
Efinity® Timing Closure User
Guide

UG-EFN-TIMING-v7.0
November 2024
www.efinixinc.com

Copyright © 2024. All rights reserved. Efinix, the Efinix logo, the Titanium logo, the Topaz logo, Quantum, Trion, and Efinity are trademarks of Efinix,
Inc. All other trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Efinity Timing Closure User Guide

Contents

Introduction... 5
About Constraints...5
Tools for Exploring Timing..6

SDC File Overview.. 8
About SDC Files... 8
Create an Empty SDC File.. 9
Add an SDC File to Your Project... 9
Using Multiple SDC Files.. 9
Efinity Files You Use to Create Constraints.. 10

Constraining Clocks...11
Defining Clocks.. 11

Using the create_clock Constraint.. 12
Using the create_generated_clock Constraint.. 14
Virtual Clocks..14

Clock Latency..16
GPIO Clock Latency.. 16
PLL Local Feedback Clock Latency...18
PLL Core Feedback Clock Latency... 20
PLL External Feedback Clock Latency..22
PLL Cascading Clock Latency..24

Clock Relationships..26
Setting Constraints for Unrelated Clocks...26
Using the set_clock_groups Constraint..26
Using the set_false_path Constraint... 27
Clock Synchronizers.. 28
Metastable Synchronizer Circuit..29

How to Set Clock Uncertainty.. 29

Constraining I/O.. 30
Constraining Synchronous Inputs and Outputs...30
Constraining Unsynchronized Inputs and Outputs... 33

Input Receive Clock Delay... 35
Output Receive Clock Delay..36
Input Forward Clock Delay (GPIO clkout)..37
Output Forward Clock Delay (GPIO clkout).. 39
Input Forward Clock Delay (GPIO output)...40
Output Forward Clock Delay (GPIO output)... 42

Timing Exceptions... 44
Example: Clock-to-Clock Path with Control... 44
Understanding False Paths... 45
Understanding Min and Max Delays...45
Understanding Multicycle Constraints.. 47

Shifted Capture Window.. 47
Shifted and Widened Window.. 47
Constraints between Fast and Slow Clocks...48

SDC Warnings..49

Common Mistakes...49

SDC Tips and Tricks...51
SDC Syntax..51
Wildcard Commands...51
Regular Expressions...51
Inverted Clocks...52

www.efinixinc.com

Efinity Timing Closure User Guide

Square Brackets in Clock Names...52

SDC Constraints (Alphabetical)... 53
create_clock Constraint... 53
create_generated_clock Constraint...54
get_fanouts Constraint.. 55
get_fanins Constraint...56
set_bus_syntax_mode Command..57
set_clock_groups Constraint.. 58
set_clock_latency Constraint.. 58
set_clock_uncertainty Constraint... 59
set_false_path Constraint.. 59
set_input_delay and set_output_delay Constraints.. 60
set_max_delay and set_min_delay Constraints... 61
set_multicycle_path Constraint.. 61
-through Option... 62

Object Specifiers... 62

SDC Examples... 64
Example: Dynamic Multiplexers and create_clock -add.. 64
Example: FPGA Forwarded Clock... 65
Example: Generated Clock with Clock Multiplexer.. 66
Example: Soft SERDES.. 67
Example: Disable Impossible Paths...68

Interpreting Timing Results.. 69
Clock Frequency Summary...69
Clock Relationship Summary..70
Critical Paths..70

Constraining Logic and Routing Manually (Beta)... 72
Tiles...72
Working with Primitives...74
Enabling Manual Assignments...75
Assignment Rules...76
Creating a Location Assignment File.. 76
Constraining Routing Manually (Titanium Only, Beta)..78

Routing Constraint Flow... 78
Enabling Routing Constraints.. 78
Generate .rcf Template..79
Creating a Routing Constraint File..79
Best Practices for Constraining Routing...80
Example Flow... 81

Methods for Closing Timing... 82
Synthesis Options...82

Handling High Fanouts...85
Place-and-Route Options.. 87

Beneficial Skew.. 88
Sweeping Script...88
Optimization Sweeping.. 89
Seed Sweeping.. 89

