
Efinity® Programmer
User Guide

UG-EFN-PGM-v3.5
November 2024
www.efinixinc.com

Copyright © 2024. All rights reserved. Efinix, the Efinix logo, the Titanium logo, the Topaz logo, Quantum, Trion, and Efinity are trademarks of Efinix,
Inc. All other trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction... 3

Software Requirements... 3

Installing.. 3
Installing Patches.. 3

FPGA Configuration Modes...4

Flash Programming Modes... 5

About the Programmer GUI.. 7
Working with Bitstreams..8

Edit the Bitstream Header.. 9
Bitstream Compression...9
Export to Raw Binary Format... 9
Export to .svf Format... 10
Convert to Intel Hex Format at the Command Line...10
Combine Bitstreams and Other Files... 11

SPI Programming..11
Program a Single Image...11
Program Multiple Images (CBSEL).. 11
Program Multiple Images (Internal Reconfiguration)..12
Program Multiple Images (Bitstream and Data)..13
Program a Daisy Chain... 13

JTAG Programming..14
JTAG Device IDs.. 14
Program a Single Image...15
Program Using a JTAG Chain..16
Program using a JTAG Bridge (New)... 17
Program using a JTAG Bridge (Legacy)... 18
JTAG Programming with FTDI Chip Hardware... 19
FDTI Programming at the Command Line...19

Using the Command-Line Programmer..22
Configuration Status Register...22

Verifying Configuration with the Programmer... 24

Supported Flash Devices...24

Working with Remote Hardware.. 24

Securing Titanium Bitstreams... 27
Using the Efinity Bitstream Security Key Generator..29
Blowing Fuses with the SVF Player..31
Encrypt or Sign Bitstreams from the Command Line... 33
Workflow for Using Security Features...34
Verifying Security Settings.. 36

Working with JTAG .svf Files.. 36
Using the Efinity SVF Player... 37

Where to Learn More.. 38

Appendix: Installing USB Drivers..39
Installing the Windows USB Driver... 39

Revision History...40

Efinity Programmer User Guide

Introduction
Efinix provides a standalone Windows Programmer for use on lab machines or in a
manufacturing environment. This tool has the same features as the Programmer provided
with the Efinity® software, and works on 32- and 64-bit Windows operating systems.

The standalone Programmer uses a bitstream file (.hex for SPI programming or .bit
for JTAG programming) that you generate with the Efinity® software to program
Trion®, Topaz, and Titanium FPGAs.

Learn more: For information on generating a bitstream file or on using the Efinity® software, refer to the
Efinity Software User Guide.

Software Requirements
• Windows 8.1 or later, x86 and x64 libraries (for 64-bit systems)
• A 64-bit Windows system is required for using the security tools in the Efinity standalone

programmer.
• Microsoft Visual C++ 2019 x64 runtime library (or latest version) redistributable

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?
view=msvc-170

• Zadig software to install USB drivers
zadig.akeo.ie

Installing
Double-click the efinity-<version>-windows-x64-pgm.msi installer package and follow
the on-screen instructions.

When the software finishes installing, the following applications are added to your Windows
Start menu in the Efinity Programmer <version> folder:
• Efinity JTAG SVF Player <version>
• Efinity Key Generator <version>
• Efinity Programmer <version>

Note: Refer to Appendix: Installing USB Drivers on page 39 for instructions on installing the drivers.

Installing Patches
You download Efinity® patches separately from the software and then install them into your
existing Efinity® installation directory.

Windows
1. Download the patch from the Efinity® page in the Support Center.

www.efinixinc.com 3

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://zadig.akeo.ie

Efinity Programmer User Guide

2. Unzip the patch into any temporary directory by double-clicking the patch filename
in the Windows Explorer and choosing Extract all or by using the command unzip
efinity-<version>-patch.zip at a command prompt.

3. Setup the environment variables by typing these commands at a command prompt:

> <path to Efinity>\<version>\bin\setup.bat

4. Run the patch installer by typing these commands at a command prompt:

> cd efinity-<version>-patch
> run.bat

Note: The path <drive>:\Windows\System32 must exist in %PATH% if you have a customized
environment variable.

Linux
1. Download the patch from the Efinity® page in the Support Center.
2. Open a terminal window.
3. Unzip the patch into any temporary directory:

> unzip efinity-<version>-patch.zip

4. Setup the environment variables:

> source /path/to/efinity/<version>/bin/setup.sh

5. Run the patch installer:

> cd efinity-<version>-patch
> ./run.sh

FPGA Configuration Modes
Trion®, Topaz, and Titanium FPGAs have dedicated configuration pins. You select the
configuration mode by setting the appropriate condition on the input configuration pins.
Trion®, Topaz, and Titanium FPGAs support the following configuration modes.

Table 1: FPGA Configuration Modes

Mode Description

SPI Active (serial/parallel) The FPGA loads the bitstream itself from non-volatile SPI flash memory.

SPI Passive (serial/parallel) An external microprocessor or microcontroller sends the bitstream to the FPGA
using the SPI interface.

JTAG A host computer sends instructions through a download cable to the FPGA's
JTAG interface using JTAG instructions.

www.efinixinc.com 4

Efinity Programmer User Guide

Flash Programming Modes
The following table shows the methods you can use to program the configuration bitstream
into the flash device on your board. Although you can program the flash directly using the
SPI interface, this method requires that you have a SPI header on your board or use an FDTI
chip. Therefore, Efinix recommends that you use a JTAG bridge, because that method only
requires a JTAG header, which you would typically have on your board for other purposes
anyway.

Table 2: Flash Programming Modes

Mode Description

SPI Active (serial/parallel) Use the Efinity Programmer and a cable connected to a SPI header on the board.

SPI Active using JTAG Bridge
(New)

A improved version of the SPI Active using JTAG Bridge (Legacy) mode with a
faster flash programming time.

SPI Active x8 using JTAG
Bridge (New)

A improved version of the SPI Active x8 using JTAG Bridge (Legacy) mode with a
faster flash programming time.

Learn more: Refer to Program using a JTAG Bridge (New) on page 17 for more
information.

www.efinixinc.com 5

Efinity Programmer User Guide

Figure 1: Flash Programming Board Setup

FPGA

CCK(1)

CDI1(1)

CDI0(1)

SSL_N(1)

CRESET_N(1)

SPI Header

Programming
Module

Board

SPI Active (Serial/Parallel)

SPI Active using JTAG Bridge (New)

¹ The external pull-up is optional unless required by an external load.

SPI Flash

SCK
SDO
SDI
CS

HOLD

VCCIO VCCIO VCCIO VCCIO VCCIO VCCIO

SPI Flash

SCK
SDO
SDI
CS

JTAG
Header

JTAG
Module

Board

FPGA

CCK(1)

CDI1(1)

CDI0(1)

SSL_N(1)

TMS
TCK
TDO
TDI

VCCIO VCCIOVCCIOVCCIO VCCIO33 VCCIO33 VCCIO33 VCCIO33

SPI Active x8 using JTAG Bridge (New)
¹ The external pull-up is optional unless required by an external load.

JTAG
Header

JTAG
Module

Board

FPGA

CDI3(1)

CDI2(1)

CDI1(1)

CDI0(1)

SSL_N(1)

CCK(1)

TMS
TCK
TDO
TDI

VCCIO33 VCCIO33 VCCIO33 VCCIO33VCCIO
VCCIO

VCCIO
VCCIO

VCCIO
VCCIO

SPI Flash

HOLD
WP

SDO
SDI
CS

SCK

SPI Flash

SCK
CS

HOLD
WP

SDO
SDI

SSU_N(1)

CDI7(1)

CDI6(1)

CDI5(1)

CDI4(1)

VCCIO
VCCIO

VCCIO
VCCIO

VCCIO

Note: Be sure to hold CRESET_N low to prevent signal contention during SPI Flash
Programming.

www.efinixinc.com 6

Efinity Programmer User Guide

About the Programmer GUI
The graphical user interface makes it easy to select bitstream images and program Efinix
FPGAs.

Figure 2: Programmer

Open Combine Multiple
Images Files Dialog Box

Status Messages

Select Image

Start Programming

Refresh Configuration
Status

Configuration Options

Advanced Device
Configuration Status

Refresh the Available
USB Targets

Board Name

Connect to a
Remote Host

To use the Programmer:

1. Choose a target. Click the Edit Remote Host List button to connect to a board attached
to a remote host. See Working with Remote Hardware on page 24.

