BL1 | core [ cco | 2.341
1.516 - |
B ettt o Bt it +- —
o +
B ettt B et e B it o tom +
| Clock | Period (ns) | Enable Dynamic Phase Shift | Phase Shift (degrees) | Inverted |
B ittt L e B e B it ettt e R ittt +
| src pll clk | 10.0000 | False | 0.0 | false
| casc_pll clk | 10.0000 | False | 0.0 | false
B ittt e B o B it it R ittt +
—————————— PLL Timing Report (end) --—-------—-
—————————— 2. GPIO Timing Report (begin) ----------
Non-registered GPIO Configuration:
o o o o o +
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
o fom fom fomm fom +
| refclk | refclk | GPIO IN | 0.828 | 0.552
e B it o B s e T R ittt +

The <project>.pt.sdc template is:

# Clock Latency Constraints

idsasssassatiasadaassRiiainssi

set_clock latency -source -setup <board max -1.517> [get_ports {src pll clk}]
set clock latency -source -hold <board min -0.967> [get ports {src_pll clk}]
set clock latency -source -setup <board max + 0.004> [get ports {casc pll clk}]
set clock latency -source -hold <board min + 0.003> [get ports {casc pll clk}]

H= = S

The equations for the source PLL are:
<max calculation>=0-1517 =-1.517
<min calculation> = 0-0.967 = -0.967
The equations for the cascaded PLL are:
<max calculation>=0-1.517 + 0.004 =-1.513
<min calculation> =0 -0.967 + 0.003 = -0.964
The numbers are negative because the PLL compensation is so much larger than the input delay.
The resulting constraints are:
set_clock latency -source -setup - 1.517 [get_ports {src_pll clk}]
set _clock latency -source -hold - 0.967 [get ports {src pll clk}]

set_clock latency -source -setup - 1.513 [get ports {casc pll clk}]
set clock latency -source -hold - 0.964 [get ports {casc pll clk}]

www.efinixinc.com 25



®

Efinity Timing Closure User Guide

Clock Relationships

By default, the Efinity” software assumes that all clocks are related and it analyzes the timing
between all clock domains and optimizes all possible paths.

If you set constraints for two clocks, and do not cut the path between them, the software tries
to find the tightest clock-to-clock delay requirement between them. If the timer cannot find a
common clock period for the two clocks after 1,000 clock cycles, it determines that they are
non-expandable. The timer gives these clocks a default constraint of 0.01 ns. If you want to
override this default, use the constraint.

Important: Efinix recommends that you explicitly set constraints to indicate unrelated clocks. That way
the software does not perform unnecesssary path optimization, which can lead to problems with closing

Setting Constraints for Unrelated Clocks

The first step is to analyze your design to determine which clocks are related and which are

not. You then use one of the following constraints:

* set clock groups—Use when you want to specify bidirectional constraints between
clocks. Generally, this is the simplest method, and the fastest for the Efinity” timer to
analyze. (See on page 54.)

° set false path—Use when you want to be specific about which clocks connect
with which end points. This constraint is one-directional, so you need to specify two
constraints, one for each direction. (See on page 55.)
Typically, you use these constraints when you want to indicate timing exceptions for a
subset of timing end points in one of the clock domains.

Using the set_clock_groups Constraint

Use this constraint to define the relationship between the clocks and generated clocks you
defined. Typically, only clocks from the same source are related to each other. For example,
clock outputs from the same PLL or clocks from a single clock pin. Any other clocks should
be specified as unrelated.

Unrelated clock groups can be exclusive or asynchronous.

*  Exclusive clock groups do not operate at the same time as each other.

* Asynchronous clock groups have no timing relationship between them, for example,
clocks driven from two independent PLLs.

You use the —exclusive or —asynchronous options to define how to treat the clock
groups. The Efinity” software treats both options identically, but some third-party EDA
tools use these constraints when checking for proper clock domain crossing logic. Therefore,
it is a good idea to use the correct option for the relationship.

To illustrate how to set constraints using set clock groups, consider a design with four
clocks, c1k1, c1k2, c1k3, and c1k4. After design analysis, you determine that c1k1 and
c1k? are related to each other and c1k3 and c1k4 are unrelated to all others. There are two
ways to use the set clock groups constraint, both of which are correct.

Example: Use a Single Constraint

The first method is to define the clocks and groups with a single constraint:

set clock groups -exclusive -group {clkl clk2} -group {clk3} -group {clk4}

www.efinixinc.com 26



Efinity Timing Closure User Guide

This constraint defines the relationship between clocks c1k1, c1k2, c1k3, and c1k4.If
you later add an additional clock, c1k5, and do not update the constraints, the software
assumes that c1k5 is synchronous to all other clocks.

Example: Use Separate Constraints

The second method is to use separate constraints for each group:

set clock groups -exclusive -group {clkl clk2}
set clock groups -exclusive -group {clk3}
set _clock groups -exclusive -group {clk4}

In this case, each set clock groups constraint only specifies one group, which tells the
software that the clocks in a given group are asynchronous to all others. With this method,
if you later add c1k5, the software would consider it to be asynchronous to c1k1, c1k2,
clk3, and c1k4.

It can be tempting to use the second method in case you forget a clock or add one later.
However, whichever method you choose, Efinix recommends that you always include
constraints for each clock in your design and that you update your SDC file when you add
clocks.

Using the set_false_path Constraint

The set false path constraint lets you be more specific when setting clock constraints.
This constraint lets you cut the connection between a starting point (from) and an ending
point (to). The from and to can be registers, I/O, or clocks.

The following constraint cuts the connection from c1k1 to c1k2:

set false path -from clkl -to clk2

Remember, though, that this only cuts the connection in one direction. To specify that there
is no relationship between c1k1 and c1k2, you also need to use the following constraint:

set false path -from clk2 -to clkl

Example: Using set_false_path Constraints

A complete example of the constraints needed for our hypothetical four-clock design is:

set false path -from clkl -to clk3
set false path -from clkl -to clk4
set false path -from clk2 -to clk3
set false path -from clk2 -to clk4
set false path -from clk3 -to clkl
set false path -from clk3 -to clk2
set false path -from clk3 -to clk4
set false path -from clk4 -to clkl
set false path -from clk4 -to clk2
set false path -from clk4 -to clk3

www.efinixinc.com 27



Efinity Timing Closure User Guide

When you want to cut paths between clock domains, as in this simple example, Efinix
recommends that you use set _clock groups instead of set false path. The
set false path constraint becomes more useful when you want to specify exceptions
for registers or I/0, or if you want to cut only one direction of a clock domain pair.

Example: Cut Path to a Port or Pin
To cut only the path from c1k1 to a port named testout:
set false path -from clkl -to [get ports testout]

To cut only the path from c1k1 to a pin named testout:

set false path -from clkl -to [get pins instance|testout]

Clock Synchronizers

If you have asynchronous clock groups and want to transfer data between them, you need to
add synchronizing registers (also known as synchronizers). Synchronizers are register chains
in the receiving clock domain that capture data from the sending domain. They prevent meta-
stable events from propagating into the receiving clock domain.

To designate a register as a synchronizer, use the async_reg synthesis attribute.

When async_reg is true, synthesis does not perform optimization to reduce, merge,
or duplicate these registers. During place and route, the software keeps these registers close
together to improve synchronization between asynchronous clock domains.

Verilog HDL:

(* async_reg = "true" *) reg [1:0] x;

VHDL:

attribute async reg: boolean;
attribute async reg of x : signal is true;

www.efinixinc.com 28



Efinity Timing Closure User Guide

Metastable Synchronizer Circuit

This example shows a synchronizer, which is a circuit that stabilizes an input signal that may
produce a metastable output. If possible, the registers in a synchronization chain need to

be placed close to each other. Efinix recommends that you use the async_reg synthesis
attribute for synchronizer registers.

In the following figure, FF1 and FF2 should be close together. Use the async_reg synthesis
attribute for the FF1 and FF2 registers in the RTL netlist., which tells the software to keep
those registers close together during place-and-route.

Figure 11: Metastability Synchronizer Example

max_delay = 2 * (fastest clock’s period)

max_delay
Valid Shot——»D Q—F——»D Q“»PD Q-e—P»PD Q- o»
— —> > >
FF1 FF2
XOR
Data——»D Q-——F»D Q >
Source Clock —e—> >
ENA
Result Clock \—

How to Set Clock Uncertainty

Trion® and Titanium FPGAs have a default clock uncertainty for setup and hold analysis.
You can view the clock uncertainty in the Static Timing Analysis Report (< project

name > timing.rpt). If the you have not set the uncertainty, the report uses the default value.
For example, the T8 has 140 ps for setup and 50 ps for hold. You can modify these defaults
by including the set clock uncertainty command in your SDC file.

One reason to add uncertainty is to account for the quality of the clock that feeds into the
FPGA, or because you want the design to have more margin. However, keep in mind that
clock uncertainty comes from the timing slack reported for your design, so increasing the
uncertainty makes it harder to meet timing.

Example: Add 60 ps Clock Uncertainty
You want to add 60 ps to the default uncertainty for c1k for a T8 design. Add this command to your SDC file:

set clock uncertainty -to clk -setup 0.06

The Efinity® software uses 200 ps of clock uncertainty for setup analysis.

See on page 55 for details.

www.efinixinc.com 29



Efinity Timing Closure User Guide

Constraining I/0O

As discussed earlier, you need to constrain the connections from the interface to the core. All
connections between the core and interface are considered to be 7/O for timing analysis.

If a given interface block is synchronizing the connection to the core, the Interface Designer
SDC template includes the set _input delayand set output delay SDC
constraints that you need to use. When it is not synchronized, you need to add external board

delays to the values the Interface Designer shows.

Note: For Trion® and Titanium FPGAs, most interface connections are synchronous. The exceptions are

GPIO blocks in bypass mode and LVDS blocks in x1 bypass mode.

Constrain I/O pins to be timing-equivalent to a register that is clocked with the real or

virtual clock you defined. Then, use the

Example: Constraining 1/O Pins

In this example, sysclkis a virtual clock.

Figure 12: Clock and I/O Pin Constraint Example

ina —D Q—D Q— outa ClkJ ‘ | ‘ | ‘ r
e DT sk [ | [ | [ [

Ons 10 ns 20 ns 30 ns

Use these constaints to define the clock and set the delays for the pins:

create clock -name clk -period 10 [get ports clk]

create clock -name sysclk -period 10

set input delay -clock sysclk -max 2.4 [get ports inal
set output delay -clock sysclk -max 1.2 [get ports outa]

constraints.

Constraining Synchronous Inputs and Outputs

Synchronous inputs and outputs are interface signals that are connected to synchronous
elements in the FPGA's periphery. Because the Interface Designer knows how the clock
and data signals are connected to the synchronous elements, the software can automatically

determine the precise delays for the set _input delayand set output delay
constraints. These delays are provided in the <project name > .pt.sdc file. When the Efinity
software generates the constraints for synchronized output and input pins, it creates a

set _output delayor set input delay that captures the delay values of the
synchronous element and the core clock delay of the FPGA.

When the Efinity software models the timing, the minimum and maximum refer to different
timing corners (fast corner and slow corner), not the minimum/maximum potential delay in
one timing corner.

www.efinixinc.com 30



Efinity Timing Closure User Guide

Understanding Input Delay Values

The following figure shows an example of a peripheral register, clock, clock-to-output delay,
and data path.

Figure 13: Input Delay Example

Interface || Core

D DIN Clock
OATA Plle—tp Tree
IN Input Delay Constraint . HDLD
< <
DCLKﬁINTERFACE CLK
Peripheral
Register

® tco is the peripheral register's clock-to-output delay.
® Dpara is the delay from the peripheral register to the core.
* Dcix INTERFACE is the clock delay to the peripheral register.

So the equations for the output delay are:
Maximum input delay = DpaTa (max) + tco + DcLk INTERFACE (max)
Minimum input delay = DpaTa (min) + tco + DLk INTERFACE (min)

For example:

Parameter Max Min
Dpata 2 1
tco 2 1
DCLK INTERFACE 2 1

* Maximum inputdelay =2 +2+2=6
* Mininuminputdelay =1+ 1+ 1=3

The generated constraint has the ~-reference pin option, which lets the software
automatically calculate the core clock network delay.

Understanding Output Delay Values

The following figure shows an example of a peripheral register, clock, setup/hold, and data
path.

Figure 14: Output Delay Example

Interface || Core

Clock
D DOUT
DATA teo Tree
Output Delay ConstrairD
DCLKJNTERFACE CLK
Peripheral
Register

* tsprUp Is the peripheral register's setup requirement.
* tyoLD is the peripheral register's hold requirement.

www.efinixinc.com 31




Efinity Timing Closure User Guide

* Dpara is the delay from the core to the peripheral register.
* Dcrk INTERFACE is the clock delay to the peripheral register.

So the equations for the output delay are:
Maximum output delay (setup) = Dpata (max) + tseTup - DcLk INTERFACE (max)
Minimum output delay (hold) = DD ATA (min) - tHOLD - DCLKﬁINTERF ACE (min)

For example:

Parameter Max Min
Dpata 2 1
tseTuP 2 -
tHotp - 1
DCLK_INTERFACE 2 1

*  Maximum output delay =2 + 2-2 =2
* Mininum output delay = 1-1-1 = -1

The generated constraint has the ~-reference pin option, which lets the software
automatically calculate the core clock network delay.

Set Constraints
To set a constraint for synchronous inputs and outputs in your constraints file:

1. Go to Result > Interface in the Efinity” dashboard.

2. Double-click <project name> .pt.sdc to open the report.

3. Copy the set input delayand set output delay constraints and paste them
into your constraints file.

Example: set_output_delay Constraints

set output delay -clock Clk -reference pin [get ports {Clk~CLKOUT~14~1}] -max 0.287
[get_ports {MemWrite}]
set output delay -clock Clk -reference pin [get ports {Clk~CLKOUT~14~1}] -min 0.161

[get ports {MemWrite}]

www.efinixinc.com 32



Efinity Timing Closure User Guide

Constraining Unsynchronized Inputs and
Outputs

Unsynchronized inputs and outputs are simple GPIO blocks in bypass mode or LVDS blocks
in x1 bypass mode. For these blocks, you need to factor in any external board delays when
calculating the -min and -max values for the input and output delays.

For blocks in bypass mode, the constraint clock is external to the FPGA:

* A receive clock is generated outside of the FPGA and is passed to the FPGA through a
GPIO pin.

* A forward clock is generated by the FPGA and sent off chip though a GPIO pin in clock
out mode.

Both receive and forward clocks synchronize the signal off chip.

For unsynchronized input or output signals, the GPIO block bypasses the register. GPIO IN
represents a combinational delay from the pad through the I/O buffer. GPIO_OUT represents
a combinational delay to the pad through the I/0O buffer from either the output or output
enable signals.