Closing Timing with High DSP Block Utilization..91

Tcl Console...92
General Commands...93

delete_timing_results Command.. 93
get_available_timing_model Command.. 93
get_timing_model Command..93
read_sdc Command..93
reset_timing Command.. 93
set_timing_model Command.. 93
write_sdc Command... 94

www.efinixinc.com

Report Commands...94
check_timing Constraint... 94
report_clocks Command.. 94
report_path Command... 95
report_sdc Constraint..96
report_timing Command..97
report_timing_summary Command.. 97

Tcl List Functions (Alphabetical)...98
lappend... 98
lassign..98
lindex... 98
linsert... 99
llength..99
foreach_in_collection...99
foreach...99
lrange.. 100
lreplace..100
lreverse..100
lsearch... 100
lsort.. 101

Tcl Script Examples..101
Identify Pins with a Regular Expression... 101
Create Clocks with Different Periods..102
Generate a Report with get_fanouts.. 102
Generate Report with a Subset of Clocks... 102
Use Variable for Min/Max Delay Calculation...103

Command-Line Tcl Console... 103

Appendix... 104
About the <project>.pt.sdc File.. 104
About the <project>.pt_timing.rpt File.. 106

Where to Learn More.. 108

Revision History.. 109

Efinity Timing Closure User Guide

Introduction
Closing timing is an important part of the design process. The Efinity® software includes
tools and reports to help you understand your design's timing requirements and let you
adjust settings to close timing. This document explains how to set timing constraints using
a Synopsys Design Constraints (.sdc) file, and discusses synthesis, placement, and routing
options to customize the Efinity® flow. Additionally, it describes how to use the Tcl Console
and Tcl commands to explore timing and customize your SDC file.

You can explore timing with just an RTL design and an SDC file. This step helps you
understand your design's timing requirements in general terms. If you have not built an
interface yet, the placer auto-assigns the interface signals, which you can use to set constraints.
After you build your interface, the interface signals are constrained according to the
assignments you made in the Interface Designer.

Note: This document includes information that was previously provided in AN 008: Setting Trion Timing
Constraints in the Efinity Software.

About Constraints
The Efinity® software supports the Synopsys Design Constraints format for specifying timing
constraints. The software validates the timing performance of your design's core logic using
industry-standard constraint, analysis, and reporting methodology. During compilation,
the software generates a timing analysis report. The pins, nets, and ports used with SDC
constraints refer to the post-synthesis netlist.

Trion®, Topaz, and Titanium FPGAs feature interface blocks—I/O logic and buffers, I/
O banks, PLLs, etc.—that connect the core logic to the package pins. You use the Efinity®

Interface Designer to configure these interface blocks for your design. After you configure
these blocks, you generate a constraint template file (<project>.pt.sdc) that you use as the
basis for your design's SDC file. You can also refer to report files for the interface blocks,
which you can view in the Results tab under the Efinity® Dashboard.

• For synchronous (registered) interfaces, the template defines clocks and sets input and
output delays for your design. You simply copy and paste the relevant lines from the SDC
template file to your own SDC file and adjust the timing as needed.

• For non-synchronous (unregistered) interfaces, you need to determine the interface timing
and board timing and add those to your core settings.

Important: Unlike traditional FPGAs, with Trion®, Topaz, and Titanium FPGAs you make timing constraints
at the core level, not the interface or package level.
Efinix recommends that you use registered interfaces as much as possible to simplify the SDC constraints
you need.

www.efinixinc.com 5

Efinity Timing Closure User Guide

Figure 1: Set Constraints at the Core Level

FPGA Signal
Interface

Core

Interface
Block

Input
Output
Clock Output

Interface
Block

Input
Output
Clock Output

Constrain signals to/from interface and core

Note: Refer to SDC Constraints (Alphabetical) on page 53 for a list of supported SDC constraints and
object specifiers.

Tools for Exploring Timing
You use static timing analysis (STA) to measure the timing performance of your design.
The software generates a timing report based on the design’s place and route results and the
project’s SDC file. The software provides several tools for viewing and cross-probing timing
results:

• The Timing Browser helps you explore your design’s critical paths and the cells of those
paths.

• The Floorplan tool shows the locations of the paths and cells in the fabric.
• The Tcl Console helps you analyze and explore timing.

The Efinity software uses a Tcl interpreter to process SDC constraints and to support timing
analysis. The Tcl Console is an interactive shell that you use to execute Tcl commands. Refer
to Tcl Console for details on using the console in the Efinity GUI or in a terminal.