2. Choose a bitstream file. Use a .hex file for SPI modes or a .bit file for JTAG mode.
After you select a bitstream, the Programmer reads the bitstream and displays data in the
FPGA and Checksum fields. The checksum excludes the pre-header and ignores whether
characters are uppercase or lowercase; therefore, it is a checksum of the bitstream content,
not a file checksum.

www.efinixinc.com 7

Efinity Programmer User Guide

Tip: You can also get the checksum from the command line using the command:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\efx_pgm\generate_checksum.py <bitstream>

3. Choose the programming mode and then select options.

Mode Options

SPI Active Starting Flash Address
Flash Length
Erase Before Programming
Verify After Programming

SPI Passive Clock Speed

JTAG Device Select
JTAG Clock Speed

SPI Active using JTAG Bridge (Legacy)
SPI Active using JTAG Bridge (New)
SPI Active x8 using JTAG Bridge (Legacy)
SPI Active x8 using JTAG Bridge (New)

Starting Flash Address
Flash Length
Erase Before Programming
Verify After Programming
Device Select
JTAG Clock Speed

4. Click the Program FPGA (SPI Passive or JTAG) or Program Flash (all other modes)
button.

The Programmer has status information that gives you diagnostics:
• The FPGA or flash device's configuration status displays in the Device Configuration

Status area. Click the Refresh button to refresh the status and display messages in the
console.

• Use the Advanced Device Configuration Status button to get diagnostics that can be
helpful when debugging why configuration is failing. Refer to Configuration Status
Register on page 22 for more information.

Note: For detailed information on how to use configuration modes and set up your circuit board for
configuration, refer to AN 006: Configuring Trion FPGAs or AN 033: Configuring Titanium FPGAs.

Working with Bitstreams
You can use the Efinity Programmer to manipulate a bitstream before programming an
FPGA or flash device.

www.efinixinc.com 8

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN006
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Programmer User Guide

Edit the Bitstream Header
You can use the Programmer to edit the bitstream header information, for example, to add
project or revision information. To edit the header:

1. In the Programmer, choose File > Edit Header... or click the toolbar icon to open the
Edit Image Header dialog box. The window shows the default header information.

2. Edit the header.
3. Click Save.

Important: When editing the bitstream header, if you remove any of the auto-generated information
(such as Device: <name>), the Programmer may not be able to recognize the bitstream. Efinix
recommends that you only append a small amount of information to the auto-generated data if you want
to customize or annotate the header. The header can be a maximum of 256 characters, including the auto-
generated text.
If you want to write your own program to detect which device the bitstream targets (e.g., using a
microprocessor and SPI passive mode), be sure to keep all of the auto-generated header, specifically the
Device: <name> string.

Bitstream Compression
When you generate a bitstream for Titanium Topaz FPGAs, the Efinity® software
compresses the bitstream by default. This compression results in a bitstream size that is about
half of the maximum size.

Refer to AN 033: Configuring Titanium FPGAs for the bitstream sizes.

Important: If you are using the Titanium or Topaz security features (AES-256 encryption and/or
asymmetric authentication), the software cannot compress the bitstream. Therefore, compression is
disabled when you use these features.

Export to Raw Binary Format
The Efinity® software v2018.4 and later supports raw binary (.bin) format for use with third-
party flash programmers. To export to this format:

1. Open the Programmer.
2. Select the bitstream file.
3. Click Export.
4. Specify the filename.
5. Click Save.

You can also convert the file to .bin at the command line as described in Convert to Intel
Hex Format at the Command Line on page 10.

www.efinixinc.com 9

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Programmer User Guide

Export to .svf Format
The Efinity® software v2021.1 and later supports serial vector format (.svf) files for use with
third-party JTAG programmers. To export to this format:

1. Open the Programmer.
2. Select a bitstream file.
3. Click Export.
4. Specify the filename.
5. Choose Serial Vector Format (*.svf) as the Files of type.
6. Click Save.

Note: For more information on using this bitstream format, refer to Working with JTAG .svf Files on page
36.
You can also convert the file to .hex at the command line as described in Convert to Intel Hex Format at
the Command Line on page 10.

Convert to Intel Hex Format at the Command Line
You can also convert a bitstream file to Intel Hex and other formats at the command line
using this command:

export_bitstream.py [-h] [--family <Trion®, Topaz, and Titanium>] [--idcode IDCODE] [--freq
 FREQ]
 [--sdr_size SDR_SIZE][--tir_length TIR_LENGTH] [--hir_length HIR_LENGTH]
 [--tdr_length TDR_LENGTH] [--hdr_length HDR_LENGTH] [--enter_user_mode <on or off>]
 <format> <input filename> <output filename>

Where <format> is:
• hex_to_bin
• hex_to_intelhex
• bin_to_hex
• intelhex_to_hex
• hex_to_svf

For example:

C:\Efinity\2021.1\bin\setup.bat
python3 C:\Efinity\2021.1\pgm\bin\efx_pgm\export_bitstream.py hex_to_bin new_project.hex
 test2.bin

www.efinixinc.com 10

Efinity Programmer User Guide

Combine Bitstreams and Other Files
You may want to store multiple bitstreams or other data into the same flash device on your
board. For example, you can combine files for:

• Multi-image configuration using the CBSEL pins
• Internal reconfiguration
• Programming FPGAs in a daisy chain
• Programming a bitstream and other files such as a RISC-V application binary

You use the Combine Multiple Image Files dialog box to choose files to combine into a
single file for programming. Choose one of the following modes:

Table 3: Modes when Combining Images

Mode Use For Number of Images Refer to

Multi-image
configuration

Up to 4 Program Multiple Images (CBSEL) on
page 11

Selectable Flash
Image

Internal
reconfiguration

Up to 4 Program Multiple Images (Internal
Reconfiguration) on page 12

Daisy Chain Daisy chains Any number of JTAG
devices including
those from other
vendors

Program a Daisy Chain on page 13

Generic Image
Combination

A bitstream and other
files

One bitstream and
any number of other
files

Program Multiple Images (Bitstream
and Data) on page 13

SPI Programming
You can program Efinix FPGAs using the SPI interface and a .hex file.

Program a Single Image
In single image programming mode, you configure one FPGA with one image.

1. Click the Select Image File button.
2. Browse to the outflow directory and choose <project name>.hex.
3. Choose SPI Active or SPI Passive configuration mode.
4. Click Start Program. The console displays programming messages.

Program Multiple Images (CBSEL)
In this programming mode, you specify up to four images that can configure one FPGA. You
then use the FPGA's CBSEL pins to select which image to use. You can only use active mode.

1. Click the Combine Multiple Images button.
2. Choose Mode > Selectable Flash Image.
3. Enter the output file name.
4. Choose the output file location. The default is the project's outflow directory.
5. Choose External Flash Image.
6. Click in the table row corresponding to the position for which you want to add an image.
7. Click Add Image.

www.efinixinc.com 11

Efinity Programmer User Guide

8. Select the image file to place in that location.
9. Click OK.
10. Repeat steps 6 through 9 as needed. You can add up to four images.
11. Click Apply to generate the combined image file.
12. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.
13. Click Start Program.

Note: For more information on programming multiple images, refer to Example Design: Configuring a
Trion Development Board with Multiple Images on the Downloads page in the Support center.

Program Multiple Images (Internal Reconfiguration)
In this programming mode, you specify up to four images that can configure one FPGA. You
then use the FPGA's internal reconfiguration interface to select which image to use. You can
only use active mode.

1. Click the Combine Multiple Images button.
2. Choose Mode > Selectable Flash Image.
3. Enter the output file name.
4. Choose the output file location. The default is the project's outflow directory.
5. Choose Remote Update Flash Image.

Note: When using internal reconfiguration, you must choose Remote Update
Flash Image. If you choose External Flash Image, the FPGA reconfigures with the
first image as specified by the CBSEL pins instead of the golden image.

6. Click in the table row corresponding to the position for which you want to add an image.
7. Click Add Image.
8. Select the image file to place in that location.
9. Click OK.
10. Repeat steps 6 through 9 as needed. You can add up to four images.
11. Click Apply to generate the combined image file.
12. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.
13. Click Start Program.

Note: For more information on using the internal reconfiguration feature, refer to AN 010: Using the
Internal Reconfiguration Feature to Update Efinix FPGAs Remotely.

www.efinixinc.com 12

https://www.efinixinc.com/support/ed/configuring-fpgas-with-multiple-images.php
https://www.efinixinc.com/support/ed/configuring-fpgas-with-multiple-images.php
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN010
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN010

Efinity Programmer User Guide

Program Multiple Images (Bitstream and Data)
In this programming mode, you specify one bitstream and one or more data files to combine
into a single file for programming. You can only use active mode.