The general procedure for constraining unsynchronized inputs and outputs is:

1. Determine which mode you are constraining (input receive, input forward, output
receive, or output forward).

2. Find the mininum (fast) and maximum (slow) timing values in the Interface Designer
report file <design name> .pt_timing.rpt.

3. Use formulas (provided in later sections) to calculate the delay.

4. Add the constraint to your SDC file.

Receive Clock

A receive clock is passed to the FPGA design by configuring a GPIO in input mode
and and setting the connection type to GCLK or RCLK. GPIO IN CLK represents the
combinational delay from the pad through the I/O buffer to the global clock tree.

Figure 15: Receive Clocks

FPGA Board Trace/
External Device

W Receive Clock 4—1

www.efinixinc.com 33



Efinity Timing Closure User Guide

Forward Clock Using GPIO in clkout Mode

A forward clock is generated by the FPGA design and sent off chip by configuring a GPIO in
clkout mode. GPIO CLK_OUT represents the combinational delay through the FPGA clock

tree and the I/O buffer to the pad.
Figure 16: Forward Clocks

FPGA Board Trace/
External Device

41 Forward Clock 4—I

Forward Clock Using GPIO in output Mode

Sometimes the clock generated by the FPGA is only used in the external system and is not
a clock in the FPGA design. In this case, you use a regular GPIO block in output mode to

forward the clock off chip.

Figure 17: Forward Clocks

FPGA Board Trace/
External Device

Forward Clock 4—I

www.efinixinc.com

34



Efinity Timing Closure User Guide

Input Receive Clock Delay
This example shows how to set constraints for an input receive clock.

Figure 18: Receive Clock Delay (GPIO Input, Register Bypass)

Core Interface Board Trace/
External Device

GPIO_IN
< l
ﬂ GPIO_CLK_IN '1

The SDC constraint formulas for the receive clock delay are:

set input delay -clock <clock> -max <max calculation> <ports>
set_input delay -clock <clock> -min <min calculation> <ports>

The equations are:

< max board constraint> + GPIO_INp,,x

<max calculation>
<min calculation> = <min board constraint> + GPIO_INp;,

The following example shows how to calculate the delays and set the constraints.

Example: Constraining Input Receive Clock

You want to constrain the din input with respect to clock c1kin with a max board constraint of 4 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Designer timing report file
is:

Non-registered GPIO Configuration:

o fom fom e fomm fomm +
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
o tom tom e tom tom +
| clkin | clkin | GPIO CLK IN | 1.954 | 0.526

| din | din | GPIO IN | 1.954 | 0.526 |
| dout | dout | GPIO OUT | 4.246 | 1.081 |
o fom fom e fomm fomm +

The equations are:
<max calculation> =4 + 1.954 = 5.954
<min calculation> =2 + 0.526 = 2.526

The resulting constraints are:

set input delay -clock clkin -max 5.954 din
set input delay -clock clkin -min 2.526 din

Note: The GPIO CLK_IN delayis accounted forinthe set _clock latency constraint. Therefore, you
do not need to include it in the calculation for set _input delay. Refer to on page 16.

www.efinixinc.com 35



Output Receive Clock Delay

This example shows how to set constraints for an output receive clock.

Figure 19: Receive Clock Delay (GPIO Output, Register Bypass)

Core

GPIO_OUT

Interface

Board Trace/
External Device

<ﬂ GPIO_CLK_IN

The SDC constraint formulas for the receive clock delay are:

L3

set output delay -clock <clock> -max <max calculation> <ports>
set output delay -clock <clock> -min <min calculation> <ports>

The equations are:

<max calculation>

<min calculation> = <min board constraint> + GPIO_OUT i,

< max board constraint> + GPIO_OUT .«

The following example shows how to calculate the delays and set the constraints.

Example: Constraining Output Receive Clock

You want to constrain the dout output with respect to clock c1kin with a max board constraint of 4 ns and a min

board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Design report file is:

Non-registered GPIO Configuration:

fom fomm
| Instance Name | Pin Name
o tom
| clkin |  clkin

| din | din

| dout | dout

fom fomm

The equations are:

+———+— +

GPIO CLK IN
GPIO IN
GPIO OUT

<max calculation> = 4 + 4.246 = 8.246
<min calculation> =2 + 1.081 = 3.081

The resulting constraints are:

set output delay -clock clkin -max 8.246
set output delay -clock clkin -min 3.081

Note: The GPIO CLK_IN delayis accounted forinthe set _clock latency constraint. Therefore, you
do not need to include it in the calculation for set _output_delay. Referto

fomm fomm +
| Max (ns) | Min (ns) |
B B +
| 1.954 | 0.526 |
| 1.954 | 0.526 |
| 4.246 | 1.081
fomm fomm +
dout

dout

on page 16.

www.efinixinc.com

Efinity Timing Closure User Guide

36



Efinity Timing Closure User Guide

Input Forward Clock Delay (GPIO clkout)

This example shows how to set constratints for an input forward clock.

ﬂ Warning: Most designs do not need to use this method. For high-performance designs, you should use
the GPIO registers and follow the instructions in on page

30.

Figure 20: Forward Clock Delay (GPIO Input, Register Bypass)

Core Interface Board Trace/
External Device

GPIO_IN

<
«1 GPIO_CLK_OUT lﬂ

The SDC constraint formulas for the foward clock delay are:

set input delay -clock <clock> -reference pin <clkout interface name> \
-max <max calculation> <ports>

set_input delay -clock <clock> -reference pin <clkout interface name> \
-min <min calculation> <ports>

Reference Pin

With forward clocks, you use the ~-reference pin option to include the clock latency
delay in the I/O constraint. The -reference pin pin target is a clkout pad that the
software automatically adds to the netlist. The <project>.pt_timing.rpt file shows the
reference pin name.

Calculate the min and max constraints using the following equations:
< max calculation> = <max board constraint> + GPIO IN.x + GPIO CLK OUT .«
<min calculation> = <min board constraint> + GPIO IN;, + GPIO_CLK OUT i,

The following example shows how to calculate the delays and set the constraints.

Example: Constraining Input Forward Clock

You want to constrain the i input with respect to clock c1k_fwd with a max board constraint of 2 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the <project>.pt_timing.rpt file is:

Clkout GPIO Configuration:

o - - - - o +
| Instance Name | Clock Pin | Parameter | Max (ns) | Min (ns) | Reference Pin Name |
o o B it e e e e it e it o +
| clk fwd | clk | GPIO CLK OUT | 2.205 | 1.470 |  clk~CLKOUT~219~1
o tom tom e B B o +
Non-registered HSIO GPIO Configuration:

o B o - - +

| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |

o e it o e it e it +

| clk | clk | GPIO CLK IN | 0.828 | 0.552

| i | i | GPIO IN | 0.828 | 0.552 |

| o | o | GPIO _OUT | 2.205 | 1.470

o B o - - +

www.efinixinc.com 37



Efinity Timing Closure User Guide

The equations are:
<max calculation> =2 + 0.828 + 2.205 = 5.033

<min calculation> =2 + 0.552 + 1.470 = 4.022
The resulting constraints are:

set input delay -clock clk -reference pin clk~CLKOUT~219~1 -max 5.033 [get ports {i}]
set input delay -clock clk -reference pin clk~CLKOUT~219~1 -min 4.022 [get ports {i}]

www.efinixinc.com 38



Efinity Timing Closure User Guide

Output Forward Clock Delay (GPIO clkout)

This example shows how to set constratints for an output forward clock.

ﬂ Warning: Most designs do not need to use this method. For high-performance designs, use the GPIO
registers and follow the instructions in on page 30.

Figure 21: Forward Clock Delay (GPIO Output, Register Bypass)

Core Interface Board Trace/
External Device

GPIO_OUT

< I
'1 GPIO_CLK_OUT T

The SDC constraint formulas for the forward clock delay are:

set output delay -clock <clock> -reference pin <clkout interface name> \
-max <max calculation> <ports>

set_output_delay -clock <clock> -reference pin <clkout interface name> \
-min <min calculation> <ports>

Calculate the min and max constraints using the following equations:
<max calculation> = <max board constraint> + GPIO_OUTp,x - GPIO_CLK OUT 55
<min calculation> = <min board constraint> + GPIO_OUT y;, - GPIO_CLK _OUT,y;,

The following example shows how to calculate the delays and set the constraints.

Example: Constraining Output Forward Clock

You want to constrain the o output with respect to clock c1k fwd with a max board constraint of 2 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Designer timing report file
is:

Clkout GPIO Configuration:

tom tom e B B o +
| Instance Name | Clock Pin | Parameter | Max (ns) | Min (ns) | Reference Pin Name |
o - - - - o +
| clk fwd | clk | GPIO CLK OUT | 2.205 | 1.470 |  ¢clk~CLKOUT~219~1
o o o e it e it o +
Non-registered HSIO GPIO Configuration:

Bt B o —— B B +

| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |

o B o - - +

| clk | clk | GPIO CLK IN | 0.828 | 0.552

| i | i | GPIO_IN | 0.828 | 0.552

| o | o | GPIO OUT | 2.205 | 1.470

Bt B o —— B B +

The equations are:

<max calculation> =2 + 2.205 - 2.205 =2
<min calculation> =2+ 1.470-1.470 =2
The resulting constraints are:

set output delay -clock clk -reference pin clk~CLKOUT~219~1 -max 2 [get ports {o}]
set output delay -clock clk -reference pin clk~CLKOUT~219~1 -min 2 [get ports {o}]

www.efinixinc.com 39



Efinity Timing Closure User Guide

Input Forward Clock Delay (GPIO output)

This example shows how to set constratints for an input forward clock.

Figure 22: Forward Clock Delay (GPIO Input, Register Bypass)

Core Interface Board Trace/
External Device

_ | GPIO_IN (Data)
“] lT

GPIO_OUT (Clock)

The SDC constraint formulas for the foward clock delay are:

set input delay -clock <clock> -reference pin <clkout interface name> \
-max <max calculation> <ports> -

set _input delay -clock <clock> -reference pin <clkout interface name> \
—min <min calculation> <ports>

Reference Pin

With forward clocks, you use the ~-reference pin option to include the clock latency
delay in the I/O constraint. The reference pin target is the pin name of the GPIO output
used for the clock.

Constraint Calculation
Calculate the min and max constraints using the following equations:

<max calculation> = <max board constraint> + GPIO INax
+ < GPIO_OUT for clock pad> 1ax

<min calculation> = <min board constraint> + GPIO_INp;,
+ < GPIO_OUT for clock pad> win

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 40



Efinity Timing Closure User Guide

Example: Constraining Input Forward Clock

You want to constrain the i input with respect to clock c1k_fwd with a max board constraint of 2 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Designer timing report file
is:

Non-registered HSIO GPIO Configuration:

it e tom e tom— tom— +
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
o - o B B +
| clk | clk | GPIO CLK IN | 0.828 | 0.552
| i | i | GPIO IN | 0.828 | 0.552
| clk fwd | clk fwd | GPIO OUT | 2.205 | 1.470 |
| o | ) | GPIO OUT | 2.205 | 1.470
o tmm e o= e i e i +

For <GPIO_OUT for clock pad>, use the GPIO OUT value for c1k_fwd.
The equations are:

<max calculation> =2 + 0.828 + 2.205 = 5.033

<min calculation> =2 + 0.552 + 1.470 = 4.022

The reference pin target is the forwarded clock, c1k_fwd.

In this example, the RTL is using a divided down clock, divclk, which is only used to drive the c1k fwd signal
off chip. Therefore, the set _input delay constraint s relative to that generated clock. See
on page 60 for a more complete example.

The resulting constraints are:

set input delay -clock divclk -reference pin clk fwd -max 5.033 [get ports {i}]
set _input delay -clock divclk -reference pin clk fwd -min 4.022 [get ports {i}]

www.efinixinc.com 41



Efinity Timing Closure User Guide

Output Forward Clock Delay (GPIO output)

This example shows how to set constratints for an input forward clock.

Figure 23: Forward Clock Delay (GPIO Output, Register Bypass)

Core Interface Board Trace/
External Device

GPIO_OUT (Data) -
<j IT

GPIO_OUT (Clock)

The SDC constraint formulas for the foward clock delay are:

set output delay -clock <clock> -reference pin <clkout interface name> \
-max <max calculation> <ports> -

set output delay -clock <clock> -reference pin <clkout interface name> \
—min <min calculation> <ports>

Reference Pin

With forward clocks, you use the ~-reference pin option to include the clock latency
delay in the I/O constraint. The reference pin target is the pin name of the GPIO output
used for the clock.

Constraint Calculation

Calculate the min and max constraints using the following equations:

<max calculation> = <max board constraint> + GPIO_OUT .«
- <GPIO_OUT for clock pad> nax

<min calculation> = <min board constraint> + GPIO_OUT i,
- <GPIO_OUT for clock pad> nin

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 42



Efinity Timing Closure User Guide

Example: Constraining Output Forward Clock

You want to constrain the o output with respect to clock c1k fwd with a max board constraint of 2 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Designer timing report file
is:

Non-registered HSIO GPIO Configuration:

it e tom e tom— tom— +
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
o - o B B +
| clk | clk | GPIO CLK IN | 0.828 | 0.552
| i | i | GPIO IN | 0.828 | 0.552
| clk fwd | clk fwd | GPIO OUT | 2.205 | 1.470 |
| o | ) | GPIO OUT | 2.205 | 1.470
o tmm e o= e i e i +

For <GPIO_OUT for clock pad>, use the GPIO OUT value for c1k_fwd.
The equations are:

<max calculation> =2 + 2.205-2.205 =2

<min calculation>=2+1.470-1.470=2

In this example, the RTL is using a divided down clock, divclk, which is only used to drive the c1k_fwd signal
off chip. Therefore, the set _input delay constraint is relative to that generated clock. See
on page 60 for a more complete example.

The resulting constraints are:

set output delay -clock divclk -reference pin clk fwd -max 2 [get ports {o}]
set output delay -clock divclk -reference pin clk fwd -min 2 [get ports {o}]

www.efinixinc.com 43



Efinity Timing Closure User Guide

Timing Exceptions

Tip: Refer to

Timing exceptions are constraints that override the default behavior between clocks. These
constraints are:

* set false path—Cuts the path between the source and destination.

° set max delay, set min delay—Overrides the required time needed from the
source to the destination for the specified paths.

* set multicycle path—Changes the clock edges used for the required timing
calculation from the source to the destination.

on page 44 for an example use case.

When working with exceptions, if the same path has more than one exception, the
constraints are prioritized in the following order:

® set clock groups

°® set false path

® set max delay and set min delay
® set multicycle path

Example: Clock-to-Clock Path with Control

The following figure shows a use case in which a specific clock-to-clock path in a design
can have special control logic. The path from FF1 to FF2 can have a different timing
exception compared to other clock-to-clock paths in the design. You define these
timing exceptions with set false path, set max delay, set min delay, or
set multicycle path SDC commands.