The software displays Tcl reports in the Timing Browser.

• Click on the report name to view details.
• Click on cell names under Data Path Cell to view the location of the cell in the

Floorplan Editor.
• Turn on Show Timing Path or Show Timing Delay in the Floorplan Editor to see the

path and delay for a particular cell.

Note: The place-and-route data for your project has to be loaded for you to use the Timing Browser
and Floorplan tool. Refer to "Auto-Load Place-and-Route Data" in the Efinity Software User Guide for
instructions on loading it.

www.efinixinc.com 6

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE

Efinity Timing Closure User Guide

Figure 2: Using the Timing Browser

Toggle Show
Timing Path

Toggle Show
Timing Delay

Enter Tcl
Commands

Tcl Command
Console

Timing Reports
Generated by
Tcl Commands

Click Cell Name
to View In
Floorplan Editor

Note: Refer to Tcl Console on page 92 for more information on available commands. For help on
available Tcl commands, type help -category <sdc or timing> in the Tcl Command Console.

www.efinixinc.com 7

Efinity Timing Closure User Guide

SDC File Overview
Generally, the steps you follow when creating a new SDC file are:

1. Create an empty SDC file.
2. Add the file to your project. (You can also add multiple files.)
3. Have the <project>.pt.sdc and <project>.pt_timing.rpt files ready so you can use

them when creating constraints.
4. Identify clocks and their relationships.
5. Identify I/O constraints.
6. Identify any timing exceptions.
7. Debug your SDC constraints.

The following sections go over these steps in detail with examples.

About SDC Files
An SDC file is simply a text file with one constraint per line; however, you need to keep
some rules in mind when creating it:
• The order of the constraints in the SDC file is important. If there are dependencies

between any of the constraints, you must ensure that you have written them in the
correct order for them to be valid.

• If a constraint has incorrect syntax, the software ignores it and issues a warning message.
• For some constraints, the argument order is important for the constraint to be valid.
• The minimum content required in an SDC file is a create_clock constraint. You

should always set a clock constraint—even if it is a virtual clock—whenever you create an
SDC file.

Important: SDC is case sensitive. If you are using VHDL, which is not case sensitive, be careful when
declaring net names. The Efinity software converts all names to lowercase letters during synthesis.
Therefore, the SDC should use lowercase letters not mixed case or uppercase.

If you do not define an SDC file, the software defaults to creating clocks with a period of 1 ns
for every clock source in your design and does not constrain any I/O pins. It assumes that all
of the clocks it finds are related. The Efinity® timing analyzer then identifies the critical path
based on this default constraint.

Constraint Order
First, define the clocks and other timing assertions in this order:

1. Primary clocks
2. Virtual clocks
3. Generated clocks
4. Clock groups
5. Input and output delays

Then, define any timing exceptions, in this order:

1. False paths
2. Maximum and minimum delays
3. Multicycle paths

www.efinixinc.com 8

Efinity Timing Closure User Guide

Create an Empty SDC File
You can use the Efinity® Code Editor or any text editor to create an SDC file and save it into
your project directory.

If you are working with a new project, start by creating an empty SDC file. Then, copy and
paste the Interface Designer-generated SDC constraints into this empty file and modify them
to meet your timing requirements.

If you are porting an existing design to Efinix FPGAs, you may already have an SDC file.
You may still want to start with an empty SDC file, copy the Interface Designer-generated
constraints to the new file and modify them as needed, and then add in any additional
constraints from your existing SDC file.

Add an SDC File to Your Project
Add one or more SDC files to your project using these steps:

1. Choose File > Edit Project.
2. Click the Design tab.
3. Click the Add SDC file button next to the SDC box.
4. Browse to the file you created and click Open.
5. Click OK.

If you add multiple SDC files, the software processes them in the order shown in the table.

Tip: As a shortcut, in the Project pane you can right-click <project name> > Constraint to pop-up a context-
sensitive menu. Choose Add if you already have an SDC file or Create if you want to create a new empty file.

Using Multiple SDC Files
The Efinity software v2023.1 and higher allows you to use multiple SDC files in your project.
You add additional SDC files in the Project Editor. SDC files are processed in the order listed.

During compilation, the software reads the SDC files in order starting from the first listed file
and continuing to the next one(s). The same constraint order rules apply to the SDC file list.
The software displays messages about the SDC file(s) in the Console. The software reads the
files at the beginning of the routing stage. If the software detects any errors in the SDC file(s),
it shows the error, file name, and line number.