1. Click the Combine Multiple Images button.
2. Choose Mode > Generic Image Combination.
3. Enter the output file name.
4. Choose the output file location. The default is the project's outflow directory.
5. Click Add Image.
6. Select the image file to place in that location.
7. Click Open. The image file and flash length are displayed in the table.
8. Specify the flash address.
9. Repeat steps 5 through 8 as needed.

Note: If you want to combine a bitstream and a RISC-V binary, use 0x00000000 as
the bitstream's flash address and 0x00380000 as the binary's flash address.

10. Click Apply to generate the combined image file.
11. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.
12. Click Start Program.

Program a Daisy Chain
In this programming mode, you specify any number of images to configure a daisy chain of
FPGAs. You can choose active or passive configuration for first FPGA; the rest are in passive
mode.

1. Click the Combine Multiple Images button.
2. Select Daisy Chain as the Mode.
3. Enter the output file name.
4. Choose the output file location. The default is the project's outflow directory.
5. Click Add Image to add a file to the daisy chain.
6. Repeat step 5 to add as many files as you want to the chain. Use the up/down arrows to

re-order the images if needed.
7. Click Apply to generate the combined image file.
8. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.
9. Click Start Program.

www.efinixinc.com 13

Efinity Programmer User Guide

JTAG Programming
You can program Efinix FPGAs using the JTAG interface and a .bit file.

JTAG Device IDs
The following tables listtable lists the Topaz, Titanium, and Trion JTAG device IDs.

Table 4: Topaz JTAG Device IDs

FPGA Package JTAG Device ID

Tz50 All 10668A79

Tz75 All 006C8A79

Tz100 All 006C9A79

Tz110 All 00698A79

Tz170 All 00699A79

Tz200 All 006A8A79

Tz325 All 006A9A79

Table 5: Titanium JTAG Device IDs

FPGA Package JTAG Device ID

Ti35 All 0x10661A79

Ti60 All 0x10660A79

Ti85 All 0x006C2A79

J361, J484, G400, G529 0x00691A79Ti90

L484 0x00688A79

J361, J484, G400, G529 0x00692A79Ti120

L484 0x0068CA79

Ti135 All 0x006C0A79

Ti165 All 0x006A1A79

M484 0x00680A79

J361, J484, G400, G529 0x00690A79

Ti180

L484 0x00684A79

Ti240 All 0x006A2A79

Ti375 All 0x006A0A79

Table 6: Trion JTAG Device IDs

FPGA Package JTAG Device ID

T4, T8 BGA81 0x0

T8 QFP144 0x00210A79

T13 All 0x00210A79

www.efinixinc.com 14

Efinity Programmer User Guide

FPGA Package JTAG Device ID

T20 WLCSP80, QFP100F3,
QFP144, BGA169, BGA256

0x00210A79

T20 BGA324, BGA400 0x00240A79

T35 All 0x00240A79

T55, T85, T120 All 0x00220A79

Program a Single Image
In single image programming mode, you configure one FPGA with one image.

1. Click the Select Image File button.
2. Browse to the outflow directory and choose <project name>.bit.
3. Choose the JTAG configuration mode.
4. Click Start Program. The console displays programming messages.

www.efinixinc.com 15

Efinity Programmer User Guide

Program Using a JTAG Chain
You can program an FPGA that is part of a JTAG chain. The chain can include Trion®,
Topaz, and Titanium FPGAs as well as other devices. You define your JTAG chain using
a JTAG chain file. You import the JTAG chain file into the Programmer to perform
programming. The JTAG chain file is an XML file (.xml) that includes all of the devices in
the chain. For example:

Trion FPGA example:

<?xml version="1.0"?>

<chain>
 <device chip_num="1" id_code="0x00210a79" ir_width="4" istr_code="1100" />
 <device chip_num="2" id_code="0x00210a79" ir_width="4" istr_code="1100" />
 <device chip_num="3" id_code="0x00210a79" ir_width="4" istr_code="1100" />
</chain>

Titanium Topaz FPGA example:

<?xml version="1.0"?>

<chain>
 <device chip_num="1" id_code="0x10661A79" ir_width="5" istr_code="11000" />
 <device chip_num="2" id_code="0x10661A79" ir_width="5" istr_code="11000" />
 <device chip_num="3" id_code="0x10661A79" ir_width="5" istr_code="11000" />
</chain>

where:
• chip_num is the device order starting from position 1.
• id_code is the hexadecimal JEDEC device ID (all lowercase letters)
• ir_width is the width of the instruction register in bits
• istr_code is the binary IDCODE instruction

Note: For Trion FPGAs, use 1100 as the istr_code.

Note: For Titanium Topaz FPGAs, use 11000 as the istr_code.

To program using a JTAG chain:

1. Create a JTAG Chain File using a text editor.
2. Open the Programmer.
3. Choose your USB Target and Image.
4. Select JTAG as the Programming Mode.
5. Click the Import JCF toolbar button.
6. Browse to your JTAG Chain File and click Open.
7. Select which device you want to program in the drop-down list next to the JTAG

Programming Mode option.
8. Click Start Program.

www.efinixinc.com 16

Efinity Programmer User Guide

Program using a JTAG Bridge (New)
Programming with a JTAG bridge is a two-step process: first you configure the FPGA to
turn it into a flash programmer (.bit) and second you use the FPGA to program the flash
device with the bitstream (.hex).

The SPI Active using JTAG Bridge (New) mode, is an improved version of the legacy SPI
Active using JTAG Bridge mode, and is available in the Efinity software v2023.2 and higher.
This mode is substantially faster than the legacy mode and has pre-built flash loader (.bit) files
that you can use. These .bit files do not require an external clock source. You can still use
your own .bit file if you choose to do so.

Notice: If you would like to incorporate the RTL files for the new and improved flash loader into your own
design, the files are located in the <Efinity directory>/pgm/rtl/spiloaderv2 directory.

The Trion®, Topaz, and Titanium.bit files include a custom JTAG USERCODE in the
bitstream:
• Single flash .bit files—0x96C09A03
• Dual flash .bit files—0xC07FCFE2

Note: For Titanium Topaz FPGAs, the Programmer automatically loads the .bit file based on the FPGA
target. The Programmer has separate pre-built .bit files for the new JTAG bridge, as well as the legacy
JTAG bridge. The files are not interchangeable; therefore, if you are choosing the .bit file yourself, make
sure that you choose the correct one for the JTAG bridge mode you are using. Legacy ones are in the
<Efinity version>/pgm/fli/titanium/legacy/pgm/fli/topaz/legacy directory.
For Trion FPGAs, you need to specify the pre-built file to use.

Note: Efinix strongly recommends that you use the default new mode for JTAG bridge programming.
However, if you would like guidance on using the legacy JTAG bridge, please refer to the Efinity Software
User Guide.

To program using a JTAG bridge:

1. Choose the USB Target.
2. In the Image box, click the Select Image File button to browse for the .hex file to

program the flash device.
3. Choose the SPI Active using JTAG Bridge (New) or

 SPI Active x8 using JTAG Bridge (New) programming mode.
4. Turn on the Auto configure JTAG Bridge Image option.

For Titanium Topaz FPGAs, the Programmer automatically loads the .bit file. Skip step 5
if you want to use the pre-loaded .bit file.

5. (Optional) Specify the .bit file.

a) In the Programming Mode box, click Select Image File.
b) The Open Image File dialog box opens to a directory of available pre-built .bit files.

Choose the file for your FPGA (Trion), or browse to find your own .bit file.
Browse to find your own .bit file.
The Programmer remembers which file you specify and uses it automatically the next
time you run the Programmer.

6. Click Start Program. The Programmer first configures the FPGA and then programs the
flash device.

www.efinixinc.com 17

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE

Efinity Programmer User Guide

Important: If you are using the Titanium Topaz RSA bitstream authentication security feature, you need to
use a signed .bit file. Copy the bundled .bit file from <Efinity version>/pgm/fli/titanium/pgm/fli/topaz to
another directory and sign it. Then point to the signed .bit file in the Programmer. You can also create your
own .bit file if you prefer.
Refer to Using the Efinity Bitstream Security Key Generator on page 29 for information on signing
existing .bit files.

Efinix strongly recommends you to disable JTAG if you are using the security features to
achieve the highest security level. While disabled, you can still programming the flash with
JTAG Bridge by connecting to a soft JTAG tap IP and four GPIOs.

Program using a JTAG Bridge (Legacy)
Programming with a JTAG bridge is a two-step process: first you configure the FPGA to
turn it into a flash programmer (.bit) and second you use the FPGA to program the flash
device with the bitstream (.hex).