Figure 24: Timing Exception Example

Interface || Core

Control Py
Logic Enable

B »D Q—» Datapath —»D Q

— >
FF1 TFFZ

—»D Q—» Datapath —»D Q

o> >
PLL_clk FF3 T FF4

PLL

www.efinixinc.com 44



Efinity Timing Closure User Guide

Understanding False Paths

You use the set _false path constraint to tell the timing analyzer not to analyze (that is,
to cut) a path. For example a clock may only toggle some of the time, and you do not want
software to try to optimize timing for it.

You can cut paths between entire clock domains or individual points on the timing graph. If
you want to completely cut the path between two clock domains, you should instead use the
set clock groups constraint.

Understanding Min and Max Delays

The set min delayand set max_delay constraints override the timing requirements
derived from your clock constraints. These settings tighten or relax the tlmmg requirements
for the paths. For example, you could use these constraints to try to minimize skew within a
bus of signals.

Important: Using set_min_delay and set_max_delay is a very risky way to close timing because
you can mask real setup and hold time violations unintentionally. If you use set max_delay or

set _min delay to override the default clock-to-clock constraint calculated by the software, the software
honors your input and does not give any errors. However, the issue would likely appear on your board as a
setup or hold violation. This method is especially risky when used with beneficial skew.

Asynchronous Paths

The set max_delayand set min delay SDC commands support setting a
combinational delay on an asynchronous path between ports. This path does not associate
with any clock. See on page
45. Clock latency and clock uncertainty are not considered for asynchronous data paths.

Figure 25: Asynchronous Data Path between Ports in Core

Interface Core Interface
Interface i Combinational o Interface
Block Datapath Block

The constraints that represent this example are:

set max delay -from i to o <max delay>
set min delay -from i -to o <min delay>

Synchronous Paths

If you specify a maximum delay or a minimum delay for synchronous ports, you must also
specify the clock domains for both —from and -to ports. In the following example, the

www.efinixinc.com 45



Efinity Timing Closure User Guide

input and output ports of the core are connected to flipflops in the interface and special
enable logic controls the clock relationship.

Figure 26: Synchronous Data Path between Ports in Core

Interface Core Interface
enable Enable enable
Logic
D Q Datapath D Q
>
FF1 FF2
Clock outclk

[4— Networks

inclk_clkout_pad outclk_clkout_pad

The constraints that represent this example are:

create clock -period <inclk period> -name inclk [get ports inclk]

create clock -period <outclk period> -name outclk [get ports outclk]

set input delay -max <input max delay> -clock inclk -reference pln <inclk_ clkout pad>

set input delay -min <input min delay> -clock inclk -reference pin <inclk clkout _pad>

set output delay -max <output max delay> -clock outclk -reference pln <outclk clkout . _pad>
set_output delay -min <output min delay> -clock outclk -reference pin <outclk clkout pad>
set_max_delay -from -i -to o <max delay>

set_min_delay -from i -to o <min delay>

Notice that the clock out pads are reference pins for the set _input delay and

set output delay commands. The set max delay and set min _delay
commands override the default clock-to-clock constraints calculated by the system. The clock
path latency and clock uncertainty are considered for synchronous ports.

Mixed Asynchronous and Synchronous Paths

The Efinity software issues a warning and ignores the set max _delay and

set min delay SDC commands if one of the —to/-from ports is synchorous and the
other is synchronous. The following example only has a clock associated with the ~from
port:

create clock -name inclk -period 10.00 [get ports inclk]
set input delay -clock inclk 0.1 [get ports 1i]
set max delay 10 -from [get ports i] to [get ports o]

The software gives the following warning and ignores the set _max delay command.

Ignore the set max delay (<sdc_ file>:<line#>) constraint due to unconstrained
port in -to

The following example only has a clock associated with the -to post:

create clock -name outclk -period 10.00 [get ports outclk]
set output delay -clock outclk 0.2 [get ports o]
set max delay 10 -from [get ports i] -to [get ports o]

The software gives the following warning and ignores the set max delay command.

Ignore the set max delay ((<sdc file>:<line#>) constraint due to unconstrained
port in -from

www.efinixinc.com 46



Efinity Timing Closure User Guide

Understanding Multicycle Constraints

In a default single-cycle clock relationship, the two clocks are in phase and toggle together.
The default setup and hold represent a one clock cycle capture window and is the same as
setting a constraint of setup = 1 and hold = 0. The hold is checking one clock cycle before
the capture clock edge. When you use the set multicycle path constraint, you are
adjusting the capture window by shifting it, widening it, or both.

If you do not use a multicycle constraint, the software assumes you want the default, single-
cycle relationship.

Figure 27: Default Single-Cycle Relationship

Capture

Window
A

Launch Clock
Capture Clock
Setup =1, Hold=0
The constraints that represent the default are:

set multicycle path -setup -from a -to b 1
set multicycle path -hold -from a -to b 0

Shifted Capture Window

To shift the capture window you use a constraint for the clock setup. The hold is still one
clock cycle before the capture clock edge; the software assumes the hold is 0. Therefore, the
window is still one clock cycle.

Figure 28: Setup Constraint Shifts the Capture Window

Capture

Window
A

Launch Clock [
<

Capture Clock
Setup=2,Hold=0

The constraints that represent this example are:

set multicycle path -setup -from a -to b 2
set multicycle path -hold -from a -to b 0

Shifted and Widened Window

www.efinixinc.com 47



Efinity Timing Closure User Guide

To shift and widen the capture window you constrain the hold time as well as the setup time.
A wider window allows multiple clock cycles to capture data. In the following example, the
capture window is two clock cycles.

Figure 29: Setup and Hold Constraints Shift and Widen the Capture Window

Capture
Window
,_/;,
Launch Clock NN
=
Capture Clock

Setup =2, hold =1
The constraints that represent this example are:

set multicycle path -setup -from a -to b 2
set multicycle path -hold -from a -to b 1

If # is equal to m, then the constraint would simply be:

set multicycle path -setup -from a -to b n
set multicycle path -hold -from a -to b n-1

To shift the window by 7 clock cycles with a window m cycles wide, use the equations:
° setup =n

 hold=m-1

For example:

°* n=4m=3

° setup =4

° hold=3-1=2

These values give you a window that is shifted by 4 clock cycles and is 3 clock cycles wide.

set multicycle path -setup -from a -to b 4
set multicycle path -hold -from a -to b 2

Constraints between Fast and Slow Clocks

When the launch and capture clocks have the same frequency and phase, it does not matter
which clock waveform you use to calculate the setup and hold; the result will be the

same. However, when the clock frequencies are different, you need to specify which clock
waveform you want to use for the setup and hold calculation using the -start and -end
modifiers. You cannot use both -start and -end at the same time.

* -—start uses the launch clock for the calculation.
* —end uses the capture clock for the calculation.

For setup, -start moves the launch edge backwards and —end moves the capture edge
forward. The default is —end.

For hold, the —start moves the launch edge forward and —~end moves the capture edge
backward. The default is -start.

When the launch clock is faster than the capture clock, you need to ensure that the
set multicycle path constraint is applied to the launch clock. For the setup

www.efinixinc.com 48



Efinity Timing Closure User Guide

constraint, you need to include -start. For hold, -start is the default so you do not need
to include it.

Figure 30: Launch Clock Faster than Capture Clock

Capture

Window
N N

Launch Clock D

Capture Clock | | | | |
Setup = 2, hold = 1

The constraints that represent this example are:

set multicycle path -setup -start -from a -to b 2
set multicycle path -hold -from a -to b 1

When the launch clock is slower than the capture clock, you need to ensure that the

set multicycle path constraint is applied to the capture clock. For the setup
constraint, you need —end, which is the default, so you do not need to include it. For hold,
include —end.

Figure 31: Launch Clock Slower than Capture Clock

Capture
Window

Launch Clock

Capture Clock

Setup =2, hold =1

The constraints that represent this example are:

set multicycle path -setup -from a -to b 2
set multicycle path -hold -end -from a -to b 1

SDC Warnings

While compiling, the Efinity” software displays messages and warnings in the Console.
These messages also are available in the <project name> .place.out file in the outflow
directory. You should review all SDC messages and adjust your constraints as needed.
Warning messages flag issues that can affect timing closure.

Common Mistakes

This topic describes some common mistakes that affect timing.
Latches and Combinational Loops

If you do not assign an output for all possible conditions in an i £ or case statement (that
is, incomplete assignment), the software infers a latch. Trion® and Titanium FPGAs do not

www.efinixinc.com 49



Efinity Timing Closure User Guide

support latches natively in hardware. The Efinity” synthesis tool infers look-up tables (LUTSs)
to provide latch behaviour.

You also may create a latch accidentally when you meant to use a flipflop. From a timing
perspective, the latch causes a combinational loop and the timing graph cannot have a loop.
Therefore, if the software detects a combinational loop it cuts the loop at an arbitrary point.

To resolve this issue, make sure if and case statements are complete and use flipflops
instead of latches.

Unintended Virtual Clock

If you create a clock with the -name option without a target (e.g., get ports), you create a
virtual clock. Make sure to use a target unless you really want a virtual clock.

create clock -period 40 -name clk in [get ports clk in] # defined clock
create clock -period 40 -name virtual clk # virtual clock

The Efinity software prints an info message when it finds a virtual clock definition so you can
double check your constraints. See on page 14 for more information.

Undefined Clocks

If you have an SDC file and do not define all clocks, the software cannot perform timing
analysis on any logic controlled by those clocks. This situation leads to unoptimized results.
Therefore, you should always define all clocks in your design.

Incorrect Constraint Order

The order of constraints in the SDC file is important. If you use the wrong order you get
unintended results. For example, always define a clock before using set input delay or
set output delay constraints for that clock. Refer to on page 8 for
more information about the expected constraint order.

SDC Tips and Tricks

The following sections provide some tips for working with SDC files.

SDC Syntax

In SDC syntax:
° 4 starts a comment; remaining text on this line is ignored.
* \ at the end of a line indicates that a command wraps to the next line.

Wildcard Commands

An * indicates a wildcard. Use * by itself to match all signals, or use it to create a partial
wildcard. For example c1k* would match c1k and c1k2.

Example: Constraining with Wildcards

You want to constrain all 01ed signals with respect to clock c1k. The resulting constraints are:

set input delay -max 10.214 -clock clk Oled*

www.efinixinc.com 50



Efinity Timing Closure User Guide

set input delay -min 3.607 -clock clk Oled*

Regular Expressions

You can use regular expressions (in the Perl regular expression format) with the object
specifier. You must encapsulate the object specifiers in square brackets []; arguments must be
enclosed in curly braces {}.

To use Perl regular expressions, include the -~regexp option in your command. Escape Perl
regular expression characters if the provided string argument contains those characters.

Example: Using Regular Expressions
Simple wildcard:

get pins y r[*]~FF|D
Using Perl regular expressions:

regexp get pins -regexp { y r\[.*\]~FF|D }

Inverted Clocks

For an inverted external clock (one that uses the negative edge), include the clock fall
option in your set_input delay or set output delay command.
Example: Inverting a Clock

set output delay -clock <clock> -clock fall -max -3.1 <ports>
set output delay -clock <clock> -clock fall -min -2.85 <ports>

Square Brackets in Clock Names

The Efinity software v2023.2 and higher supports square brackets in clock names. You do not
need to use the —name option in your SDC constraint.

For versions of software prior to 2023.2, if your clock names have square brackets, you need
to use the —name option in your SDC constraint (this is a known limitation in the software).

For example, the following constaints for c1k4096rx[1] 2,clk4096rx[2] 2,and
clk4096rx[3] 2 will NOT work correctly:

create_clock -period 10 clk4096rx([1]_ 2
create clock -period 10 clk4096rx([2] 2
create clock -period 10 clk4096rx([3] 2

Instead use the ~-name options:

create_clock -period 10 -name clk4096rxl 2 [get ports {clk4096rx[1] 2}]
create clock -period 10 -name clk4096rx2 2 [get ports {clk4096rx[2] 2}]
create clock -period 10 -name clk4096rx3 2 [get ports {clk4096rx[3] 2}]

www.efinixinc.com 51



Efinity Timing Closure User Guide

SDC Constraints (Alphabetical)

The Efinity software supports the following SDC constraints. Options in square brackets|[ ]
are optional.

create_clock Constraint

create clock -period <float> [-waveform {rising edge falling edge}] \
[-name <clock name>] [<targets>] [-add]

This command defines a clock with the desired period (in ns) and waveform, and applies it to

the target nodes. If you do not specify a target, the software considers the clock to be a virtual
clock. You can use the virtual clock to constrain inputs and outputs to a clock external to the
design. The tool does not support multiple clock assignments to the same target.

@ Note: You can refer to netlist clocks using regular expressions.

-period indicates the clock period in ns.

-waveform indicates the rising and falling edges (duty cycle) of the clock as two time
values: the first rising edge and the next falling edge. If you omit the waveform option, the
command creates a clock with a rising edge at 0 and a falling edge at the half period, which
is equivalent to using ~waveform {0 <period/2>}.

-name indicates the clock name. If omitted, the software gives the clock the name of the
first target.

-add defines multiple clocks for the same target. First use —name to specify the new
clock name. If you already used the same clock name or did not define it, the last SDC
command overwrites the existing clock.

If you assign a virtual clock using the create clock command, you must reference it
elsewhere in a set input delayor set output delay constraint.

For examples, see

on page 11
on page 59

Tip: The timing analysis and place-and-route runtime is affected by the number of clocks you define in your SDC
file. Therefore, if possible, you should only define the most critical clocks to reduce the runtime.

www.efinixinc.com 52



Efinity Timing Closure User Guide

create_generated_clock Constraint

create generated clock -source <source clock object> [-divide by <factor> | \
-multiply by <factor>] [-duty cycle <percentage>] [-invert] \
[-name <virtual clock name>] <target> [-master clock <master clock>] \

[-add]

This constraint is useful for designs with internally generated clock signals because it provides
more accurate timing analysis. First, use the create clock constraint on the source clock
that generates the internal clock signal. Then, use this constraint.

See

-source is the generated clock’s source port, pin, or net.

-divide by is the division factor.

-multiply by is the multiplication factor.

-duty_ cycle is the duty cycle as a percentage of the clock period.

-invert inverts the clock.

-name is the name of the generated clock.

<target> is the name of the net that implies that it is an internally generated clock signal.
-master clock specifies the master clock for the generated clock target.

-add defines multiple clocks for the same target. First use —name to specify the new
clock name. If you already used the same clock name or did not define it, the last SDC
command overwrites the existing clock.

on page 11 for examples.