In the Efinity software v2024.2 and higher you can use the set sdc_list Tcl command in
your top-level SDC file to reference additional SDC files outside of your project.

set sdc_list { <file> <file> <file> ... }

For example, use the following Tcl syntax in the top-level SDC file to read the referenced files
file1.sdc, file2.sdc, and file3.sdc:

set sdc_list { file1.sdc file2.sdc file3.sdc }

foreach f $sdc_list {
 source $f
}

www.efinixinc.com 9

Efinity Timing Closure User Guide

The software reads the SDC files in the order you have listed in the set sdc_list
command. Ensure that you list them in the correct order.

Important: Because they are not added to your project, the Efinity software does not know about the
referenced SDC files and cannot track changes to them. For example, if you change an SDC file that is
in your project, the Efinity software recognizes there has been a change and prompts you to re-compile.
However, if you change a referenced SDC file, the software does not recognize that a change happened
and does not prompt a re-compile. This situation could cause unintended effects. Therefore, be careful
when using referenced SDC files and always re-compile when you modify them.

Efinity Files You Use to Create Constraints
When you generate constraints in the Interface Designer or compile your project, the
Interface Designer generates the <project>.pt.sdc and <project>.pt_timing.rpt files in
the outflow directory. You use these files as a reference when you create your SDC file.

• <project>.pt.sdc has timing constraints for the design's interface that you build with
the Interface Designer.

• <project>.pt_timing.rpt is a timing report that shows the timing details for the design's
interface that you built with the Interface Designer. The report groups the timing
information by block type.

This following sections explain how to use these files to create your SDC.

For more information on these files, refer to:
• <project>.pt.sdc
• <project>.pt_timing.rpt

For more information on using the Interface Designer, refer to:
• Titanium Interfaces User Guide
• Trion® Interfaces User Guide

www.efinixinc.com 10

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF

Efinity Timing Closure User Guide

Constraining Clocks
The first task when building an SDC file is to define your design's clocks and their
relationships. You set constraints to define the clocks and any relationships they have to each
other. Then, you can constrain the I/O pins relative to each clock as needed. The following
sections explain the theory behind defining clocks and their relationships.

Learn more: The following application notes provide information on clock and reset guidelines:
AN 040: Clocking Source-Synchronous Designs
AN 042: Working with PLLs
AN 044: Aligning LVDS Clock and Data
AN 046: Reset Guidelines for Efinix FPGAs

Defining Clocks
Clock sources can come from interface blocks like PLLs or oscillators, or they can come
from your board to the core through GPIO pins. You define and identify clocks using the
create_clock and create_generated_clock constraints.

The create_clock constraint defines a real or virtual clock with a specific duty cycle and
period (ns). Each target can have multiple clocks associated with it.

Example: Define a Clock
This constraint creates a clock, clk1, with a period of 10 ns:

create_clock -period 10 -name clk1 [get_ports clk1]

Tip: As you may remember from physics class, the clock period is the inverse of the frequency (T = 1/f). So if you
want to specify the period in ns for a 50 MHz clock frequency, you use this calculation:
T = (1/50 MHz) * 1000 Hz/MHz = 20 ns

The -waveform option lets you define the clock's rising and falling edges.

Example: Define a Clock with a Waveform
This example defines a clock with a 10 ns period and 50/50 duty cycle, but the first rising clock edge is phase
shifted 25% to start at 2.5 ns.

create_clock -period 10.00 -waveform {2.50 7.50} -name clk1 [get_ports clk1]

The create_generated_clock constraint defines a relationship between an internally
generated clock and its source clock. This constraint only supports the divide_by,
multiply_by, duty_cycle, and invert options.

www.efinixinc.com 11

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN040
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN042
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN044
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN046

Efinity Timing Closure User Guide

Example: Creating Clocks
The following example shows the constraints for the base clock clk and the internally generated clock clkdiv2.

D Q

D Q

clk

clkdiv2
clk

clkdiv2

0 ns 10 ns 20 ns 30 ns

create_clock -name clk -period 10 [get_ports clk]
create_generated_clock -source clk -divide_by 2 clkdiv2

Virtual clocks are clocks that are not assigned to a timing node. They are used to represent
off-chip clocks and are used in set_input_delay and set_output_delay constraints.