The Trion®, Topaz, and Titanium .bit files include a custom JTAG USERCODE in the
bitstream:
• Single flash .bit files—0x6212E80D
• Dual flash .bit files—0xFA828A14

To program using a JTAG bridge:

1. Choose the USB Target.
2. In the Image box, click the Select Image File button to browse for the .hex file to

program the flash device.
3. Choose the SPI Active using JTAG Bridge (Legacy) or SPI Active x8 using JTAG

Bridge (Legacy) mode.
4. Turn on the Auto configure JTAG Bridge Image option.

For Titanium Topaz FPGAs, the Programmer automatically loads the .bit file. Skip step 5
if you want to use the pre-loaded .bit file.

5. (Optional) Specify the .bit file.

a) In the Programming Mode box, click Select Image File.
b) The Open Image File dialog box opens. Browse to find your own .bit file.

6. Click Start Program. The Programmer first configures the FPGA and then programs the
flash device.

Notice: Refer to the JTAG SPI Flash Loader Core User Guide for instructions on creating the .bit file.

Important: If you are using the Titanium Topaz RSA bitstream authentication security feature, you need
to use a signed .bit file. Copy the bundled .bit file from the appropriate source folder to another directory
and sign it. Then point to the signed .bit file in the Programmer. You can also create your own .bit file with
the JTAG Flash Loader IP core if you prefer. Depending upon your board, the source folder is:

• <Efinity version>/pgm/fli/titanium
• <Efinity version>/pgm/fli/topaz

Refer to Using the Efinity Bitstream Security Key Generator on page 29 for information on signing
existing .bit files.

www.efinixinc.com 18

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=FLASHCTRL-CORE

Efinity Programmer User Guide

JTAG Programming with FTDI Chip Hardware
These instructions describe how to program Trion®, Topaz, and Titanium FPGAs using the
FTDI Chip FT2232H and FT4232H Mini Modules. Efinix® has tested the hardware for use
with Trion®, Topaz, and Titanium FPGAs.

Note: Efinix does not recommend the FTDI Chip C232HM-DDHSL-0 programming cable due to the
possibility of the FPGA not being recognized or the potential for programming failures.

1. Open the Efinity® software.
2. Open the Efinity® Programmer.
3. Click the Select Bitstream Image button.
4. Browse to your image and click OK.
5. Choose one of the following in the USB Target drop-down list:

• Dual RS232 HS for FT2232H Mini Module
• FT4232H_MM for FT4232H Mini Module

6. Choose JTAG from the Programming Mode drop-down list.
7. Click Start Program.

FDTI Programming at the Command Line
The Efinity® includes a script, ftdi_program.py, which you can use for command-line
programming with FTDI modules. The command is in the format:

ftdi_program.py <filename>.bit -m <mode> --url <url> --aurl
<url>

<mode> is the programming mode:

• active, passive
• jtag, jtag_chain
• jtag_bridge_new, or jtag_bridge_x8_new(1) (new mode, see Program using a

JTAG Bridge (New) on page 17)
• jtag_bridge, or jtag_bridge_x8(2) (legacy mode, see Program using a JTAG

Bridge (Legacy) on page 18)

Note: To use the JTAG bridge modes, you must have already configured the FPGA with the JTAG SPI
flash loader.
The Efinity software v2023.2 and higher includes pre-built flash loader .bit files in <Efinity installation
directory>/pgm/fli/<family>.
Refer to the JTAG SPI Flash Loader Core User Guide for information on using the legacy flash loader.

Important: You only need to specify the --url and --aurl options if you have more than one board
with an FTDI chip connected to your computer.
Only supported in T20 (BGA324 and BGA400), T35, T55, and T120 FPGAs.

<url> is in the format:

ftdi://ftdi:<product>:<serial>/<interface>

where:

<product> is the USB product ID of the device

(1) The jtag_bridge_x8_new mode is only supported in some Titanium Topaz FPGAs. Refer to the data sheet for the modes your FPGA supports.
(2) The jtag_bridge_x8 mode is only supported in some Titanium Topaz FPGA s. Refer to the data sheet for the modes your FPGA supports.

www.efinixinc.com 19

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=FLASHCTRL-CORE

Efinity Programmer User Guide

<product> Board

232h Trion T8 Development Board

2232h Trion T20 MIPI Development Board
Trion T20 BGA256 Development Board
Trion T120 BGA324 Development Board
Trion T120 BGA576 Development Board

4232h Xyloni Development Board

4232h Titanium Ti60 BGA225 Development Board

<serial> is the serial number of the FTDI chip. (Optional)
• If you only have one Efinix® development board or FTDI device connected to your

computer, you do not need to specify the serial number.
• In the Efinity® software v2020.2 and higher, the Programmer displays the serial number of

the FTDI device in the USB Info string. The serial number is a string beginning with FT.

The string after S/N is
the FTDI serial number

<interface> is the interface number. For Efinix® development boards, <interface> is
always 1.

Linux Examples
To program in Linux:

1. Open a terminal and change to the Efinity® installation directory.
2. Type: source ./bin/setup.sh and press enter.
3. Use the ftdi_program.py command.

Example: Titanium Ti60 F225 Development Board as the only board attached to your
computer, use:

ftdi_program.py <filename>.bit -m jtag

Example: Titanium Ti60 F225 Development Board with serial number FT5ECP6E when
another board with an FTDI chip is connected to your computer, use:

ftdi_program.py <filename>.bit -m jtag --url ftdi://ftdi:4232h:FT5ECP6E/1
 --aurl ftdi://ftdi:4232h:FT5ECP6E/1

Example: Xyloni Development Board as the only board attached to your computer, use:

ftdi_program.py <filename>.bit -m jtag

www.efinixinc.com 20

Efinity Programmer User Guide

Example: Trion T120 BGA324 Development Board with serial number FT5ECP6E when
another board with an FTDI chip is connected to your computer, use:

ftdi_program.py <filename>.bit -m jtag --url ftdi://ftdi:2232h:FT5ECP6E/1
 --aurl ftdi://ftdi:2232h:FT5ECP6E/1

Windows Examples
To program in Windows:

1. Open a command prompt and change to the Efinity® installation directory.
2. Type: .\bin\setup.bat and press enter.
3. Use the ftdi_program.py command.

Example: Titanium Development board as the only board attached to your computer, use:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\ftdi_program.py <filename>.bit -m jtag

Example: Titanium Ti60 F225 Development Board with serial number FT5ECP6E when
another board with an FTDI chip is connected to your computer, use:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\ftdi_program.py <filename>.bit -m jtag
 --url ftdi://ftdi:4232h:FT5ECP6E/1 --aurl ftdi://ftdi:4232h:FT5ECP6E/1

Example: Xyloni Development Board as the only board attached to your computer, use:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\ftdi_program.py <filename>.bit -m jtag

Example: Trion T120 BGA324 Development Board with serial number FT5ECP6E when
another board with an FTDI chip is connected to your computer, use:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\ftdi_program.py <filename>.bit -m jtag
 --url ftdi://ftdi:2232h:FT5ECP6E/1 --aurl ftdi://ftdi:2232h:FT5ECP6E/1

www.efinixinc.com 21

Efinity Programmer User Guide

Using the Command-Line Programmer
To run the Programmer using the command line, use the command:

Example: Command-Line Programmer
Linux:

> efx_run.py <project name>.xml --flow program

Windows:

> efx_run.bat <project name>.xml --flow program

(Optional) Use these options:

• --pgm_opts mode specifies the configuration mode. The available modes are:
— active—SPI active configuration
— passive—SPI passive configuration
— jtag—JTAG programming
— jtag_bridge—SPI active using JTAG bridge mode
— jtag_bridge_x8—SPI active x8 using JTAG bridge mode (used with two flash

devices)(3)

In active mode, the FPGA configures itself from flash memory; in passive mode, a CPU
drives the configuration. If you do not specify the mode, it defaults to active. For example,
to use JTAG mode, use the command:

efx_run.py <project name>.xml --flow program --pgm_opts mode=jtag

• --pgm_opts settings_file specifies a file in which you have saved all of the
programming options. A settings file is useful for performing batch programming of
multiple devices.

Configuration Status Register
Titanium Topaz FPGAs have a configuration status register. You can use the Efinity
Programmer to monitor the values in this register to help debug confugration issues. View
the register values in the Advanced Device Configuration Status dialog box, which you
open by clicking the button of the same name.

Table 7: Configuration Status Register

Name Description

IN_USER 0: The FPGA is not in user mode.
1: The FPGA is in user mode. IN_USER waits for all internal resets and tri-states
to be released before it goes high.