Tip: The timing analysis and place-and-route runtime is affected by the number of clocks you define in your SDC
file. Therefore, if possible, you should only define the most critical clocks to reduce the runtime.

get fanouts

get_fanouts Constraint

[-no _logic] -through <names> <start point>

This command returns a collection of fanout ports and registers. This command supports the
following options

-no_logic if used, the software does not follow combinational timing arcs
-through pins, cells or nets (see on page 58 for supported use
cases)

<names> can be a net, cell, or pin

<start point> is a port, pin, or net

By default, the get_fanouts command traces through combinational timing arcs.

The following example sets different multicycle path constraints for registers based on the
flipflops’ enable signals. The get_fanout SDC command finds which registers are controlled
by the specific enable signals.

create clock -period 10.00 -name clkin [get ports clkin]

set multicycle path -setup -from [get clocks clkin] -to [get fanouts ce y] 4
set multicycle path -hold -from [get clocks clkin] -to [get fanouts ce y] 3
set multicycle path -setup -from [get clocks clkin] -to [get fanouts ce x] 2
set multicycle path -hold -from [get clocks clkin] -to [get fanouts ce x] 1

www.efinixinc.com 53



Efinity Timing Closure User Guide

set_clock_groups Constraint

set clock groups [-exclusive | -asynchronous ] -group {<clock>} [-group {<clock>} -group ...]

° -exclusive indicates a mutually exclusive clock
® —group indicates a clock list
° -asynchronous specifies asynchronous clocks

This command instructs the timing analyzer to not analyze paths between one or more
specified groups of clock domains in either direction. You can use this command with netlist
or virtual clocks in any combination. The set clock groups constraint is equivalent to
aset false path constraint between the clocks in different groups. For example, the
command

set clock groups -exclusive -group {clk} -group {clk2 clk3}

is equivalent to

set false path -from [get clocks{clk}] -to [get clocks{clk2 clk3}]
set false path -from [get clocks{clk2 clk3}] -to [get clocks{clk}]

®

If you specify only one clock group, it cuts all paths to and from the specified clock domain(s)
to all others.

Note: If you do not specify either —exclusive or —asynchronous, the software defaults to
-exclusive.

See on page 26 for examples.

set_clock_latency Constraint

set _clock latency [-clock <names>] [-rise] [-fall] -source <latency>

[-hold] <latency> <target clock, port, or pin>

The source latency represents the time it takes (in ns) for a clock signal to get from the source
to the destination such as the delay from an oscillator to the FPGA's input pad. You can only
set the clock source latency for clock and clock source pins. You musty specify a source. If do
no specify -rise or -fall, the latency is applied to both clock edges.

* -clock Specifies a list of clocks associated with the latency assigned to the specified clock
source.

* -rise Defines the latency for the rising clock edge.

* -fall Defines the latency for the falling clock edge

* -source Defines the specified <latency> as the source latency. This argument is
required.

* -setup Define the clock edge delay for setup analysis

° -hold Define the clock edge delay for hold analysis

set_clock latency -source -rise -0.5 [get ports clk200]

set clock latency -source -fall -0.4 [get ports clk200]

set clock latency -source -fall 0.1 {clk25~FF|Q} -clock {clk200 clk50}
set _clock latency -source 0.7 [get pins clk 50~FF|Q]

www.efinixinc.com 54



Efinity Timing Closure User Guide

set_clock_uncertainty Constraint

set clock uncertainty [-setup] [-hold] [-from <clock>] [-rise from <clock>] \
[-fall from <clock>] [-to <clock>] [-rise to <clock>] [-fall to <clock>] \
<uncertainty>

This constraint specifies the uncertainty for clocks or clock-to-clocks transfers. The tool
added the specified uncertainty value to the derived uncertainty. If you do not specify source
or destination clocks, the tool applies the uncertainty to all clocks in the design. If you do not
specify a setup or hold, the tool uses the uncertainty value for both setup and hold.

° -—setup is the clock uncertainty for setup analysis
* -hold is the clock uncertainty for hold analysis

* -—fromsource clock

* -rise from source clock with rising edge

° -fall from source clock with falling edge

* —to destination clock

° -rise to destination clock with rising edge

-fall to destination clock with falling edge
°  <uncertainty> is the clock uncertainty value

See on page 29.

set_false_path Constraint

set false path [-setup] [-hold] -from <start point> -through <names> -to <end point>

This command cuts paths unidirectionally:
* between clock domains
* from start or end points

Points can be a register or an I/O. If you do not specify a setup or hold, the tool cuts both
setup and hold.

* —setup is the false path for setup analysis

* -hold is the false path for hold analysis

* —to the clock domain destination, I/O, or register end point
° —from the clock domain source, I/O, or register start point

° -through pins, cells or nets (see on page 58 for supported use
cases)

°  <start point> is the the clock domain source, I/O, or register start point
°  <end point> is the clock domain destination, I/O, or register end point
°  <names> is a clock domain source/destination, I/O, or register start/end point

@ Note: Use the constraint if both directions are false paths.

See on page 26 for examples.

www.efinixinc.com 55



Efinity Timing Closure User Guide

set_input_delay and set_output_delay

Constraints
set_input delay -clock <clock> [clock fall] [-max] [-min] <delay> [-reference pin] \
<ports> [-add delay]
set output delay -clock <clock> [clock fall] [-max] [-min] <delay> [-reference pin] \

<ports> [-add delay]

Use set_input delay to analyze timing paths from input I/Os.
Use set_output delay for timing paths to output I/Os. If you do not specify these
commands in your SDC, paths from and to I/Os will not be analyzed.

These commands constrain each I/O pad specified to be timing-equivalent to a register
clocked on the clock specified after —~clock. This register can be either a clock signal in your
design or a virtual clock that does not exist in the design but that you use to specify the I/O
timing.

The command also adds <delay> through each pad, thereby tightening the time constraint
along paths traveling through the I/O pad. You can use this additional delay to model board-
level delays. -max is the setup constraint, -min is the hold constraint; if you specify neither,
the tool uses <delay> for both max and min.

See

-clock is the clock name

-clock fall is the input delay relative to the clock’s falling edge

-max is the maximum data arrival time

-min is the minimum data arrival time

<delay> is the delay value

-reference pin is an optional flag to include the clock delay to the pin when
calculating the input or output delay (Titanium only). When you generate constraints in

the Interface Designer, the software automatically includes this option for synchronous
interface signals (such as GPIO or LVDS).

<ports> is the list of input or output ports

-add_delay specifies any additional delay or clock condition for the port. If you do
not specify this option, then any latter set_input_delay or set_output_delay command
replaces the prior commands.

on page 30.

www.efinixinc.com 56



Efinity Timing Closure User Guide

set_max_delay and set_min_delay Constraints

set max delay -from <start point> -through <names> -to <end point> <delay>
set min delay -from <start point> -through <names> -to <end point> <delay>

These commands override the default timing constraint (calculated using the information
from create clock) with a user-specified delay. This constraint may produce unexpected
results.

* —to the clock domain destination, I/O, or register end point
e —from the clock domain destination, I/O, or register end point

° -through pins, cells, or nets (see on page 58 for supported use
cases)

°  <Zstart point> is the clock domain source, I/O, or register start point
*  <end point> is the clock domain destination, I/O, or register end point
° <delay> is the delay value in ns

@ Important: Using set_min_delay and set_max_delay is a very risky way to close timing because
you can mask real setup and hold time violations unintentionally. If you use set max delay or

set min_delay to override the default clock-to-clock constraint calculated by the software, the software

honors your input and does not give any errors. However, the issue would likely appear on your board as a

setup or hold violation. This method is especially risky when used with beneficial skew.

set_multicycle_path Constraint

set multicycle path [-setup] [-start] [-hold] [-end] -from <start point>] \
-through <names> -to <end point> <value>

This command creates a multicycle at the clock domain level. It adds (< value> - 1) times
the period of the destination clock to the default setup time constraint. If you do not specity
-setup or ~hold, the tool applies the constraint to both.

° -setup applies the multicycle value to setup analysis

-hold applies the multicycle value to hold analysis

° -—start the multicycle value is relative to the source clock

* -end the multicycle value is relative to the destination clock (default)
* —to the clock domain destination, I/O, or register end point

e -from the clock domain source, I/O, or register start point

° -through pins, cellls, or nets (see on page 58 for supported use
cases)

°  <walue> is the multicycle value

www.efinixinc.com 57



set false path
set false path
set_false path
set false path
set false path

Efinity Timing Closure User Guide

-through Option

The set false path, set max delay, set min delay, and
set multicycle path commands have a -through option; These use cases are
supported:

-through [get pins <pin namel>]

-through [get pins {add*|CI}]

-through [get pins <pin namel>] -through [get pin <pin nameZ2]]
-through [get cells {add*}]

-through [get cells <cell namel>] -through [get cells <cell nameZ2>]

However, the ~through option cannot be used with multiple get * commands (i.e.,
get pins,get cells,get nets). Cases like the following are not supported:

set false path -through [[get pins <pin namel>] [get pin <pin nameZ2]]

Constraint Object Specifiers

Constraints support explicit object specifiers. Implicit naming is implied if you do not use
an object specifier with the constraint command. If you do not use an object specifier the
software executes the search on the objects in the following order: nets, pins, cells.

The name you provide to the object specifier is based on the post-mapped design name; refer
to the generated post-mapped Verilog HDL netlist—autogenerated by the software at the end
of synthesis—for these names.

@ Note: The pipe (|) character is the separator between the instance name and the referenced port name.

° all clocks—Retrieves all of the clocks in the design.

° all inputs—Retrieves all of the input ports in the design.

° all registers—Retrieves all of the register instances in the design.

* all outputs—Retrieves all of the output ports in the design.

° get cells [-regexp] [<filter>]—Retrieves all design instances that match the
specified name or pattern.V

* get clocks [-regexp] [<filter>]—Retrievesthe clock that matches the
specified name or pattern. The tool looks first for the clock name, if it exists. Next, it
checks the clock net name (includes virtual clocks)."

° get nets [-regexp] [<filter>]—Retrieves the net that matches the specified
name or pattern.!

° get pins [-regexp] [<filter>]—Retrieve the pinsthat match the specified
name or pattern. The pin name format is <cell > | <port>. Escape square brackets
for cell names; you do not need to escape square brackets for ports if the port has bit

indexing.(l)
* get ports [-regexp] [<filter>]—Retrieve the portsthat match the specified

name or pattern.(l)

&)

By default, you do not need to escape brackets. However, if you use the -regexp option, you must escape all brackets.

www.efinixinc.com 58



Efinity Timing Closure User Guide

SDC Examples

The following sections provide a variety of examples on how to use the SDC constraints.

Example: Dynamic Multiplexers and
create_clock -add

Titanium FPGAs have dynamic multiplexers that you can configure at run-time. You can
choose which clock source is active in the Interface Designer. Only one of the four input
clock sources is active at a time. You define multiple clocks at the core clock pad using the
create_clock —add option. The following figure shows the corresponding timing constraint
associated with this use case. It is good practice to define only the most critical clock, if
possible, because adding more clocks to the system increases the runtime for timing analysis
and place-and-route. Notice that the examples uses the set clock groups command
because only one of the four clocks is active at a given time; therefore, from a timing
perspective, those clocks are considered exclusive.

Figure 32: Dynamic Clock Multiplexer Example

Interface | Core

D Q—» Datapath —»D Q—»

— —>
clk0 — FF1 FF1
clkO_shift —
clk1 — i
clk1_shift — clkin

Example: SDC Commands

create clock -period 10 [get ports clkin] -name clkO

# The following constraints use -add to avoid overwriting the previous setting
create clock -period 10 -waveform {2.5 7.25} [get ports clkin] -name clk0_shift -add
create clock -period 20 [get ports clkin] -name clkl -add

create_clock -period 20 -waveform {4 16} [get ports clkin] -name clkl_shift -add

# The four clocks are exclusive because they cannot operate at the same time
set clock groups -exclusive -group {clkO} -group {clk0 shift} -group {clkl} -group {clkl shift}

To learn more about the dynamic multiplexers, refer to:

* Titanium data sheets, "Driving the Global Clock Network" section.

. , "Configuring the Dynamic Clock Multiplexers"
section.

www.efinixinc.com 59


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF

Efinity Timing Closure User Guide

Example: FPGA Forwarded Clock

The following figure illustrates how to use a generated clock as a forward clock. The
generated clock, ADC_1 SCLK, is generated from the PLL output PLL_sCLK50 in the
interface. ADC_1 SCLK is a forward clock to clock an off-chip flipflop outside the FPGA.
The flipflop generates another signal, ADC_1 DOUT, that inputs back to the core.

Figure 33: Generated Clock Forward Clock Example

Enable
Logic
On Board Interface Core
(Outside FPGA)
DQ—e
. PLL_sCLK50
>
divelk
ADC_1 _SCLK ADC_1_SCLK

ADC_1_DOUT

—»D Q—>» Datapath —»D Q

—> >
FF1 T FF2

!Iii

FF
Off Chip

Example: SDC Commands

create clock -name {outclk 0 pll} -period 20 [get ports PLL sCLK50]
create generated clock -name ADC 1 SCLK -source [get ports PLL sCLK50] -divide by 4 ADC 1 SCLK
set_input delay -clock [get clocks ADC 1 SCLK] -reference pin [get ports ADC 1 SCLK] \
-max 24.000 [get ports ADC 1 DOUT]
set_input delay -clock [get clocks ADC_ 1 SCLK] -reference pin [get ports ADC_ 1 SCLK] \
-min 4.000 [get ports ADC_1 DOUT]

www.efinixinc.com 60



Efinity Timing Closure User Guide

Example: Generated Clock with Clock
Multiplexer

The following figure illustrates multiple generated clocks defined at the same divclk Q
pin. Because multiple clocks are defined at the same clkin pin, the generated clock pin also
needs to have multiple clocks defined to address all cases. Notice that the examples uses the
set_clock_groups SDC command because only one of the two clocks are active at a
given time.

Figure 34: Dynamic Clock Multiplexer Example

Enable
Logic
Interface | Core
D Q—e
clk0 — clkin S
IkO_shift —
cie_shl divelk
Interface clkout gy o gen_clk
Logic
Core
Logic

Example: SDC Commands

# Create 2 clocks and use the -add option to avoid overwriting the second one
create clock -period 10 -name clk0 [get ports clkin]
create clock -period 10 -waveform {2.5 7.25} -name clkO shift [get ports clkin] -add

# There are 2 master clocks, so this example needs 2 generated clocks as well

create generated clock -source [get ports clkin] -master clock [get clocks clk0] \
-divide by 2 [ get pins divclk|Q ] -name gen clkO

create generated clock -source [get ports clkin] -master clock [get clocks clk0 shift] \
—-divide by 2 [ get pins divclk|Q ] -name gen clkO shift -add

# clk0 and it's generated counterpart operate independently from the clkO shift and

# it's counterpart
set clock groups -exclusive -group {clkO gen clkO} -group {clk0 shift gen clkO shift}

www.efinixinc.com 61



Efinity Timing Closure User Guide

Example: Soft SERDES

This example is for a soft SERDES. It has LVDS bypass mode sampling with 4 different clock

phases (0, 90, 180 and 270 degrees). In this use case, you use the ~add_delay option to set
constraints for both edges of both clocks. If you did not use the ~add_delay option then

the second constraint would overwrite the first one.