For more details, refer to:
• create_clock Constraint on page 53
• create_generated_clock Constraint on page 54

Using the create_clock Constraint
Any interface block that can be a clock source (PLL, GPIOs, MIPI RX Lane, MIPI
RX/TX PHY, and JTAG) has an auto-generated create_clock constraint in the
<project>.pt.sdc. There are several cases:
• Constraints where the software knows the clock value. <project>.pt.sdc includes the

number.
• Constraints where you have to define the clock value (typically, GPIO resources being

used as GCLK, RCLK, and JTAG TCK). These constraints are commented out and have
a placeholder for you to add in the number.

A GPIO with a connection type other than GCLK, RCLK, or JTAG TCK does not have
a template (because the software thinks they are not clocks). You need to write your own
create_clock command.

Tip: Common mistakes when using create_clock SDC command:
Using the -name option without a target (e.g., get_ports) and thereby creating a virtual clock by mistake. The
Efinity software prints an info message when it finds a virtual clock definition.
Using the instance name instead of the clock pin name. The clock pin name you use in the Interface Designer is
the name used in the core timing netlist.

Example: PLL
The PLL Timing Report section shows the details about the clock generated by PLLs in the
interface. Details including clock period, phase shift, and whether the clock is inverted are
listed in the section. You copy the constraints from <project>.pt.sdc into your SDC file,
you do not need to change them.

PLL Constraints
#################
create_clock -period 10.0000 i_hbramClk_fb
create_clock -waveform {1.2500 3.7500} -period 5.0000 i_hbramClk90
...

Example: GPIO Clock (GCLK and RCLK)
The following sections have create_clock constraint templates that you need to modify:

• GPIO Constraints
• HSIO GPIO Constraints (Titanium only)

www.efinixinc.com 12

Efinity Timing Closure User Guide

To constrain these clocks, replace <USER_PERIOD> in the create_clock template line
with the clock period and uncomment the line. If necessary, you can define the waveform if
the clock is not using a standard 50/50 duty cycle.

Example: Template

GPIO Constraints
####################
create_clock -period <USER_PERIOD> [get_ports {clock}]
...

Example: Your SDC File

create_clock -period 10 [get_ports {clock}]

Example: Regular GPIO Used as a Clock
You need to use a regular GPIO as a clock, for example if you need a bidirectional signal
that sometimes acts as a clock. In this case you need to write your own create_clock
command because the software cannot generate a template for it.

Note: If the Efinity software detects a signal that it thinks is a clock but you have not specified the GPIO as
a GCLK or RCLK, the software gives a warning.

Important: Efinix does not recommend using a regular GPIO as a clock for Trion FPGAs because it will
have to route to the global clock network (GCLK), which results in additional and variable delay.

For simple inputs and outputs, the instance name and pin name are usually the same (just
to make things easier). A GPIO in inout mode has three pins with different names. The
following example has instance bclk with 3 pin names for the input, output, and output
enable.

Example: Timing Report for GPIO in inout Mode

---------- 1.1 HSIO GPIO Timing Report (begin) ----------

Non-registered HSIO GPIO Configuration:
==

+---------------+----------+-----------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-----------+----------+----------+
bclk	bclk_IN	GPIO_IN	0.828	0.552
bclk	bclk_OUT	GPIO_OUT	2.205	1.470
bclk	bclk_OE	GPIO_OUT	1.953	1.302
+---------------+----------+-----------+----------+----------+

---------- HSIO GPIO Timing Report (end) ----------

For this case, the create_clock constraint is:

create_clock -period 10 -name bclk [get_ports bclk_IN]

Note: The constraint does not use bclk for get_ports, it uses the pin name not the instance.

www.efinixinc.com 13

Efinity Timing Closure User Guide

Using the create_generated_clock Constraint
The Interface Designer does not create SDC constraints for generated clocks. Typically, you
implement the generated clock in the core design by dividing down interface clocks. You
need to add constraints for these clocks.