Note: This bit is not supported in Ti60ES FPGAs.

(3) Used with two flash devices. Only supported in some Titanium Topaz FPGAs. Refer to the data sheet for the modes your
FPGA supports.

www.efinixinc.com 22

Efinity Programmer User Guide

Name Description

CDONE Configuration done, has the same value as the CDONE output pin.
0: The FPGA is not configured.
1: Configuation is complete.

NSTATUS Configuration status, has the same value as the active-low NSTATUS output pin
if the NSTATUS pin is not driven by user when the FPGA is in user mode.
0: Indicates that the FPGA received a bitstream that was targeted for a different
configuration mode or width, or a CRC error is detected during configuration.
NSTATUS can also go low if there is a mismatch between the bitstream and the
FPGA encryption/authentication keys.
1: During configuration, indicates that the FPGA is in configuration mode.

CRC32_ERROR_CORE 0: No CRC errors were detected in the core configuration bits.
1: One or more CRC errors were detected in the core configuration bits.

RMUPD_ERROR 0: No errors occurred during remote update.
1: An error occurred during remote update configuration. Has the same value
as the remote update error status signal sent to the core fabric.

CONFIG_END 0: Configuration is not complete.
1: Configuration completed (whether successful or not).

SYNC_PAT_FOUND 0: Indicates that the FPGA is not receiving the expected synchronization pattern
at start of the bitstream. Check for board or power issues.
1: Indicates that the FPGA detected a synchronization pattern at start of the
bitstream., and the clock and data connections to the FPGA are acceptable. Any
configuration problems are likely digital or logical in nature. After successful
configuration the status will return to 0.

SEU_ERROR 0: No SEU detection errors were found.
1: An SEU detection error was found when reading back the SEU CRAM. Has
the same value as the SEU detection error status signal to the core fabric.

CRC32_ERROR_PERIPH 0: No CRC errors were detected in the interface configuration bits.
1: One or more CRC errors were detected in the interface configuration bits.

AES256_PASS For an encrypted bitstream:
0: Decryption failed. The encryption keys used in to program the fuses may not
match the ones used to encrypt the bitstream
1: The encrypted bitstream was decrypted successfully.
If the bitstream is not encrypted, this register is always a 1.

Note: This bit is not supported in Ti60ES FPGAs.

RSA_PASS When using RSA authentication:
0: The signature check failed. The RSA keys used to program the fuses may not
match the ones used to sign the bitstream in the Efinity project.
1: The bitstream signature was verified successfully
If RSA authentication is not used, this register is always a 1.

Note: This bit is not supported in Ti60ES FPGAs.

AES_ACTIVE After the FPGA is configured, you can check this status bit for encryption:
0: AES is disabled in the current design.
1: AES is enabled in the current design.

www.efinixinc.com 23

Efinity Programmer User Guide

Name Description

RSA_ACTIVE After the FPGA is configured, you can check this status bit for authentication:
0: RSA is disabled in the current device.
1: RSA is enabled in the current device.

USERCODE Displays the 32-bit hex JTAG USERCODE.

Verifying Configuration with the Programmer
After you program the flash or configure the FPGA, you can confirm that the bitstream is
loaded and the user design is running successfully using the Programmer. You can also use
a microcontroller or LEDs to verify configuration. Refer to "Verifying Configuration" in
AN 006: Configuring Trion FPGAs or AN 033: Configuring Titanium FPGAs.

Supported Flash Devices

Table 8: Supported Flash Devices

Manufacturer Family Part Number

GigaDevice GD25Q, GD25WQ, and GD25LQ

Macronix MX25L, MX25U, MX25V, MX75L, and MX75U

Puya Semiconductor P25Q

Winbond W25Q

Micron M25P and MT25Q

XTX XT25F

Atmel (Adesto Technologies) AT25SF

ISSI IS25LP128

Note: Efinix recommends using SPI NOR flash memories.

Working with Remote Hardware
The Efinity software includes the Efinity Hardware Server that allows you to communicate
with a development board that is attached to a remote host machine. For example, you may
want to use your Efinix development board in a lab environment and let several developers
access it from their own computers. With the Efinity Hardware Server, you can connect the
board to the lab machine and then program or debug it from a remote networked computer.
The Efinity Hardware Server is supported in the Programmer, Debugger, and SVF Player.

www.efinixinc.com 24

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN006
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Programmer User Guide

Important: The Efinity Hardware Server is beta in the Efinity software v2021.2, v2022.1, and 2023.1.
Please excuse any random bugs, we will fix them.
Known issue: Currently, the hardware server does not arbitrate between multiple requests. Therefore,
if more than one person tries to connect to the board, there will be a conflict and all users will see
errors in the Programmer console or the Programmer may crash or hang. If the board is in the middle of
programming when multiple requests occur, programming aborts in an unfinished state.

Start the Efinity Hardware Server
You start the Efinity Hardware Server using the efinity_hw_server.py command-line tool.

efinity_hw_server.py [-h] [-a <address>] [-p <port>]

Where:
• -h shows help.
• <address> is the server address; if you do not specify an address, the Efinity Hardware

Server defaults to 0.0.0.0 (that is, all IPv4 addresses on the local machine).
• <port> is the server port number; if you do not specify a port, the Efinity Hardware

Server defaults to 8080.

The tool issues the message Running Server at <IP address>:<port> when the
Efinity Hardware Server begins running.

Windows:

Use the following commands in a Command Prompt to start the server:

<Efinity path>\bin\setup.bat
<Efinity path>\bin\python3.bat <efinity path>\pgm\bin\efx_pgm
\efinity_hw_server.py

Linux:

Use the following commands in a terminal to start the server:

source <Efinity path>/bin/setup.sh
python3 <Ffinity path>/pgm/bin/efx_pgm/efinity_hw_server.py

Stop the Efinity Hardware Server
In the terminal or Command Shell, enter Ctrl+C to stop the server.

Connect the Board to the Server
For Efinix development boards, connect the board to the server using a USB cable. When
you connect to the remote host from your computer, the board name appears in the
Programmer's USB Target list.

For your own board, use a JTAG Mini-Module or JTAG cable to connect the board to the
server. When you connect to the remote host from your computer, the module or cable
name appears in the Programmer's USB Target list. (Refer to JTAG Programming with
FTDI Chip Hardware on page 19.)

Connect to a Remote Host
You use the Edit Remote Host dialog box to manage the list of remote server hosts. You
access this dialog box from Programmer, Debugger, or SVF Player tools.

1. Click the Edit Remote Host List button to open the Edit Remote Host dialog box.
2. Press the + button.
3. Double-click the cell under Address and enter the server's IP address.
4. Double-click the cell under Port and enter the port.
5. Click the + button to add another row. Click the - button to remove a selected row.

www.efinixinc.com 25

Efinity Programmer User Guide

6. Click OK.

The software refreshes the USB Target list; any boards connected to remote hosts appear in
the list. Simply choose the board that you want to program or debug as usual.

www.efinixinc.com 26

Efinity Programmer User Guide

Securing Titanium Bitstreams
Titanium FPGAs have built-in security features to help you protect your intellectual
property and to prevent tampering.
• Encryption—Encrypt your bitstream using an AES-256 key.
• Authentication—Sign your bitstream with an RSA-4096 private key.
• Disable JTAG—Disable all JTAG instructions except for IDCODE, DEVICE_STATUS, and

BYPASS.

You use the following Efinity tools to implement these bitstream security features:

Table 9: Efinity Tools Used for Securing Bitstreams

Tool Used for

Bitstream Security
Key Generator

Create or specify an AES-256 key.
Create or specify an RSA-4096 private key.
Specify whether to disable JTAG.

SVF Player

Program the fuses in the Titanium FPGA with the AES-256 key and/or RSA certificate data.
After you blow the fuses with an RSA key, the FPGA only accepts a bistream signed with the
correct private key.
After you blow fuses with an AES-256 key, the FPGA only accepts a plaintext bitstream or a
bitstream signed with the correct key.
Program the JTAG fuse to disable JTAG function.
After you blow the JTAG fuse, you cannot use any JTAG command except IDCODE,
DEVICE_STATUS, and BYPASS.

Project Editor

Turn on bitstream encryption and/or authentication, and specify the .bin file created by the
Bitstream Security Key Generator.
Turn on bitstream authentication and specify the private key (.pem) file to sign the bitstream.