Figure 35: Dynamic Clock Multiplexer Example

0444444,

FF —>

*—)

90—

Example: SDC Commands

# these constraints are for 0 degrees

set input delay -clock i sclk 000 -max 0.924 [get ports {i lvds rxd}]
set input delay -clock i sclk 000 -min 0.616 [get ports {i lvds rxd}]

# The following constraints use -add delay to avoid overwriting the previous setting

# these constraints are for 90 degrees,

set input delay -clock i sclk 090 -max 0.924 [get ports {i lvds rxd}] -add delay
set input delay -clock i sclk 090 -min 0.616 [get ports {i lvds rxd}] -add delay

# these constraints are for 180 degrees
set input delay -clock i _sclk 000 -clock fall -max
set_input delay -clock i_sclk 000 -clock fall -min

# these constraints are for 270 degrees
set_input delay -clock i_sclk 090 -clock fall -max
set input delay -clock i sclk 090 -clock fall -min

.924 [get ports {i_ 1lvds rxd}] -add delay
.616 [get_ports {i_lvds_rxd}] -add_delay

.924 [get_ports {i_lvds_rxd}] -add_delay
.616 [get ports {i lvds rxd}] -add delay

www.efinixinc.com

62



Efinity Timing Closure User Guide

Example: Disable Impossible Paths

In this example, special control logic exists for LUT2 and FF2. Therfore, the path from FF1
to FF2 though LUT2 can be ignored by timing analysis.

Figure 36: Set a False Path Example

Control
Interface || Core Logic
Enable Enable
LUT2
—»'—‘
B0 Q—9¢———» ba
N LUT3 [ 7

FF1[3:0] FF2

' LUT1
—» »D Q
. PLL clk T 5

FF3

Example: SDC Commands

set false path -from [get pins {FF1|CLK}] -through [get cells LUT2] -to [get pins {FF2|D]

In another example, a group of flipflops, FF1[3: 01, use a naming pattern and the same
connection as the FF1 flipflop in the previous example. In this case you can use a wildcard
with the set _false path command to constrain the whole group.

Figure 37: Set a False Path for a Bus Example

Control
Interface || Core Logic
Enable Enable
LUT2
B0 . ,
S Bus [3:0] LUT3 S
FF2
FF1[3:0]

' LUT1
—» »D Q
. PLL_clk T N

Example: SDC Commands

set false path -from [get pins {FF1[*]|CLK}] -through [get cells LUT2] -to [get pins {FF2|D]

www.efinixinc.com 63



Efinity Timing Closure User Guide

Interpreting Timing Results

When you compile your design, the Efinity” software generates the static timing analysis
report. The first two sections of the report are about the clocks:

* Clock Frequency Summary
* Clock Relationship Summary

Clock Frequency Summary

The Clock Frequency Summary consists of the following data.

* The User target constrained clocks table lists the user constrained clocks; that is, the
clocks you defined with the create clockand create generated clock
constraints in your SDC file. The clock target is the specific pin or port in the core timing
netlist.

* The Maximum possible analyzed clocks frequency table shows the maximum clock
trequency that each clock can achieve using the critical paths.
* The geomean is the geometric mean of the clock periods.

Note: This Clock Frequency Summary only shows the setup result. However, later, the report shows the
most critical hold paths (you need to scroll down to after the detailed most critical setup path section).
Example: Clock Frequency Summary

—————————— 1. Clock Frequency Summary (begin) ----------

User target constrained clocks

Clock Name Period (ns) Frequency (MHz) Waveform Targets
Oclk 99999.992 0.010 {0.000 49999.996} {Oclk}
Fclk 6.400 156.250 {0.000 3.200} {Fclk}
Sclk 12.800 78.125 {0.000 6.400} {Sclk}

Maximum possible analyzed clocks frequency

Clock Name Period (ns) Frequency (MHz) Edge
Oclk 0.584 1712.329% (R-R)

Fclk 0.749 1335.113* (R-R)
Sclk 1.038 963.391 (R-R)

* CAUTION: Frequency is limited to 1000.000 MHz by global clock network
Geomean max period: 0.769

—————————— Clock Frequency Summary (end) —--—--——————-—--

www.efinixinc.com 64



Efinity Timing Closure User Guide

Clock Relationship Summary

The Clock Relationship Summary section lists the related clocks, their constraints, and the
slack. The report shows measurements using the active clock edge. The number in the Slack
(ns) column shows you how much margin you have for each clock relationship. The Edge
column shows the active edge for the launch and capture clocks. R is rising edge triggered and
F is falling edge triggered.

@ Important: If any of the clock relationships have negative slack, your design has not closed timing.

A timing path with negative slack indicates that there is insufficient time for the signal to
arrive, resulting in design instability. When trying to close timing, do not adjust the clock
period. Instead, adjust the constraints in your SDC file or modify your design.

Tip: You can quickly see if your design has closed timing in the Result pane in the Timing section. If the Least
Slack number is negative, the design did not close timing.

Example: Did My Design Close Timing?
This summary shows that the design has not closed timing because the slack for the Fc1k to Fclk relationship is
negative (-0.875).

—————————— 2. Clock Relationship Summary (begin) ----------

Setup (Max) Clock Relationship

Launch Clock Capture Clock Constraint (ns) Slack (ns) Edge
Oclk Oclk 99999.992 99999.408 (R-R)
Fclk Fclk 6.400 -0.875 (R-R)
Sclk Sclk 12.800 11.762 (R-R)
Hold (Min) Clock Relationship
Launch Clock Capture Clock Constraint (ns) Slack (ns) Edge
Oclk Oclk 0.000 0.101 (R-R)
Fclk Fclk 0.000 0.070 (R-R)
Sclk Sclk 0.000 0.109 (R-R)

NOTE: Values are in nanoseconds.

—————————— Clock Relationship Summary (end) —---—---—--—--—--

Critical Paths

The final two report sections show the path detail reports for the maximum (setup)

and minimum (hold) critical paths. The report only shows the most critical path for

each relationship. To see additional paths, use the report timing Tcl command (see
on page 88). A typical path report consists of the following

sections:

*  Header—Specifies the launch and capture clock domains.

Path summary—Lists the start and end points of a given path. It also shows the launch and
capture clock information as well as the associatged clock edges, the slack, and a summary
of the arrival and required time calculations.

*  Launch clock path—The path the clock signals takes.

*  Data path—The path the data signal takes

*  Capture clock path—The path the capture clock takes.

The following example shows a snippet of the report for Oclk.

www.efinixinc.com 65



Efinity Timing Closure User Guide

Example: Max Critical Path, Detail Report

FHEH AR H AR A A R
Path Detail Report (Oclk vs Oclk)
FHEHH AR A A R R R

+4+++ Path 1 ++++++++++++++++tttttttttt

Path Begin : Oled[2]~FF|CLK
Path End : O0led[3]~FF|D
Launch Clock : Oclk (RISE)
Capture Clock : Oclk (RISE)
Slack : 99999.408 (required time - arrival time)
Delay : 0.358
Logic Level 1
Non-global nets on path 1
Global nets on path 0
Launch Clock Path Delay : 2.342
+ Clock To Q + Data Path Delay : 0.474
End-of-path arrival time : 2.816
Constraint :99999.992
+ Capture Clock Path Delay 8 2.342
- Clock Uncertainty 3 0.110
End-of-path required time : 100002.224
Launch Clock Path
name model name delay (ns) cumulative delay (ns) pins on net location
Oclk inpad 0.000 0.000 0 (334,318)
Oclk inpad 0.110 0.110 6 (334,318)
Oclk net 2.232 2.342 6 (334,318)

Routing elements:
Manhattan distance of X:214, Y:314

Oled[2]~FF|CLK ff 0.000 2.342 6 (120, 4)
Data Path

name model name delay (ns) cumulative delay (ns) pins on net location
0led[2]~FF|Q ff 0.113 0.113 4 (120, 4)
Oled[2] net 0.304 0.417 4 (120, 4)

Routing elements:
Manhattan distance of X:0, Y:1

LUT 77]|in[2] lut 0.054 0.471 4 (120, 5)
LUT 77]|out lut 0.000 0.471 2 (120, 5)
0led[3]~FF|D ff 0.003 0.474 2 (120, 5)
Capture Clock Path

name model name delay (ns) cumulative delay (ns) pins on net location
Oclk inpad 0.000 0.000 0 (334,318)
Oclk inpad 0.110 0.110 6 (334,318)
Oclk net 2.232 2.342 6 (334,318)

Routing elements:

Manhattan distance of X:214, Y:313

0led[3]~FF|CLK ff 0.000 2.342 6 (120, 5)

www.efinixinc.com 66



Constraining Logic and Routing Manually

(Beta)

The Efinity software v2022.1 and higher lets you assign logic to a specific location in the

Efinity Timing Closure User Guide

FPGA's core. With this method, you can place your design's logic manually instead of letting

the software place it for you.

In v2022.2 and higher, you can also manually constrain routing to specific paths. When you
constrain routing you also need to constraint the logic to which the nets connect.

Placing logic and/or routing manually is an advanced technique, so make sure that you fully

understand the rules and restrictions as described in the following sections.

@ Important: These features are beta.

Tiles

The FPGA is made up of a grid of tiles. Most tiles are for logic/routing and others are for
functions like RAM, multipliers, or DSP. The following table shows the types of tiles by
family and their use.

Table 1: FPGA Tile Types

Tile Trion Titanium Used for
EFT v v Logic and routing with register
EFL v Logic and routing without register
EFM v Logic, routing, register, and shift register
RAM v v RAM blocks
MULT v Multiplier blocks
DSP48 v DSP blocks

When you view your design's placement in the Floorplan Editor, you can click on a tile to
view its type and other details. In the following figure, the selected blue tile is an EFT and is

used for logic.

Tip: The Floorplan Editor provides a graphical way to find logic you want to constrain.

www.efinixinc.com

67



Figure 38: Tiles in the Floorplan Editor

Floorplan Editor

Efinity Timing Closure User Guide

@
eft
@
S
¥
memory efl eft )
g
®
) ) - i
@
memory efl eft n
O«
O+
efl eft efl I
I
4 I ‘ L o
Q. [Type to search... |§|Block: (61,45) type=eft name=Instruction[5]~FF
~ Selected Tile
Notice that some tiles in the floorplan have a number. This number indicates how many
routing lines are used in that tile. A tile used for logic (blue) can also be used as routing
(indicated by the number). Orange means a tile is only used as routing.
www.efinixinc.com 68




Working with Primitives

Efinity Timing Closure User Guide

During synthesis, the software maps your design's logic—LUTs, RAM, flipflops, etc.—to
primitives. These primitives occupy specific locations (tiles or groups of tiles). Each tile has
one or more sub-blocks in which to place a primitive. Placing multiple primitives into the
same tile is called packing.

The following tables show the types of primitives, the tiles where you can place them, and
the sub-blocks they can occupy.

Table 2: Mapping Trion Primitives to Tiles and Sub-Blocks

Tile Sub-Block
0 1 2 3
EFT EFX_LUT4 - EFX_FF i
EFX_ADD
EFL EFX_LUT4 - EFX_FF _
EFX_ADD
RAM EFX_RAM_5K Reserved - -
EFX_DPRAM_5K
MULT EFX_MULT - - -
Table 3: Mapping Titanium Primitives to Tiles and Sub-Blocks
Tile Sub-Block
0 1 2 3
EFT EFX_LUT4 Reserved EFX_FF -
EFX_ADD
EFX_COMB4
EFM EFX_LUT4 Reserved EFX_FF -
EFX_ADD
EFX_COMB4
EFX_SRL8
RAM EFX_RAM10 Reserved - -
EFX_DPRAM10
DSP48 EFX_DSP48 EFX_DSP24 EFX_DSP12 EFX_DSP12
EFX_DSP24 EFX_DSP12
EFX_DSP12

www.efinixinc.com




Efinity Timing Closure User Guide

The following table shows another view of the same mappings.

Table 4: Mapping Primitives to Tiles

Primitive Compeatible Tiles Allowed Sub-
Trion Titanium Block Indices
EFX_LUT4 EFT, EFL EFT, EFM 0
EFX_ADD EFT, EFL EFT, EFM 0
EFX_COMB4 EFT, EFL EFT, EFM 0
EFX_FF EFT EFT, EFM 2
EFX_SRL8 - EFM 0
EFX_RAM_5K RAM - 0
EFX_DPRAM_5K RAM - 0
EFX_RAM10 - RAM 0
EFX_DPRAM10 - RAM 0
EFX_MULT MULT 0
EFX_DSP48 - DSP48 0
EFX_DSP24 - DSP48 0,1
EFX_DSP12 - DSP48 0,123

Finding Primitive Cell Names

When the software maps your design to primitives, it assigns a cell name to each instance. To
view the primitive cell names:

¢ In the Dashboard's Netlist tab, click the Load Synthesized Netlist icon and expand Leaf
Cells.

* Open the <project>.map.v file (in the Dashboard, go to Result pane > Synthesis).
This file is in the project's outflow directory.

Enabling Manual Assignments

Because manual assignments are beta in the Efinity software v2022.1, v2022.2, and 2023.1,
you must enable them with an .ini file.

1. Create a text file named efx_pnr_settings.ini and save it in your project directory.
2. Add the following line to the .ini file:

loc_assignment = <filename>.placeloc

When you synthesize your design, the software uses the assignments in the
< filename > .placeloc file.

www.efinixinc.com 70



Efinity Timing Closure User Guide

Assignment Rules

Follow these rules when creating assignments.
General Rules

*  You can only constrain logic in the core (use the Interface Designer for I/O constraints).

* You can only constrain primitive cells. If two primitives cells can be packed together,
you can assign them to the same location. The sub-block index must be unique for each
primitive cell in a location. For example, if you assign four EFX DSP12 primitives to the
same tile, they must each have a different sub-block.

* The software does not pack manually assigned cells with unassigned cells. For example, if
you place a EFX_DSP12 into a DSP tile at sub-block 0 and do not assign any other sub-
blocks, the software will not pack any other DSP logic into that tile, leaving sub-blocks
1, 2, and 3 empty. Similarly, only assigning flipflops (which use sub-block 2) uses more
overall resources because sub-block 0 is left empty.

@ Important: Because assigned and unassigned cells are not packed together, make
sure to "fill up" the tile with logic. Otherwise you can end up using more tiles than
needed.