Figure 3: Divide Down Clock

Enable
Logic

D Q
clkin

Interface Core

Core
Logic

Interface
Logic

clkout gen_clk

divclk

SDC Commands:

create_clock -period 10 -name clk0 [get_ports clkin]
create_generated_clock -source [get_ports clkin] -divide_by 2 [get_pins divclk|Q] -name
 gen_clk0

Virtual Clocks
A virtual clock represents a system clock that is on the board but is off-chip from the FPGA.
In your SDC files, you should use a virtual clock as a reference clock for the input and output
delay instead of the board clock. The virtual clock provides a clean interface clock and means
you do not have to worry about the shifted waveform on the board. Additionally, the virtual
clock prevents timing analysis from treating the I/O path with overly tight and unrealistic
requirements.

The following figure shows a virtual clock used with the set_input_delay command.
The oscillator drives the clock pad, clk_in, and the clock pin of an external off-chip
flipflop. The path from the oscillator to the clk_in pad on the core is through the interface.
The Interface Designer can add extra clock latency and clock uncertainty to that path. To

www.efinixinc.com 14

Efinity Timing Closure User Guide

remove any extra clock latency and uncertainty for the data_in pad, you use a virtual
clock.

Figure 4: Virtual Clock with set_input_delay Example

Interface Core

DatapathD Q

FF1

D Q

FF2

D Q

FF
Off Chip

data_in

On Board
(Outside FPGA)

clk_in

Example: SDC Commands

create_clock -period 40 -name clk_in [get_ports clk_in]
create_clock -period 40 -name virtual_clk
set_input_delay -clock virtual_clk -max 0.3 [get_ports data_in]
set_input_delay -clock virtual_clk -min 0.1 [get_ports data_in]

Notice that virtual clock has the same period and characteristics as clkin but it does not
have a clock target referring to a net, port, or pin in the netlist. The Efinity software displays
an info message for the virtual clock.

The following figure shows how to use a virtual clock with the set_output_delay
command.

Figure 5: Virtual Clock with set_output_delay Example

Interface Core

D Q

FF2

D Q

FF1

D Q

FF
Off Chip

data_out

On Board
(Outside FPGA)

clk_in

Datapath

Example: SDC Commands

create_clock -period 40 -name clk_in [get_ports clk_in]
create_clock -period 40 -name virtual_clk
set_output_delay -clock virtual_clk -max 0.4 [get_ports data_out]
set_output_delay -clock virtual_clk -min 0.3 [get_ports data_out]

Note: In your SDC file, put the virtual clock and core clock in the same clock group so they are related.
The software can then analyze the transfers from virtual_clk to/from clk_in. See Clock Relationships
on page 26.

www.efinixinc.com 15

Efinity Timing Closure User Guide

Clock Latency
The source clock latency represents the time it takes to get from the clock source on the
board to the global clock tree on the FPGA. This delay includes the board delay, buffer
delay, and any PLL delay (including PLL compensation delay, which is negative, see AN 042:
Working with PLLs).

Most of the time you do not need to use set_clock_latency. However, it is required
when you want to constrain external signals to core registers to capture the latency effect of
the clock signal transferring onto the FPGA.

You need to calculate the delay based on the GPIO mode, PLL mode, and any board delays.

The Efinity software v2023.2 and higher creates a template for the set_clock_latency
constraint in the <project>.pt.sdc file. The following topics explain how to calculate clock
latency for GPIO and PLL clocks and how to use the template to create the SDC constraints.

GPIO Clock Latency
When using a GPIO as a clock source you need to account for the any board delay and the
GPIO input buffer delay.

Figure 6: GBUF to Register Delay

CoreInterface

From Pad
GCLK

Global
Clock Tree

Clock Insertion Delay

GPIO

GPIO Delay Clock
Network

Delay

The SDC constraint formulas for the receive clock delay are:

set_clock_latency -source -setup <max calculation> <clock ports>
set_clock_latency -source -hold <min calculation> <clock ports>

The equations are:

<max calculation> = <max board constraint> + GPIO_CLK_INmax

<min calculation> = <min board constraint> + GPIO_CLK_INmin

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 16

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN042
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN042

Efinity Timing Closure User Guide

Example: Setting GPIO Clock Latency
You need to define the clock latency before the core clock pin clk. This example assumes that the clock and data
traces on the board are well matched; therefore, there is no external board delay.
The GPIO clock buffer delays are shown in the Excerpt of <project>.pt_timing.rpt: (non-registered GPIO table):

Non-registered HSIO GPIO Configuration:
==

+---------------+----------+-------------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-------------+----------+----------+
clk	clk	GPIO_CLK_IN	0.828	0.552
i	i	GPIO_IN	0.828	0.552
o	o	GPIO_OUT	2.205	1.470
+---------------+----------+-------------+----------+----------+