Note: You need the full version of Efinity software to work with projects and to
generate bitstreams. The Windows Standalone Programmer does nbot support these
features.

www.efinixinc.com 27

Efinity Programmer User Guide

Figure 3: Bitstream Authentication

Create Keys

Signed
Bitstream

Sign Bitstream

Private
Key

Public
Key

Authenticate

Developer’s Computer FPGA in System

Configured

Blow Fuses

Valid
Signature

Invalid
Signature Do Not Enter

User Mode
Fuses

Unsigned
Bitstream

FPGA in
User Mode

Use Efinity Bitstream
Security Key Generator

Use Efinity
Project Editor

Use Efinity
SVF Player

The public key is derived from the private key; the .pem is essentially a private/public key
pair. The private key only exists in the .pem. The software uses it to sign the bitstream, but
the bitstream and fuses only contain public key information. The FPGA uses the public key
to validate the bitstream's signature; it cannot be used to re-sign a modified bitstream.

Figure 4: Bitstream Encryption

Create Key

Encrypted
Bitstream

Plaintext
Bitstream

Encrypt

Key

Decrypt

Developer ’s Computer FPGA in System

Blow Fuses

Fuses

Configured

Decryption
Successful

Decryption
Fails Do Not Enter

User Mode

FPGA in
User Mode

Use Efinity Bitstream
Security Key Generator

Use Efinity
Project Editor

Use Efinity
SVF Player

Figure 5: Disabling JTAG

Disable JTAG

.svf File

Developer’s Computer FPGA in System

FPGA

Blow Fuses

Use Efinity Bitstream
Security Key Generator

Use Efinity
SVF Player

JTAG
Header

IDCODE
DEVICE_STATUS

BYPASS

www.efinixinc.com 28

Efinity Programmer User Guide

The following sections describe how to use each of these tools to enable security features.

Using the Efinity Bitstream Security Key
Generator
The key generator tool simplifies the process of creating encryption keys and generating RSA
certificates. You access this tool in the Efinity main menu at Tools > Open Key Generator.
You can use the key generator without opening a project.

Note: You can use the Efinity Bitstream Security Key Generator iteratively. That is, you can first use
encryption and later add in RSA authentication, and even later disable JTAG commands. Refer to
Workflow for Using Security Features on page 34 for more information.

Figure 6: Efinity Bitstream Security Key Generator

1. If you want to use encryption:

a) Turn on AES-256 Bitstream Encryption.
b) Click the Randomly Generate button to generate a 256 bit key. The software

populates the AES-256 Key box with the generated key.
c) Alternatively, if you already have a key, you can enter it into the AES-256 Key box.

2. If you want to use authentication:

a) Turn on RSA-4096 Asymmetric Bitstream Authentication.
b) Click the Randomly Generate PEM File button.
c) In the Generate AND Save PEM File dialog box, choose a location to save the .pem

file and type a filename in the File name box.

www.efinixinc.com 29

Efinity Programmer User Guide

d) Click Open. The tool generates the private key and displays a message in the status
box.

e) Alternatively, click the Select PEM File button to load a private key (.pem) that you
created already.

Note: If you use another tool to create a private key, be sure to use the
RSA-4096 algorithm. Titanium FPGA's only support authentication with this
algorithm.

3. If you are ready to turn off JTAG, choose ON or DISABLE_EFUSE_ONLY for JTAG
Disabling. Otherwise, leave it set to OFF.

Option Description

OFF No JTAG disabling.
Efinix strongly recommends that you use ON or
DISABLE_EFUSE_ONLY to disable access to the JTAG
efuse instructions for added security.

ON Permanently disables the JTAG efuse instructions as well
as all other JTAG instructions except IDCODE, BYPASS,
SAMPLE/PRELOAD, and DEVICE_STATUS.

DISABLE_EFUSE_ONLY Available for all Titanium and Topaz FPGAs except:
• Ti35
• Ti60
• Tz50

Permanently disables the JTAG efuse instructions only.
Other JTAG instructions are not affected, for example, you
can still perform debugging.

If you turn on the Use Separate SVF option, the software creates two SVFs:
one for AES and/or RSA (<keyname>.svf) and one for JTAG disabling
(<keyname>_jtag_disable.svf). Two files make it easy to use the key generator iteratively,
and when you are done to disable JTAG.

When the Use Separate SVF option is tuned off, the software creates one <keyname>.svf,
which contains all applicable AES, RSA, and JTAG disabling commands.

Important: Do not permanently disable JTAG unless you are really ready, that is,
you are finished with all JTAG debugging and configuration tasks. After you disable
JTAG, you cannot undo it. Use DISABLE_EFUSE_ONLY if you still want to perform
debugging.

4. Choose your FPGA.
5. Click Generate.
6. In the Select Output File dialog box, choose the location to save the .bin (key data) file

and type a filename in the File name box.
7. Click Open.

The tool creates the following files:

• <filename>.bin—This file contains key information. You specify it in the Project Editor
when you turn on bitstream encryption and/or authentication.

• <filename>.pem—This file contains your RSA private key. You use this file to sign the
bitstream by specifying it in the Project Editor.

• <filename>.svf—This file contains JTAG commands and key information. You use it
with the Efinity SVF Player to blow the FPGA fuses.

www.efinixinc.com 30

Efinity Programmer User Guide

Note: Efinix recommends that you save the 256-bit encryption key in a safe place so you have it in case
you want to generate another .svf later (see Workflow for Using Security Features on page 34). You
need to copy it from the AES-256 Key box and save it into a text file.

Blowing Fuses with the SVF Player
The Efinity SVF Player is a JTAG SVF player that sends JTAG commands to an FPGA. The
player reads the JTAG commands from a serial vector format (.svf) file. You can use the SVF
Player without opening a project. The Efinity SVF Player requires a JTAG cable or mini-
module with the FTDI n232H chipset.

The Efinity Bitstream Security Key Generator creates an .svf that you use with the SVF
Player to blow fuses in Titanium FPGAs. These fuses contain key information for bitstream
encryption and/or RSA authentication, and also control JTAG access to the FPGA.

The .svf used for blowing fuses performs a variety of JTAG commands.
• It checks the FPGA's IDCODE and compares it to the .svf to ensure that the player is

targeting the correct FPGA.
• For AES encryption, the key is sent in eight 32-bit words, followed by a validation step.
• For RSA authentication, the key is sent in twelve 32-bit words, followed by a validation

step.
• It has commands to blow the JTAG fuse.

The .svf only has commands for the bitstream security features that you turned on in the
Efinity Bitstream Security Key Generator.

Important: You can only blow the fuses once, and you cannot undo it after you have blown them. So
make sure that you are really ready before you take this step.

www.efinixinc.com 31

Efinity Programmer User Guide

Figure 7: SVF Player

To blow fuses with the SVF Player:

1. Choose a USB Target. Ensure that your board is connected to your computer and turned
on. Click the Refresh button to search for newly connected boards.

2. Click the Open SVF File button to load the .svf that you generated with the Efinity
Bitstream Security Key Generator. The content of the .svf displays in the console.

Note: If you make changes to the .svf, you can reload it using the Reload button.

3. Click the Play button to play the .svf file. It takes a very short amount of time to blow
fuses.

4. Toggle CRESET_N or power cycle your board for the new fuse settings to take effect.

Important: Do not try to blow the same fuses a second time (for example, do not run the same .svf twice
in a row).

Typically, you will not receive any errors when running the SVF Player. However, you may
receive a TDO mismatch error in the following situations:
• You are trying to blow fuses that are already blown.
• You are trying to blow fuses for the wrong FPGA, that is, the FPGA you selected in the

Efinity Bitstream Security Key Generator is not the same as the one on your board.

www.efinixinc.com 32

Efinity Programmer User Guide

Encrypt or Sign Bitstreams from the Command
Line
The Efinity software includes a Python script that you can use to encrypt and/or sign
bitstreams from the command line. You use the script <Efinity directory>/security/bin/
AddSecurityTitanium.py.

AddSecurityTitanium.py [-h] [-s] [-e] [-i IV] [-o OUTPUT]
 [--device_version {1,2}] [--verbose]
 [--timeout TIMEOUT] [-p KEYPAIR] [-x PASSPHRASE]
 [--public_key PUBLIC_KEY]
 bitstream keyfile

Table 10: AddSecurityTitanium.py Options

Option (Long) Option (Short) Input Description

--help -h None Show help.

--sign -s None RSA sign the bitstream. Required if target
device has enabled RSA in non-volatile
memory. With this option, you must also
specify the RSA PEM key file containing the
RSA private key.

--encrypt -e None Encrypt the bitstream. Optional regardless
if target device has had decryption key
programmed in non-volatile memory.