Flipflops
* An EFX FF can be packed alone or with its driver cell (EFX_LUT4, EFX SRLS,

EFX_ADD, or EFX_COMBA4).

* An EFX FF can only be packed with an EFX SRLS if they share CE and CLK inputs
and if the EFX_FF does not have an inverted input.

* An EFX FF cannot be packed if it has an inverted input connected to a multi-fanout net.

RAM, Multiplier, and DSP

e EFX MULT, EFX DSP48, and all RAM primitives cannot share a tile with any other
cells.

* Two EFX_DSP24 primitives or up to four EFX DSP12 primitives not connected by
CASCIN/CASCOUT signals can be packed together and share a location.

Chains

EFX_DSP48, EFX _DSP24, EFX DSP12, EFX ADD, and EFX SRL8 can form chains. If
one cell in the chain is assigned a location, every other cell in the chain must also be assigned
a location, in the correct order.

Creating a Location Assignment File
The location assignment file is a text file with the extension .placeloc. Each assignment is on
a single line with tabs or spaces between the data:

<block name> <x> <y> <subblk>

e <block name> is the primitive cell name.
* <x> is the horizontal location.

*  <y> is the vertical location.

°  <subblk> is the sub-block location.

You must include all data for each assignment.

www.efinixinc.com 71



Efinity Timing Closure User Guide

Any text following a # character is ignored (treated as a comment).

Tip: Use the Floorplan Editor to help you find the x, y coordinates for a tile. When you click a tile the coordinates
are shown in ().

. ) - _ . ) ) )

Q. |Type to search. Block; (61,45) type=eft name=Instruction[5]~FF

X,y coordinates for the selected tile

To make it easier for you to create assignments, the Efinity software can dump all placement
data into a file when placement finishes. You can copy and paste the primitive cells you want
to constrain into your .placeloc file and then modify the x, y coordinates.

To dump the placement data, add the following line to your efx_pnr_settings.ini file and re-
run the placer.

dump placeloc = on

@ Important: Do NOT simply copy and paste the entire dump file into your .placeloc file or the software
may not be able to perform placement efficiently. Only copy the primitives you want to constrain.

Example: LUT and Flipflop
The example packs an EFX_FF with its driver, LUT_A, an EFX_LUT4.

#block name x y subblk
#

LUT A 3 3 0
FF B 3 3 2 # LUT_A drives FF_B

Example: SRL8 Chain

This example assigns locations to every cell in an SRL8 chain.

#block name X

first_srl8
second_srl8
third srl8
fourth srl8

(G NE NE, N, ]

Example: Parallel Cascaded DSP Block

This example assigns locations to every EFX_DSP24 across two chains. There can be two EFX_DSP24 cells per DSP
tile.

#block name X % subblk
#

chain0 _dsp24 0 17 2 0
chainl dsp24 0 17 2 1
chain0 dsp24 1 17 22 0
chainl dsp24 1 17 22 1

www.efinixinc.com 72



Efinity Timing Closure User Guide

Constraining Routing Manually (Beta)

With the Efinity software v2022.2 and higher the router lets you manually constrain routing
traces for Titanium FPGAs. This feature is beta in v2022.2.

After you compile your design once, you can lock down (or constrain) specific nets to specific
paths. For any future compilations, the software routes these constrained nets in the same
way. To constrain nets, you also need to constrain the logic to which the nets connect. See

on page 67 for information on making
logic constraints.

You can combine constrained logic and constrained routing to preserve the placement and
routing of a small part of your design, letting the rest change as you compile. This feature can
be useful when logic (such as a sampling delay line) with very specific routing requirements
must be locked down early in the design cycle. Additionally, this feature lets you preserve
place and route for connections that have difficult timing constraints.

Routing Constraint Flow

To use routing constraints, follow this procedure:

1. Determine which nets and cells should be constrained.

2. Run the Efinity software, adjusting your design for each iteration, until the nets meet
timing.

3. When the nets meet timing, use an .ini file to tell the software to save the placement and
routing data to templates. (See on page 74)

4. Do not make any changes to the design and re-compile.
The software creates these template files:
* Placement template <project>.out.placeloc
* Routing template <project>.rcf.template

The software also creates a routing traces file <project > .troutingtraces.

5. Move these three files out of the outflow directory, for example, move them up one level
to the main project directory.

6. Copy and paste the cells and nets you want to constrain from the two template files
to your own files. You do not want to copy everything! (See
on page 74 and on page 71)

7. Add your new constraint files to an .ini file. (See on page
73)

8. Continue to change your design as needed. When you compile, the software will place
and route the constrained logic and nets as defined in the constraint files.

Enabling Routing Constraints

Because routing constraints are beta in the Efinity software v2022.2, you must enable them
with an .ini file. Because routing constraints are used with logic constraints, you enable them

both.

1. Create a text file named efx_pnr_settings.ini and save it in your project directory.
2. Add the following lines to the .ini file:

loc_assignment = <path>/<filename>.placeloc
rcf file = <path>/<filename>.rcf

When you synthesize your design, the software uses the assignments in the specified files.

www.efinixinc.com 73



Efinity Timing Closure User Guide

Generate .rcf Template

You tell the software to generate templates in the efx_pnr_settings.ini file. Because routing
constraints are used with logic constraints, you enable templates for both.

1. If you do not already have one, create a text file named efx_pnr_settings.ini and save it
in your project directory.
2. Add the following lines to the .ini file:

dump_placeloc = on
generate rcf template = on

When you compile your design, the software generates the <project >.out.placeloc and
<project > .rcf.template files.

@ Important: Do not generate these templates until you are ready to lock down the routing.

Creating a Routing Constraint File

The routing constraint file is a text file with the extension .rcf. The file format is line-
oriented; each command is on a single line with spaces between the data.

To make it easier for you to create assignments, the Efinity software can dump all routing
data into a template file when routing finishes. (See on page 74)
You copy and paste the nets you want to constrain into your own .rcf.

@ Important: Do NOT simply copy and paste the entire template file into your .rcf or the software may not
be able to perform routing efficiently. Only copy the nets you want to constrain.

The .rcf has these components:

° routeTraceFile <path>/<filename> troutingtraces is the file that has the saved
net traces you want to use.
* restoreNetFromTraceFile <met> isthe net you want to constrain

* Lines beginning with # are comments

# The constrained router flow will use the following trace file to restore constrained nets
routeTraceFile <path>/<project>/<filename>.troutingtraces

# Here is a list of available nets that can be restored from the trace file
# You can use (#) to comment any net that you would like to exclude
restoreNetFromTraceFile rst i

restoreNetFromTraceFile net 1

restoreNetFromTraceFile net 2

# restoreNetFromTraceFile net_3 # this net is ignored

www.efinixinc.com 74



Efinity Timing Closure User Guide

Best Practices for Constraining Routing

Follow these guidelines when constraining routing:

Use a consistent naming convention, such as netname LOCKED, for all constrained nets.
This methodology lets you identify them in the template files more easily.

Use the syn_keep synthesis attribute to tell synthesis to keep the signal during
optimization. If you do not use syn_keep, software might optimize away the net you
want to constrain.

(* syn_keep = "true" *) wire netname LOCKED;

In your .rcf, do not point to the .troutingtraces file in the project outflow directory.
This file is overwritten each time you compile. Instead, move the .troutingtraces file into
another directory and point to it in that location.

¥ you modify your design, the primitive cell names (for example LUT names) might change
through the synthesis step. As a result, you may need to make some modifications in your
< project > .out.placeloc file to reflect the new primitive cell names of the synthesized
netlist.

www.efinixinc.com 75



Efinity Timing Closure User Guide

Methods for Closing Timing

You have created your RTL, you have designed your board, now you need to close timing,
and you are stuck. Knowing what to do for that last bit of tweaking to achieve your desired
fymax can be difficult. When creating the Efinity” software, Efinix” software engineers have
chosen default values for the tool flow to achieve the best trade-off between performance and
runtime for a large number of benchmark designs. Your design, however, is unique, and may
benefit from non-default settings to get the performance you need.

In general, it is best to start by choosing good synthesis options, then placement options, then

routing options. First choose high-level options that work well, then run a seed sweep using
those options to take advantage of noise and use the best result. You set synthesis and place-
and-route options for your project in the Project Editor.

Tip: When trying to close timing, remember that you can also adjust the constraints in your SDC file or modify

your design.

Synthesis Options

Changes in synthesis results may or may not help you achieve your final fyax target. Usually
it is best to use these options with different place and route options as part of your design

exploration.

Tip: You set synthesis options in the Project Editor. Choose File > Edit Project and then click the Synthesis tab.

Table 5: Synthesis Options (All Families)

Name Choices Description

--allow-const-ram-index 0,1 Infer RAM if an array is accessed through constant indices. This
option can be useful if memory is written such that a constant
index refers to each segment (e.g., in a byte-enable read/write).
0: Default. Do not infer.
1: Infer.

--blackbox-error 0,1 Generate an error when synthesis encounters an undefined
instance or entity.
0: No error.
1: Default. Generate error.

--blast_const_operand_adders 0,1 If one of the operands to an arithmetic operation is constant,
implement it as logic instead of adders.
0: Disable.
1: Default. Enable.

--bram_output_regs_packing 0,1 Enables the software to pack registers into the output of BRAM.
0: Disable.
1: Default. Enable

www.efinixinc.com 76



Efinity Timing Closure User Guide

Name Choices Description

--create-onehot-fsms 0,1 Create onehot encoded state machine when appropriate.
Synthesis can only create these state machines if the state
variables do not have explicit encoding in the HDL. If a state
machine is coded using onehot encoding, a new section
in the map report (<project>.map.rpt) shows the encoding
information.

0: Default. Disabled.
1: Enabled.

--fanout-limit Oton If something is high fanout, the tool duplicates the fanout

source.
0: Default. Disable.
n: Indicate the fanout limit at which to begin duplication.

--hdl-compile-unit 0,1 When considering multiple source files, resolve "define or
parameters independently or across all files. This option only
works with SystemVerilog files.

0: Across all files.
1: Default. Independently.

--infer-clk-enable 0,1,2,3,4 |Inferflip-flop clock enables from control logic.

0: disable.

1, 2, 3, 4: Effort levels.
--infer-sync-set-reset 0,1 Infer synchronous set/reset signals.

0: Disable.

1: Default. Enable.

--max_ram -1,0,n -1: Default. There is no limit to the number of RAM blocks to
infer.

0: Disable.
n: Any integer.

--max_mult -1,0,n -1: Default. There is no limit to the number of multipliers to
infer.

0: Disable.
n: Any integer.

--min-sr-fanout 0,n Infer the flipflop's synchronous set/reset signal from control
logic if the set/reset signal fanout is greater than n. This option
is useful if the design has a lot of small fanout set/reset signals
that may create routing congestion.

0: Default. Disable.
n: Signal fanout.

--min-ce-fanout 0,n Infer the flipflops clock enable from c ontrol logic if the clock

enable signal fanout is grester than n.
0: Default. Disable.
n: Signal fanout.

--mode speed, speed: Default. Optimizes for fastest fyax-

area, area?2

area: Optimizes for smallest area.

area2: Uses techniques that help to optimize large multiplexer
trees.

www.efinixinc.com

77




Efinity Timing Closure User Guide

Name Choices Description

--mult-auto-pipeline 0,1,-1 Performs automatic pipelining for wide multipliers to increase
performance at the cost of extra latency. The software inserts
pipeline registers at the output of partial multiplies and partial
sums. For Titanium FPGAs, these pipeline registers are packed
into the DSP48 as P and W registers. Additional registers are
inserted at the input and output of the multiplier to balance
latency issues caused by the insertion of the previous registers.
0: Default. Disabled.
1: Insert registers after partial multiplies creating 1 extra cycle of
latency.
-1: Insert registers after partial multiplies and sums creating 2
or more extra cycles of latency depending on the width of the
multiplier. For example, the software adds 4 latency cycles for a
32 x 32 multiplier.

--mult-decomp-retime 0,1 Perform retiming after decomposition of a wide multiplier to
improve performance.
0: Default. Disable.
1: Enable.

--operator-sharing 0,1 Extract shared operators
0: Default. Disable
1: Enable

--optimize-adder-tree 0,1 Optimize skewed adder trees
0: Default. Disable
1: Enable

--optimize-zero-init-rom 0,1 Opitmize ROMs that are initialized to zero.
0: Disable
1: Default. Enable

--retiming 0,1 Perform retiming optimization. Software moves registers to
balance the combinational delay path.
0: Disable.
1: Default. Enable.

--seq_opt 0,1 Turn on sequential optimization. This option can reduce LUT
usage but may impact fyax-
0: Disable.
1: Default. Enable.

--seg-opt-sync-only 0,1 Sequential synthesis only considers synchronous reset flipflops.
0: Default. Consider all flipflops.
1: Consider synchronous flipflops only.

--use-logic-for-small-mem Oton Set the size limit of small RAM blocks implemented in LEs. The
number is the maximum number of LEs used.
0: Disable.
64: Default.

--use-logic-for-small-rom Oton Set the size limit of small ROM blocks implemented in LEs. The

number is the maximum number of LEs used.
0: Disable.
64: Default.

Handling High Fanouts

www.efinixinc.com 78



Efinity Timing Closure User Guide

When a signal has a high fanout, it may have higher path delays and therefore reduced
performance. Additionally, when you have optimized the depth of the design so that there
are very few levels of logic on the critical path, even modest high-fanout nets may be limiting.
In these cases, you can tweak the synthesis to address high fanout either globally or manually.

Limit Fanout Globally

You can set the maximum fanout using the -—fanout-1imit synthesis setting. You set
this option in the Project Editor > Synthesis tab. This option is a global project setting and
affects your whole design.

To identify signals with high fanout:

1. Perform a full compile.
2. Open the timing report (< project name > .timing.rpt) by double-clicking the filename
under Result > Routing or opening the file in the outflow directory.

3. By default, the timing report shows the most critical path. Fanout is reported in the pins
on net column.

Data Path

pin name model name delay (ns) cumulative delay (ns) pins on net location
Fled[1]~FF|Q ff 0.650 0.650 300 (55,78)
Fled[1]~FF|O seq eft 5.210 5.861 300 (55,78)

Routing elements:
Manhattan distance of X:55, Y:14

Fled[1]

io 0.420 6.281 300 (0,92)

If the pins on net is a large number (300 in the above example) and there is a large delay,
try setting the -——fanout-1limit to a lower number. The software duplicates the logic as
needed to limit the fanout. This setting trades off area for delay; it may use more logic but
run faster.

Example: Set Fanout Limit to 100

1. Open the Project Editor.
2. Click the Synthesis tab.
3. Set the Value for --fanout-limit to 100.

4. Click OK.

5. Recompile.

Limit Fanout Manually

If you do not want to limit the fanout with a global setting, you can limit it manually by
duplicating logic and using the syn preserve synthesis attribute to tell synthesis not to
minimize the duplicated logic.