The <project>.pt.sdc template is:

Clock Latency Constraints
############################
set_clock_latency -source -setup <board_max + 0.828> [get_ports {clk}]
set_clock_latency -source -hold <board_min + 0.552> [get_ports {clk}]

There is no board delay in this example, therefore, the equations are:
<max calculation> = 0 + 0.828 = 0.828
<min calculation> = 0 + 0.552 = 0.552
The resulting constraints are:

set_clock_latency -source -setup 0.828 [get_ports clk]
set_clock_latency -source -hold 0.552 [get_ports clk]

www.efinixinc.com 17

Efinity Timing Closure User Guide

PLL Local Feedback Clock Latency
When using a PLL as a clock source you need to account for the any board delay, the GPIO
input buffer delay (for the PLL's reference clock pin), and the PLL compensation delay.

When the PLL is in local feedback mode, the compensation delay is zero.

Figure 7: PLL Local Feedback Mode Delay

PLL
CLKOUT

CoreInterface

From Pad
pll_clkin

Global
Clock Tree

Clock Insertion Delay

GPIO
pll_clkin

CLKOUT

Clocks are in phase, shifted by the
clock insertion delay

Delay

The SDC constraint formulas for the receive clock delay are:

set_clock_latency -source -setup <max calculation> <clock ports>
set_clock_latency -source -hold <min calculation> <clock ports>

The equations are:

<max calculation> = <max board constraint> + GPIO_INmax - <PLL compensation>

<min calculation> = <min board constraint> + GPIO_INmin - <PLL compensation>

The Efinity software v2023.2 and higher calculates the GPIO input buffer and PLL
compensation delays and provides them in a template in the <project>.pt.sdc file. You still
need to add any board delays if needed.

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 18

Efinity Timing Closure User Guide

Example: Setting PLL Local Feedback Clock Latency
In this example, the PLL clock output is called clk. This example assumes that the clock and data traces on the
board are well matched; therefore, there is no external board delay.
For the GPIO_IN delays, this example uses the values for the i pin.
The PLL compensation delay is 0 in this mode.
Excerpt of <project>.pt_timing.rpt:

Non-registered HSIO GPIO Configuration:
==

+---------------+----------+-------------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-------------+----------+----------+
| i | i | GPIO_IN | 0.828 | 0.552 |
| o | o | GPIO_OUT | 2.205 | 1.470 |
+---------------+----------+-------------+----------+----------+

The <project>.pt.sdc template is:

Clock Latency Constraints
############################
set_clock_latency -source -setup <board_max + 0.828> [get_ports {clk}]
set_clock_latency -source -hold <board_min + 0.552> [get_ports {clk}]

There is no board delay in this example, therefore, the equations are:
<max calculation> = 0 + 0.828= 0.828
<min calculation> = 0 + 0.552 = 0.552
The resulting constraints are:

set_clock_latency -source -setup 0.828 [get_ports clk]
set_clock_latency -source -hold 0.552 [get_ports clk]

www.efinixinc.com 19

Efinity Timing Closure User Guide

PLL Core Feedback Clock Latency
When using a PLL as a clock source you need to account for the any board delay, the GPIO
input buffer delay (for the PLL's reference clock pin), and the PLL compensation delay.

Figure 8: Core Feedback Mode Delay

pll_clkin

CLKOUT

Clocks are in phase, shifted by the
clock insertion delay

PLL
CLKOUT

CoreInterface

From Pad
pll_clkin

Global
Clock Tree

Clock Insertion Delay

GPIO

Delay

When the PLL is in core feedback mode, the compensation delay is equal to the clock
network delay.