--iv IV -i IV None Manually specify 96-bit bit IV value, for
obfuscation. If not specified, one will be auto-
generated. Ignored if encryption not used.

--output -o Filename Use the specified output security-enabled
HEX file name instead of default name.

--device_version N/A 1, 2 Device security version.
1: Ti35, Ti60, Ti90, Ti120, Ti180, , ,
2: , , Ti165, ,

--verbose N/A None Print out detailed information.

--timeout N/A Number Timeout in seconds, defaults no timeout.

--keypair -p Key pair RSA keypair PEM file (must match that used
with GenKeyFileTitanium.py tool).

--passphrase -x Pass phrase Passphrase associated with RSA private key,
contained in RSA PEM key pair file. If the
private key is passphrase-protected, then this
option is required.

--public_key N/A Filename RSA public key PEM file.

The following example shows how to sign and encrypt a file:

$EFINITY_HOME/bin/python3 $EFINITY_HOME/security/bin/AddSecurityTitanium.py
 --sign --encrypt --iv 0123456789ABCDEF01234567 --output my_secured_bitstream.hex
 --device_version 1 --keypair my_private_key.pem my_raw_unsecured_bitstream.hex
 my_keyfile.bin

www.efinixinc.com 33

Efinity Programmer User Guide

Workflow for Using Security Features
This topic describes some of the potential workflows you might use when developing
applications that include bitstream security. You do not have to use all of the bitstream
security features simultaneously. You can enable them sequentially or only use some of the
features if that suits your workflow.

This iterative process has two parts: blowing fuses and securing the bitstream.

Blowing Fuses Iteratively
You can blow fuses in any order, and blow only some of them in any iteration. For example,
you can:

1. Blow fuses for only AES-256.
2. Blow fuses for only RSA authentication.
3. Blow fuses for AES-256 after doing step 2.
4. Blow fuses for RSA authentication after doing step 1.
5. Blow fuses for both AES-256 and RSA authentication, but do not blow JTAG fuse.
6. Blow fuses for AES-256 and RSA authentication, and blow JTAG fuse (all in mode where

you turn on everything).
7. Blow JTAG fuse after doing steps 1, 2, 3, 4, or 5.

Important: Once you blow the JTAG fuse (steps 6 or 7), you cannot perform any further iterations!

Each time you want to blow fuses for a new iteration, you use the Efinity Bitstream Security
Key Generator to create a new .svf file with the new options that you want to enable.

Important: Do not enable options that you have already turned on. For example, if you already blew the
AES-256 fuses, do not try to blow them again.

www.efinixinc.com 34

Efinity Programmer User Guide

Example 1: Blow Fuses for AES-256 First, Fuses for RSA Authentication Later

You already blew fuses for AES-256 and now you want to blow fuses for RSA authentication:

1. Open the Efinity Bitstream Security Key Generator.
2. Turn off the AES-256 Bitstream Encryption option.
3. Turn on the RSA-4096 Asymmetric Bitstream Authentication option and generate or

select a .pem.
4. Click Generate to create a new .svf; discard the .bin file.
5. Use the new .svf with the SVF Player to blow the RSA fuses; discard the .bin file.

Example 2: Blow Fuses for AES-256 and RSA Authentication First, Fuse for Disabling
JTAG Later

You already blew fuses for AES-256 and RSA authentication and now you want to blow the
JTAG fuse:

1. Open the Efinity Bitstream Security Key Generator.
2. Turn off the AES-256 Bitstream Encryption option.
3. Turn off the RSA-4096 Asymmetric Bitstream Authentication option.
4. Choose ON for JTAG Disabling.
5. Click Generate to create a new .svf; discard the .bin file.
6. Use the new .svf with the SVF Player to blow the JTAG fuse.

Securing Bitstreams Iteratively
You can secure the bitstream with encryption and/or authentication. When you enable either
option (or both) in the Project Editor, you need to specify the .bin file you create with the
Efinity Bitstream Security Key Generator.

Note: When working iteratively, you need to make sure that you use the same key data that you used in
the previous iteration.

Example 3: Secure Bitstream for AES-256 First, RSA Authentication Later

You already enabled for AES-256 and now you want to enable RSA authentication:

1. Open the Efinity Bitstream Security Key Generator.
2. Turn on the AES-256 Bitstream Encryption option and enter the key from the previous

iteration (this is why you should save it).
3. Turn on the RSA-4096 Asymmetric Bitstream Authentication option and generate or

select a .pem.
4. Click Generate to create a new .bin file; discard the .svf file.
5. Specify the new .bin file in the Project Editor.
6. Generate the bitstream.

Example 1 and Example 3 both start with AES-256 and later add RSA authentication.
However, you turn off AES-256 for Example 1 and turn on AES-256 for Example 3.
Therefore, you need to run the Efinity Bitstream Security Key Generator twice: the first time
with settings for blowing fuses; the second time with settings for bitstream security.

Example 2 only blows the JTAG fuse, so you use the .svf file with the SVF Player and
discard the .bin file.

www.efinixinc.com 35

Efinity Programmer User Guide

Verifying Security Settings
You may want to verify that your Titanium FPGA is correctly using the security features
that you enabled. You can use the Advanced Device Configuration Status dialog box
(Programmer) to view the security status signals. See Configuration Status Register on page
22 for details.

Note: With the AES encryption feature enabled, Titanium FPGAs accept both encrypted and unencrypted
bitstreams as valid. So you can configure the FPGA with a plaintext bitstream even after you blow its fuses
with an AES key.
Conversely, if you have blown fuses for RSA authentication, the FPGA only accepts a bitstream signed with
the private key you blew into the fuses.

Figure 8: Advanced Device Configuration Status Security Signals

You can also test out the bitstream security features by trying to program the FPGA with
a bitstream that you signed with the wrong RSA key, an unsigned bitstream, or a bitstream
encrypted with the wrong key. If the Titanium FPGA detects a key mismatch, it will not go
into user mode.

Working with JTAG .svf Files
The JTAG serial vector format (.svf) file is a vendor-independent ASCII text file of JTAG
commands. You can use an .svf file for JTAG debugging, boundary-scan testing, and
programming with any .svf-compatible JTAG hardware.

The Efinity Programmer can convert a bitstream file to .svf so that you can use third-party
JTAG hardware to program an Efinix FPGA. Refer to Export to .svf Format on page 10.

JTAG programming with an .svf file is supported in all Efinix FPGAs except for:

www.efinixinc.com 36

Efinity Programmer User Guide

• T4, T8, and T13 in any package
• T20 in W80, Q144, F169, and F256 packages

Using the Efinity SVF Player
The Efinity SVF Player is a JTAG SVF player that sends JTAG commands to an FPGA. The
player reads the JTAG commands from a serial vector format (.svf) file. You can use the SVF
Player without opening a project. The Efinity SVF Player requires a JTAG cable or mini-
module with the FTDI n232H chipset.

You can use the SVF Player to execute any JTAG commands on the following Efinix
FPGAs:
• Trion T20 in F324 and F400 packages
• Trion T35 in any package
• Trion T55, T85, and T120 in any package
• All Titanium FPGAs in any package

You can use the the SVF Player to execute any JTAG command except PROGRAM for the
following Trion FPGAs:
• T4, T8, and T13 in any package
• T20 in W80, Q144, F169, and F256 packages

You can also use the SVF Player to execute JTAG commands for non-Efinix devices in a
JTAG chain.

Figure 9: SVF Player

To use the SVF Player:

www.efinixinc.com 37

Efinity Programmer User Guide

1. Choose a USB Target. Ensure that your board is connected to your computer and turned
on. Click the Refresh button to search for newly connected boards.

2. Click the Open SVF File button to load the .svf. The content of the .svf displays in the
console.

Note: If you make changes to the .svf, you can reload it using the Reload button.

3. Click the Play button to play the .svf file.

You can also step through the .svf file line by line using the Step Over button. This feature is
useful for debugging. To stop playing the file, click the Stop button.

Where to Learn More
The Efinity® software includes documentation as PDF user guides and on-line HTML help.
This documentation is provided with the software. You can also access the latest versions of
PDF documentation in the Support Center:

• Efinity Software User Guide
• Efinity Synthesis User Guide
• Efinity Timing Closure User Guide
• Efinity Software Installation User Guide
• Efinity Trion Tutorial
• Efinity Debugger Tutorial
• Titanium Interfaces User Guide
• Trion Interfaces User Guide
• Efinity Interface Designer Python API
• Quantum® Trion Primitives User Guide
• Quantum® Titanium Primitives User Guide
• Quantum® Topaz Primitives User Guide

In addition to documentation, Efinix field application engineers have created a series of videos
to help you learn about aspects of the software. You can view these videos in the Support
Center.

www.efinixinc.com 38

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTDBG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TZPRIM

Efinity Programmer User Guide

Appendix: Installing USB Drivers
To program Trion®, Topaz, and Titanium FPGAs using the Efinity® software and
programming cables, you need to install drivers.