This attribute applies to signals. When it is set to true, yes, or 1, synthesis keeps the
signal through optimization, that is, synthesis does not minimize or remove the signal.
This attribute can be helpful when you want to simulate or view a signal in the Debugger.
Although the signal is kept, synthesis may still choose to implement downstream functions
that depend on this signal independent of this preserved signal.

In the Efinity software v2022.2 and higher, the syn preserve attribute is supported on a
user hierarchy instance. The effect is equivalent to tagging all boundary signals of the instance
with syn preserve.

Verilog HDL:

(* syn preserve = "true" *) wire x;

www.efinixinc.com 79



Efinity Timing Closure User Guide

VHDL.:

attribute syn preserve: boolean;
attribute syn preserve of x : signal is true;

Note: A signal with syn preserve usually has it's name preserved through synthesis flow. However, if
the signal is connected directly to a top-level port, the name in the map.v netlist may be changed to that of
the top-level port name.

www.efinixinc.com 80



Efinity Timing Closure User Guide

Place-and-Route Options

The best place to start with adjusting the place-and-route settings is to use one of the
optimization levels. Each level is a "recipe" that controls both placement and routing; one

is not necessarily better than the other. Efinix developed them to introduce as much useful
variation as possible into the place-and-route process. These options will not help all designs,
and often the default settings are actually the best choice.

Note: Using these options can cause significantly higher run-time. In fact, some options trigger
completely different optimization algorithms than the standard flow.

Try running all of these optimization levels and choose the one that works best for your
design. The timing values are best for designs that are easy to route while the congestion
values are best for designs that are very difficult to route. For congested designs, these options
resolve congestion early in the process so that the router can focus on meeting timing. If

the number of routing iterations is greater than 20, the design is hard to route. The power
options can help reduce a design's power consumption. See on page
83 for details on how to sweep these options using a script.

The seed option introduces random noise in the placer (see on page 83

for a detailed discussion). The fyax difference between the best and worst seed in a 5-seed
sweep can be up to 10%. But keep in mind that a good seed only applies to one specific design
for one Efinity” release on one operating system. So if you want to reproduce the same result
for the same design, you need to use the same software release and same operating system.

Sometimes small design changes may appear to reduce fyiax by up to 10%. You should run a
5-seed sweep to verify that the decrease was actually due to the design change and not simply
noise from the placer.

Tip: You set these options in the Project Editor. Choose File > Edit Project and click the Place and Route tab.

Table 6: Optimization Options

Optimization Value Description
--optimization_level | NULL Disabled (default).
TIMING_1 Recipe 1 to meet timing for a non-congested design.
TIMING_2 Recipe 2 to meet timing for a non-congested design.
TIMING_3 Recipe 3 to meet timing for a non-congested design.

CONGESTION_1

Recipe 1 to meet timing and help a congested design route.

CONGESTION_2

Recipe 2 to meet timing and help a congested design route.

CONGESTION_3

Recipe 3 to meet timing and help a congested design route.

POWER_1 Recipe 1 to reduce a design's power consumption.
POWER_2 Recipe 2 to meet a design's power consumption.
seed Integer Enter any integer to insert a random seed into the place-and-route
algorithm. Read more about seed sweeping in the next section.
--placer_effort_level |1,2,3,4,5 Controls how much runtime the placer uses to attempt to improve

placement quality.
Default: 2

www.efinixinc.com 81



Efinity Timing Closure User Guide

Optimization

Value

Description

--max_threads

Integer

Choose the maximum number of threads that the placer can
launch. Typically you want to use the default, -1, which means the
placer can launch as many threads as it needs. However, if you are
running other pocesses on your computer, you may want to limit
the number of threads.

Default: -1

--beneficial-skew

on, off

When turned on, the software "borrows" slack from one clock to
meet timing on another. (Titanium FPGAs only)

Default: on

Beneficial Skew

Beneficial skew (sometimes called "slack borrowing") is a process in which the software
adjusts clocks to better close timing. In the following figure, Delay 1 meets timing and has
extra slack. Delay 2 does not meet timing. The software adjust the clocks to take some slack
from Delay 1 and give it to Delay 2, allowing both to meet timing.

This option is only available for Titanium FPGAs.

Figure 39: Beneficial Skew Example

—»D QP

>
[FH

Delay 1 Delay 2

o ®

Logc —+»D Q—» Logic —»DQ—»

> >
F FF2 TFFS

Take some slack and give it to
from FF2’s clock FF3’s clock

Sweeping Script

Efinix provides helper scripts that you can use to compile a design multiple times using
various place-and-route settings.

* Linux—scripts/efx_run_pnr_sweep.py
Windows—bin/efx_run_pnr_sweep.bat

The scripts use this syntax:

efx run pnr sweep.py <project file> {sweep opt levels | sweep_ seeds {--num seeds <integer>}
{--start seed <integer>} } [-h]

efx run pnr sweep.bat <project file> {sweep opt levels | sweep_seeds {--num seeds <integer>}
{--start seed <integer>} } [-h]

where:
<project file> is your project's XML file
sweep opt_ levels sweeps through all of the possible optimization settings

sweep_ seeds sweeps through seeds
-h, --help shows the help

@ Note: You sweep through either optimizations or seeds. You cannot sweep both at the same time.

www.efinixinc.com 82



®

Efinity Timing Closure User Guide

The software summarizes the timing results of the runs in the timing.sum.rpt file in the
project directory. You can find the corresponding result files in the run_sweep_ <string >
directory.

Important: You should run these script in your project directory, not the Efinity installation directory.
Otherwise, the scripts cannot find all of the required files.

Optimization Sweeping

You can use the scripts to sweep through all of the place-and-route optimization settings to
find out which one works best for your design.

Example Usage

To sweep all of the optimization levels for project helloworld:

efx run pnr sweep.py helloworld.xml sweep opt levels
efx run pnr sweep.bat helloworld.xml sweep opt levels

Using the Results

When sweeping completes, open the timing.sum.rpt file in the project directory. It gives

an overview of the clocks analyzed and their frequency for each optimization setting. The
following code shows and excerpt of the summary report for sweeping optimization levels
for the pt_demo project.

| Clock Name: Oclk

| | Period (ns) | Frequency (MHz) | Edge |
|l-—— |
| CONGESTION 1 | 6.453 | 154.964 | (R-R)
| CONGESTION 2 | 6.867 | 145.620 | (R-R)
| CONGESTION 3 | 8.141 | 122.841 | (R-R)
| TIMING 1 | 8.570 | 116.682 | (R-R)
| TIMING 2 | 8.914 | 112.182 | (R-R)
| TIMING 3 | 8.711 | 114.798 | (R-R)

You can also review detailed reports in the run_sweep_<string>/seed_< number>/
outflow directory.

If you are happy with the results for one of the optimization levels, you can set that option in
your project:

1. Open the Project Editor.

2. Click the Place and Route tab.

3. Choose the Value you want to set for the optimization level.

4. Click OK.

5. Recompile.

Seed Sweeping

After you choose an appropriate optimization level (or the default), try running a seed
sweep and taking the best of these runs to close timing. The annealer uses a random number
generator that you can control using a seed parameter. Running a 10-seed sweep typically
results in an fyax variation of 10% to 20% in a well-behaved circuit, but can be higher for
random differences that only occur in one seed. Keep these tips in mind:

* Run a seed sweep every time you make a small change to the design.

www.efinixinc.com 83



Efinity Timing Closure User Guide
* No seed value is better than any other.
* Diflerent seed values may be best on different machines.

Example Usage

Sweep seeds using the default settings. In this mode, the script runs 10 different seeds with
seed numbers 0 - 9. That is, it runs seed=0, seed=1, etc.

efx run pnr sweep.py helloworld.xml sweep seeds
efx run pnr sweep.bat helloworld.xml sweep seeds

Compile 6 seeds with seed numbers O - 5:

efx run pnr sweep.py helloworld.xml sweep seeds --num seeds 6
efx_run pnr_ sweep.bat helloworld.xml sweep_ seeds --num_seeds 6

Compile with seed numbers 3, 4, and 5:

efx run pnr sweep.py helloworld.xml sweep seeds --start seed 3 --end seed 5
efx run pnr sweep.bat helloworld.xml sweep seeds --start seed 3 --end seed 5

Compile with 6 seeds, starting with seed number 3:

efx run pnr sweep.py helloworld.xml sweep seeds --start seed 3 --num seeds 6
efx _run pnr sweep.bat helloworld.xml sweep seeds --start seed 3 --num seeds 6

www.efinixinc.com 84



Efinity Timing Closure User Guide

Using the Results

When seed sweeping completes, open the timing.sum.rpt file in the project directory. It
gives an overview of the clocks analyzed and their frequency for each seed. The following
code shows and excerpt of the summary report for seed sweeping the pt_demo project with
the default 10 seeds. The number after seed_ is the random seed number the compiler used.

| Clock Name: Oclk |

| | Period (ns) | Frequency (MHz) | Edge |
R e \
| seed 0 | 6.211 | 161.006 |  (R-R) |
| seed 1 | 7.211 [ 138.678 |  (R-R) |
| seed 2 | 7.852 | 127.363 | (R-R) |
| seed 3 | 7.883 | 126.858 |  (R-R) |
| seed 4 | 5.453 [ 183.381 |  (R-R) |
| seed 5 | 5.328 | 187.683 | (R-R) |
| seed 6 | 7.563 | 132.231 |  (R-R) |
| seed 7 | 5.633 [ 177.531 |  (R-R) |
| seed 8 | 5.547 | 180.282 | (R-R) |
| seed 9 | 4.656 | 214.765 |  (R-R) |

You can also review detailed reports for each run in the run_sweep_<string>/
seed_ < number>/outflow directory.

If you are happy with the results for one of the seeds, you can set that option in your project.
For example, to apply seed 9 to your project:

1. Open the Project Editor.

Click the Place and Route tab.
Enter 9 in the Value cell.

Click OK.

Recompile.

ANl

Closing Timing with High DSP Block Utilization

If your design has a >50% of the DSP Blocks implemented with EFX_DSP24 or
EFX_DSP12 primitives, the fpax can vary significantly depending on the placement seed.
Therefore, it is a good idea to try 3 or 4 seeds to see if it helps with timing closure, more so
than for a typical design.

Learn more: Refer to the for information on how to perform seed
sweeping.

www.efinixinc.com 85


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Timing Closure User Guide

Tcl Timing Report and Flow Commands

Use these commands in the Tcl Command Console. See on
page 6 for more information.

Timing Commands

The tool supports the following timing commands:

delete timing results—This command deletes path data, reported using the
report_path and report_timing commands, that the software has stored in memory.

get available timing model—Returns a list of available operating conditions for
the current device. The device must be loaded for this command to execute.

get timing model—Returns the current operating conditions for the device. The
device must be loaded for this command to execute.

read sdc <file>—This command reads in the specified SDC file. If you do not
specify a file, the tool loads the SDC file list that you set in the project. The SDC file
overrides previous constraints. If a constraint is overwritten by a later constraint, the
software issues a warning similar to:

SDC <file name>: <line number>] A clock with name 'Oclk' already exists.
Overwriting the previous clock with the same name

reset timing—Removes the timing data, all constraints, and all reported paths.
set timing model—Specify the operating conditions for the current design. Use
get_available timing model to view the list of supported conditions. You can only use
this command after you have performed place and route.
write sdc <file>—Write the timing constraints in memory to the specified SDC
file. The tool does not add the SDC file to your project.

report_clocks Command

report clocks [-file <file>] [-stdout]

This command generates a clock report. If you do not specify a file name, the software prints
the report to the Console (stdout) by default.

www.efinixinc.com 86



Efinity Timing Closure User Guide

report_path Command

report path [-file <file>] [-npaths <number>] [-nworst <number>] \
[-show routing] [-stdout] [-summary] [-through <names>] -to <names> \
-from <names> -id <number> [-min path]

This constraint reports the longest delay path and the corresponding delay value.

-file writes the results to a file in the outflow directory.

-npaths is the maximum number of paths to report. If you do not specify the number
of paths, the software only provides the single longest delay path.

-nworst is the maximum number of paths reported for each unique endpoint. Without
this option, the number of paths reported for each destination node is restricted by -
npaths only. If you use this option but not -npaths, —npaths defaults to the value
specified for -nworst.

-show_routing displays detailed routing information.

-stdout writes the results to the Console during compilation only. If you re-generate
timing, use the -file option instead.

-summary generates a table that summarizes the results.

—-through restricts analysis to paths that go through specified pins or nets. Paths that are
reported can not start before or go beyond a keeper node (register or port); this restriction
considers register pins as combinational nodes in the design.

-fromand -to limit the analysis to specific start and end points. Any node or cell in the
design is a valid endpoint.

-1id is the position in the Timing Browser where the tool displays the result.
-min_path reports the minimum delay paths.

www.efinixinc.com 87



Efinity Timing Closure User Guide

report_timing Command

report timing [-detail summary|path only|path and clock|full path] \

[-file <name>]

[
[
[
[
[

[-from clock <names>] -from <names>

-fall from clock <names>] [-rise from clock <names>]

-less than slack <slack 1imit>] [-npaths <number>] [-nworst <number>]
—show:routfng] [-stdout] [-through <names>] -to <names> -to_clock <names>
-rise to clock <names>] [-fall to clock <names>] [-id <number>]

-hold]

[-setup]

This command reports the worst-case paths and their associated risk. The tool displays paths
in order of increasing slack.

-detail specifies how much detail is shown in the path report.

-file writes the results to a file in the outflow directory.

-from clockand -to_ clock are valid source and destination clocks, respectively.
-from and -to limit the analysis to specific start and end points. Any node or cell in the
design is a valid endpoint.

-fall from clockand -fall to clock are the starting and ending points of the
falling edge of the clock domain, respectively.

-rise from clockand -rise to_clock are the starting and ending points of the
rising edge of the clock domain, respectively.

-less_than slack displays only those paths with slack less than the specified limit.
-npaths sets the number of paths to report. If you do not specify the number of paths,
the software only provides the single longest delay path.

-nworst limits the number of paths reported for each unique endpoint. Without this
option, the number of paths reported for each destination node is restricted by the -
npaths only. If you use this option but not -npaths, -npaths defaults to the value
specified for -nworst.

-show_routing displays detailed routing information.

-stdout writes the results to the Console.

—-through restricts analysis to paths that go through specified pins or nets. Paths that are
reported can not start before or go beyond a keeper node (register or port); this restriction
considers register pins as combinational nodes in the design.

-1id is the position in the Timing Browser where the tool displays the result. Use -id to
overwrite existing constraints in the Timing Browser. 0 is reserved for the critical path.

If the specified ID number is larger than the existing constraint ID, the tool ignores this
option. By default, it returns clock setup paths if you do not specify -setup or ~hold.
-setup reports the clock setup paths.

-hold reports the clock hold paths.

www.efinixinc.com 88



Efinity Timing Closure User Guide

report_timing_summary Command

report timing summary [-file <file>] [-hold] [-setup]

This command performs timing analysis and generates the critical path timing report. The
software saves the report as <project > .timing.rpt by default. To specify a different file
name, use the -£ile option. By default, the tool prints setup and hold paths.

° —file writes the results to a file in the outflow directory.
* —setup reports the clock setup paths.
° -hold reports the clock hold paths.

www.efinixinc.com 89



Efinity Timing Closure User Guide

Appendix

About the <project>.pt.sdc File

When you generate constraints in the Interface Designer, the software creates the
<project>.pt.sdc in the outflow directory; this template file has the interface block
constraints. You into your project SDC file. Some
generated constraints require you to modify them, for example, to add a clock period or
name. These constraints are commented out so they do not generate errors if you include
them in your SDC file without modifying them.

@ Important: Do not add the <project>.pt.sdc file to your project! It is re-created
every time you generate constraints and any changes you make will be overwritten.

The PLL Constraints section has the create clock SDC command for all PLL outout

clocks. Use these commands as is without modification.

# PLL Constraints

#HHHE AR

create clock -period 10.0000 i hbramClk fb

create clock -waveform {1.2500 3.7500} -period 5.0000 i hbramC1k90

The GPIO Constraints, HSIO GPIO Constraints, and MIPI RX/TX Lane Constraints

sections have constraints for these blocks, some of which are templates that you need to

modify.
Use SDC constraints for registered inputs and outputs as is without modification.

For GPIO and LVDS blocks used as clock sources, the Interface Designer includes a

create clock template line. To constrain these clocks, replace <USER PERIOD> with

the clock period and uncomment the line.
Non-registered inputs and outputs also have template lines. Modify them as follows:

* Replace <CLOCK> with the clock name.

* (Optional) Replace <clkout pad> with the reference clock pin name and remove the
brackets []. If you do not want to use a reference clock pin, delete [-reference pin

<clkout pad>]
* Replace <MAX CALCULATION> and <MIN CALCULATION> with the values you

calculate as described in on page 33.

* Uncomment the line.

# GPIO Constraints

FHEF A H A

# create clock -period <USER PERIOD> [get ports {clock}]

# set 1nput delay -clock <CLOCK> [- reference pin <clkout pad>]

# -max <MAX CALCULATION> [get ports {i arstn}]
# set 1nput delay -clock <CLOCK> [-reference pin <clkout pad>]
# -min <MIN CALCULATION> [get ports {i arstn}]
set output delay -clock fall -clock i hbramClk90 -reference _pin [get ports
{i hbramClk90~CLKOUT~75~322}] -max 0.263 [get _ports {hbc ck n LO hbc ck n HI}]

set output delay -clock fall -clock i hbramClk90 -reference pin [get_ports

{i hbramClk90~CLKOUT~75~322}] -min -0.140 [get ports {hbcickiniLO hbc ck n HI}]
set 1nput delay -clock i hbramClk cal -reference pin [get ports

{1 hbramClk cal~CLKOUT~32~322}] -max 0.414 [get ports {hbc_dg IN LO[0] hbc _dg IN HI[0]}]
set input delay -clock i hbramClk cal -reference pin [get ports

{1 hbramClk cal~CLKOUT~32~322}] -min 0.276 [get _ports {hbc dg IN LO[0] hbc dg IN HI[O0]}]

www.efinixinc.com

90



Efinity Timing Closure User Guide

The Clock Latency Constraints section has templates for the set_clock latency constaint.
on page 16 and on page 30 describe how to use these
templates.

# Clock Latency Constraints

FHEHHH AR

set _clock latency -source -setup <board max -2.834> [get ports {clk}]

set clock latency -source -hold <board min -1.417> [get ports {clk}]

set clock latency -source -setup <board max + 1.476> [get ports {refclk}]
set clock latency -source -hold <board min + 0.738> [get ports {refclk}]

He e S e

The JTAG Timing Report shows the SDC constraints for the JTAG signals. Additionally,
you should use set clock groups to make the JTAG clocks unrelated to other clocks.

# JTAG Constraints

FHEHHF AR

# create clock -period <USER PERIOD> [get ports {jtag instl TCK}]

# create clock -period <USER PERIOD> [get ports {jtag instl DRCK} ]

set output delay -clock jtag instl TCK -max 0.117 [get ports {jtag instl TDO}]
set output delay -clock jtag instl TCK -min -0.075 [get ports {jtag instl TDO}]

www.efinixinc.com 91



Efinity Timing Closure User Guide

About the <project>.pt_timing.rpt File

This report shows the timing for your design's interface blocks. When you generate
constraints in the Interface Designer, the software creates this file in the outflow directory.

Clocks can come from several sources: PLL, GPIOs, MIPI RX Lane, MIPI RX PHY, JTAG.

The PLL Timing Report shows details about the clocks generated by PLLs in the interface,
including the clock period, any phase shift, and whether the clock is inverted. This data
matches the create clock SDC template. The report also shows the PLL compensation
delay. on page 16 and on page 30 describe how to use the
data.

———————— 1. PLL Timing Report (begin) ----------

fom = fom = e fom B e bt fom - R +
| PLL |Resource |Reference|Core Clock| FB | Core | PLL | PLL

| Instance| | Clock |Reference |Mode| Feedback Pin | Compensation | Compensation |
| | | | Pin | | |Delay Max (ns) |Delay Min (ns) |
fmmm e fmmm e fmmmm fomm e e e e T e e T e +
| pll |PLL TRO | external]| |core|clk~CLKOUT~40~482 | 4.310 | 2.155

fom = fo— e fom - B e bt fom - R +
B o B ittt +

| Clock | Period (ns) | Phase Shift (degrees) |

fmmmm B B i e e +

| clk | 10.0000 | 0

fo————— fom e o +

The GPIO Timing Report and HSIO GPIO Timing reports give timing information about
the GPIO or HSIO blocks used in your design. The data is grouped by non-registered and
registered blocks.

For non-registered blocks, the Max value is the worst case (slowest corner) and the Min is the
best case (fastest corner). When you are constraining unsynchronized inputs and outputs, you
use these maximum and minimum numbers for the calculations.

Non-registered GPIO Configuration:

o Fom e Fo— Fo—mm Fo——m———— +
Instance Name | Pin Name | Parameter | Max (ns) | Min (ns)
o R b o o —— o +
i arstn | i arstn | GPIO IN | 1.177 | 0.785
swl | swl | GPIOiIN | 1.177 | 0.785

For registered blocks, the values correspond to the system timing as observed at the FPGA's
pins. The table shows the max (worst) and min (best) values for setup, hold, and clock to
output. You use these values to confirm that your system timing requirements are met.

Registered HSIO GPIO Configuration:

o - o +-————— +-————— +-————- +-————- t-—— t-—— +
| Instance Name | Clock Pin | Max |  Min | Max | Min | Max | Min
| Setup | Setup | Hold | Hold | Clock to | Clock to |
| (ns) | (ns) | (ns) | (ns) | Out (ns) | Out (ns) |
o o B B +-————= +-————= o B +
| hbc dg[0] | i hbramClk cal | 0.618 [0.412 [-0.408|-0.272] |
| hbc ck_n | ~i hbramClk90 | | | | | 2.226 | 1.484 |
| hbc ck p | ~i hbramClk90 | | | | | 2.226 | 1.484 |

Important: The reported numbers assume that the clock pin came from a GPIO used as a global clock
source (GCLK).

www.efinixinc.com 92



Efinity Timing Closure User Guide

The JTAG Timing Report gives the max and min values for the JTAG pins used in your

design.
—————————— 3. JTAG Timing Report (begin) ---------—-
fom e fom e fom fom— - fom— - +
Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
Fom e Fom e Fom - Fom - Fom - +
jtag_instl | jtag instl TDI | JTAG_IN | 3.164 | 2.109
jtag_instl | jtag instl TMS | JTAG_IN | 2.471 | 1.647

www.efinixinc.com 93



Efinity Timing Closure User Guide

Where to Learn More

The Efinity” software includes documentation as PDF user guides and on-line HTML help.
This documentation is provided with the software. You can also access the latest versions of
PDF documentation in the Support Center:

¢ Efinity Software User Guide

¢ Efinity Synthesis User Guide

¢ Efinity Timing Closure User Guide

* Efinity Software Installation User Guide
¢ Efinity Trion Tutorial

¢ Efinity Debugger Tutorial

¢ Titanium Interfaces User Guide

¢ Trion Interfaces User Guide

¢ Efinity Interface Designer Python API

¢ Quantum® Trion Primitives User Guide
¢ Quantum® Titanium Primitives User Guide

In addition to documentation, Efinix field application engineers have created a series of videos
to help you learn about aspects of the software. You can view these videos in the Support
Center.

www.efinixinc.com 94


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTDBG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM

Efinity Timing Closure User Guide

Revision History

Table 7: Revision History

Date

Version

Description

December 2023

5.0

Added examples for setting min and max delays on synchronous and
asynchronous paths.

Added get_fanouts constraint.

Updated Clock Latency section; the Efinity software v2023.2 now provides a
SDC template for set_clock_latency.

Added clock latency topic for PLL cascading.
Updated section on constraining I/O.

Added section of common mistakes.

Updated topic about the <project>.pt.sdc file.
Updated topic about the <project>.pt_timing.rpt file.

In SDC files, square brackets are supported in clock names without using the -
name option.

June 2023

4.0

Updated the create_clock, create_generated_clock, set_input_delay, and
set_ouput_delay constraint descriptions (new flags).

Added information on multiple SDC file support, including how the software
handles multiple constraints for the same clock.

Added new examples for Clock Latency.
Added explanation for virtual clocks.

Added more detail and examples for constrainting unsynchronized inputs
and outputs.

Added SDC examples.

Updated Best Practices for Constraining Routing to reflect syn_keep synthesis
option.

Interpreting Timing Results topic updated for new report format.

Explained how to use clock names with square brackets in the name.

December 2022

3.0

The create_generated_clock -source option is a port, pin, or net. (DOC-1027)

set_false_path, set_min_delay, and set_max_delay support clock domain, I/
O and registers as the start and end point; they also support the -through
option. (DOC-995)

Added section on constraining routing manually.

August 2022

2.4

Added more details on synchronous input and output delays.
Added section on constraining logic.

Updated description for set_false_path constraint. Removed limitation that
one end point much be a clock. (DOC-875)

Added set_clock_latency SDC constraint.
Updated the synthesis options. (DOC-870)

Updated the place-and-route options. (DOC-889)

April 2022

2.3

Added a note to remind users not to include the <design name>.pt.sdc in
their project. (DOC-670)

December 2021

2.2

Added -reference_pin flag to set_input_delay and set_output_delay.
(DOC-488)

Added new synthesis options.

www.efinixinc.com 95



Efinity Timing Closure User Guide

Date Version Description

June 2021 2.1 Updated for Efinity software v2021.1.
Added recommendation for closing timing for DSP Blocks.

March 2021 2.0 Incorporated content from AN 008: Setting Trion Timing Constraints in the
Efinity Software (DOC-369).
Updated section on place-and-route options.
Restructured document and added more examples.

December 2020 1.1 Added the -asynchronous option to set_clock_groups (DOC-317).
Added the efx_run_pnr_sweep.bat helper script.

June 2020 1.0 Initial release.

www.efinixinc.com

96



	Contents
	Introduction
	About Constraints
	Tools for Exploring Timing

	SDC File Overview
	About SDC Files
	Create an Empty SDC File
	Add an SDC File to Your Project
	Using Multiple SDC Files
	Efinity Files You Use to Create Constraints

	Constraining Clocks
	Defining Clocks
	Using the create_clock Constraint
	Using the create_generated_clock Constraint
	Virtual Clocks

	Clock Latency
	GPIO Clock Latency
	PLL Local Feedback Clock Latency
	PLL Core Feedback Clock Latency
	PLL External Feedback Clock Latency
	PLL Cascading Clock Latency

	Clock Relationships
	Setting Constraints for Unrelated Clocks
	Using the set_clock_groups Constraint
	Using the set_false_path Constraint
	Clock Synchronizers
	Metastable Synchronizer Circuit

	How to Set Clock Uncertainty

	Constraining I/O
	Constraining Synchronous Inputs and Outputs
	Constraining Unsynchronized Inputs and Outputs
	Input Receive Clock Delay
	Output Receive Clock Delay
	Input Forward Clock Delay (GPIO clkout)
	Output Forward Clock Delay (GPIO clkout)
	Input Forward Clock Delay (GPIO output)
	Output Forward Clock Delay (GPIO output)


	Timing Exceptions
	Example: Clock-to-Clock Path with Control
	Understanding False Paths
	Understanding Min and Max Delays
	Understanding Multicycle Constraints
	Shifted Capture Window
	Shifted and Widened Window
	Constraints between Fast and Slow Clocks


	SDC Warnings
	Common Mistakes
	SDC Tips and Tricks
	SDC Syntax
	Wildcard Commands
	Regular Expressions
	Inverted Clocks
	Square Brackets in Clock Names

	SDC Constraints (Alphabetical)
	create_clock Constraint
	create_generated_clock Constraint
	get_fanouts Constraint
	set_clock_groups Constraint
	set_clock_latency Constraint
	set_clock_uncertainty Constraint
	set_false_path Constraint
	set_input_delay and set_output_delay Constraints
	set_max_delay and set_min_delay Constraints
	set_multicycle_path Constraint
	-through Option
	Constraint Object Specifiers

	SDC Examples
	Example: Dynamic Multiplexers and create_clock -add
	Example: FPGA Forwarded Clock
	Example: Generated Clock with Clock Multiplexer
	Example: Soft SERDES
	Example: Disable Impossible Paths

	Interpreting Timing Results
	Clock Frequency Summary
	Clock Relationship Summary
	Critical Paths

	Constraining Logic and Routing Manually (Beta)
	Tiles
	Working with Primitives
	Enabling Manual Assignments
	Assignment Rules
	Creating a Location Assignment File
	Constraining Routing Manually (Beta)
	Routing Constraint Flow
	Enabling Routing Constraints
	Generate .rcf Template
	Creating a Routing Constraint File
	Best Practices for Constraining Routing


	Methods for Closing Timing
	Synthesis Options
	Handling High Fanouts

	Place-and-Route Options
	Beneficial Skew
	Sweeping Script
	Optimization Sweeping
	Seed Sweeping

	Closing Timing with High DSP Block Utilization

	Tcl Timing Report and Flow Commands
	Timing Commands
	report_clocks Command
	report_path Command
	report_timing Command
	report_timing_summary Command

	Appendix
	About the <project>.pt.sdc File
	About the <project>.pt_timing.rpt File

	Where to Learn More
	Revision History