Efinix development boards have FTDI chips (FT232H, FT2232H, or FT4232H) to
communicate with the USB port and other interfaces such as SPI, JTAG, or UART. Refer
to the Efinix development kit user guide for details on installing drivers for the development
board.

Note: If you are using more than one Efinix development board, you must manage drivers accordingly.
Refer to AN 050: Managing Windows Drivers for more information.

Notice: The Trion T8 BGA81 Development Boards do not have FTDI chip for USB communication. Refer
to the T8 BGA81 Development Kit User Guide for more information about installing its Windows USB
driver.

For your own development board, Efinix suggests using the FTDI Chip FT2232H or
FT4232H Mini Modules for JTAG programming Trion®, Topaz, and Titanium FPGAs. (You
can use any JTAG cable for JTAG functions other than programming.)

Note: Efinix does not recommend the FTDI Chip C232HM-DDHSL-0 programming
cable due to the possibility of the FPGA not being recognized or the potential for
programming failures.

Table 11: USB Programming Connections

Board Connect to Computer with

Efinix development boards USB cable

Your own board FTDI x232H programming kit. For example:
• FT2232H Mini Module
• FT4232H Mini Module

Note: The FTDI Chip Mini Module supports 3.3 V I/O voltage only. Refer to the FTDI Chip website for
more information about the modules.

Installing the Windows USB Driver
On Windows, you use software from Zadig to install drivers. Download the Zadig software
(version 2.7 or later) from zadig.akeo.ie. (You do not need to install it; simply run the
downloaded executable.)

Important: For some Efinix development boards, Windows automatically installs drivers for some
interfaces when you connect the board to your computer. You do not need to install another driver
for these interfaces. Refer to the user guide for your development board for specific driver installation
requirements.

To install the driver:

1. Connect the board to your computer with the appropriate cable and power it up.

www.efinixinc.com 39

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN050
https://ftdichip.com/products/ft2232h-mini-module/
https://zadig.akeo.ie

Efinity Programmer User Guide

2. Run the Zadig software.

Note: To ensure that the USB driver is persistent across user sessions, run the
Zadig software as administrator.

3. Choose Options > List All Devices.
4. Repeat the following steps for each interface. The interface names end with (Interface N),

where N is the channel number.
• Select libusb-win32 in the Driver drop-down list.
• Click Replace Driver.

5. Close the Zadig software.

Note: This section describes how to install the libusb-win32 driver for each interface separately. If you
have previously installed a composite driver or installed using libusbK drivers, you do not need to update
or reinstall the driver. They should continue to work correctly.

Revision History

Table 12: Revision History

Date Version Description

November 2024 3.5 Fixed various typos.

November 2024 3.4 Updated entry for SYNC_PAT_FOUND in Table 7: Configuration Status
Register on page 22. (DOC-2181)
Update JTAG IDs for Ti375, Ti135, and Ti85. (DOC-1851)
Corrected link to latest Microsoft Visual C++ Redistributable downloads.
(DOC-2045)
Added topic about encrypting and/or signing bitstreams at the command
line.

June 2024 3.3 The software has separate .bit files for JTAG Bridge (New) and JTAG
Bridge (Legacy), and they are not compatible with each other. The .bit files
do not require an external clock. (DOC-1789)

May 2024 3.2 Added Ti165 and Ti240 FPGAs, replacing the Ti135 and Ti200,
respectively.

January 2024 3.1 Added JTAG device IDs for Ti135, Ti200, and Ti375. (DOC-1662)
Added Ti135 and Ti200 to machine memory requirements.
Added instructions on installing patches.
Added note about Windows %PATH% variable. (DOC-1687)

December 2023 3.0 Added G400 package support. (DOC-1393)
Added Program using a JTAG Bridge (New) modes. (DOC-1542)
64-bit operating system is required. 32-bit systems are not supported.

June 2023 2.9 Added JTAG device ID for Trion Q100F3, and Titanium J361, J484, and
G529 packages. (DOC-1165)

May 2023 2.8 Added note about referring to AN050: Managing Windows Drivers in the
Installing USB Drivers topic. (DOC-977)
Removed Verifying Configuration with Programmer topic. The topic is in
AN006 and AN033.
Added IS25LP128 to list of supported flash devices. (DOC-1247)

www.efinixinc.com 40

Efinity Programmer User Guide

Date Version Description

November 2022 2.7 Updated supported flash devices. (DOC-896)
Corrected faint/missing callout lines in Figure 2 and 3. (DOC-976)

August 2022 2.6 Added installation instructions.
Added instructions on using the JTAG SVF Player.
Added topics on the Bitstream Security Key Generator.
Clarified that when using internal reconfiguration you must use
Programmer > Combine Multiple Image Files > Image Type > Internal
Flash Image option. (DOC-874)
Added topic on verifying configuration with the Programmer.
When editing the bitstream header, do not remove any auto-generated
data or the Programmer may not recognize the bitstream. (DOC-868)
Removed support for C232HM-DDHSL-0 cable. (DOC-860)
Updated Installing USB Drivers topics.

April 2022 2.5 Added Program using a JTAG Bridge topic.
Added topic on combining a bitstream and other data into a single file for
programming.
Re-organized topics about working with bitstreams.

December 2021 2.4 Updated machine memory requirements (RAM).
Added information about connecting to remote hosts.
Added Macronix MX75L and MX75U to supported flash devices.
(DOC-573)
Added support for FTDI FT4232H Mini Module. (DOC-597)
With the Efinity software v2021.2 and higher, you must use .hex for SPI
and .bit for JTAG. (DOC-638)

October 2021 2.3 Added topic on the Titanium configuration status registers. (DOC-487)
Added topic on flash programming modes.
Added note about FTDI Chip FT2232H Mini Module supports 3.3 V I/O
voltage only. (DOC-495)
Added XT25F family to list of supported flash devices. (DOC-529)

June 2021 2.2 Updated Windows driver installation instructions.
Added SPI Active x8 over JTAG Bridge mode.
Added Titanium JTAG IDs.
Updated list of supported flash devices.

January 2021 2.1 Corrected JTAG chain file code example. (DOC-368)

December 2020 2.0 Added the requirement to install the Microsoft Visual C++ 2015 x64 and
x86 runtime libraries for the standalone Programmer.
Added JTAG device IDs for T20BGA324 and T20BGA400.
Added FTDI cable and module connection for T20BGA400.
Removed the FTDI2232 from About USB Drivers topic making the
description applicable to other FTDI chips.
Updated instructions on installing USB drivers for Windows.
Added list of supported flash devices.
Corrected JTAG Mini Module pin names for T4, T8, T13, T20BGA256, and
T20BGA169 connection setup.

June 2020 1.0 Initial release.

www.efinixinc.com 41

	Contents
	Introduction
	Software Requirements
	Installing
	Installing Patches

	FPGA Configuration Modes
	Flash Programming Modes
	About the Programmer GUI
	Working with Bitstreams
	Edit the Bitstream Header
	Bitstream Compression
	Export to Raw Binary Format
	Export to .svf Format
	Convert to Intel Hex Format at the Command Line
	Combine Bitstreams and Other Files

	SPI Programming
	Program a Single Image
	Program Multiple Images (CBSEL)
	Program Multiple Images (Internal Reconfiguration)
	Program Multiple Images (Bitstream and Data)
	Program a Daisy Chain

	JTAG Programming
	JTAG Device IDs
	Program a Single Image
	Program Using a JTAG Chain
	Program using a JTAG Bridge (New)
	Program using a JTAG Bridge (Legacy)
	JTAG Programming with FTDI Chip Hardware
	FDTI Programming at the Command Line

	Using the Command-Line Programmer
	Configuration Status Register

	Verifying Configuration with the Programmer
	Supported Flash Devices
	Working with Remote Hardware
	Securing Titanium Bitstreams
	Using the Efinity Bitstream Security Key Generator
	Blowing Fuses with the SVF Player
	Encrypt or Sign Bitstreams from the Command Line
	Workflow for Using Security Features
	Verifying Security Settings

	Working with JTAG .svf Files
	Using the Efinity SVF Player

	Where to Learn More
	Appendix: Installing USB Drivers
	Installing the Windows USB Driver

	Revision History