The SDC constraint formulas for the receive clock delay are:

set_clock_latency -source -setup <max calculation> <clock ports>
set_clock_latency -source -hold <min calculation> <clock ports>

The equations are:

<max calculation> = <max board constraint> + GPIO_INmax - <PLL compensation>

<min calculation> = <min board constraint> + GPIO_INmin - <PLL compensation>

The Efinity software v2023.2 and higher calculates the GPIO input buffer and PLL
compensation delays and provides them in a template in the <project>.pt.sdc file. You still
need to add any board delays if needed.

www.efinixinc.com 20

Efinity Timing Closure User Guide

Example: Setting PLL Core Feedback Clock Latency
In this example, the PLL clock output is called clk. This example assumes that the clock and data traces on the
board are well matched; therefore, there is no external board delay.
Excerpt of <project>.pt_timing.rpt:

---------- 1. PLL Timing Report (begin) ----------

+--------+----------+-----------+-...-+------------------+------------------+
| PLL | Resource | Reference | ... | PLL Compensation | PLL Compensation |
|Instance| | Clock | ... | Delay Max (ns) | Delay Min (ns) |
+--------+----------+-----------+-...-+------------------+------------------+
| pll | PLL_TR0 | external | ... | 4.310 | 2.155 |
+--------+----------+-----------+-...-+------------------+------------------+

+-------+-------------+-----------------------+
| Clock | Period (ns) | Phase Shift (degrees) |
+-------+-------------+-----------------------+
| clk | 10.0000 | 0 |
+-------+-------------+-----------------------+

Non-registered GPIO Configuration:
===================================

+---------------+----------+-----------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-----------+----------+----------+
i	i	GPIO_IN	1.396	0.698
refclk	refclk	GPIO_IN	1.476	0.738
o	o	GPIO_OUT	3.829	1.915
+---------------+----------+-----------+----------+----------+

The <project>.pt.sdc template is:

Clock Latency Constraints
############################
set_clock_latency -source -setup <board_max -2.834> [get_ports {clk}]
set_clock_latency -source -hold <board_min -1.457> [get_ports {clk}]

The equations are:
<max calculation> = 0 - 2.834 = -2.834
<min calculation> = 0 - 1.457 = -1.457
The numbers are negative because the PLL compensation is so much larger than the input delay.
The resulting constraints are:

set_clock_latency -source -setup -2.834 [get_ports clk]
set_clock_latency -source -hold -1.457 [get_ports clk]

www.efinixinc.com 21

Efinity Timing Closure User Guide

PLL External Feedback Clock Latency
When using a PLL as a clock source you need to account for the any board delay, the GPIO
input buffer delay (for the PLL's reference clock pin), and the PLL compensation delay.

Note: Trion FPGAs do not have external feeddback mode.

Figure 9: External Feedback Mode Delay

pll_clkin

PLL
CLKOUT

Clocks are in phase and in sync
PLL

CLKOUT

CoreInterface

From Pad
pll_clkin

Global
Clock Tree

Zero Delay from the FPGA, only Board Trace Delay

GPIO To Pad
clkoutGPIO

From Pad
extfb GPIO

When the PLL is in external feedback mode, the compensation delay is equal to GPIO_IN
plus the clock network delay plus GPIO_CLK_OUT.

The SDC constraint formulas for the receive clock delay are:

set_clock_latency -source -setup <max calculation> <clock ports>
set_clock_latency -source -hold <min calculation> <clock ports>

The equations are:

<max calculation> = <max board constraint> + GPIO_INmax - <PLL compensation>

<min calculation> = <min board constraint> + GPIO_INmin - <PLL compensation>

The Efinity software v2023.2 and higher calculates the GPIO input buffer and PLL
compensation delays and provides them in a template in the <project>.pt.sdc file. You still
need to add any board delays if needed.

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 22

Efinity Timing Closure User Guide

Example: Setting PLL External Feedback Clock Latency
In this example, the PLL clock output is called clk. This example assumes that the clock and data traces on the
board are well matched; therefore, there is no external board delay.
Excerpt of <project>.pt_timing.rpt:

+--------+----------+-----------+-...-+------------------+------------------+
| PLL | Resource | Reference | ... | PLL Compensation | PLL Compensation |
|Instance| | Clock | ... | Delay Max (ns) | Delay Min (ns) |
+--------+----------+-----------+-...-+------------------+------------------+
| pll | PLL_BL0 | external | ... | 5.379 | 3.541 |
+--------+----------+-----------+-...-+------------------+------------------+

+-------+-------------+----------------------------+-----------------------+----------+
| Clock | Period (ns) | Enable Dynamic Phase Shift | Phase Shift (degrees) | Inverted |
+-------+-------------+----------------------------+-----------------------+----------+
| clk | 10.0000 | False | 0.0 | false |
+-------+-------------+----------------------------+-----------------------+----------+

---------- PLL Timing Report (end) ----------

---------- 2.1 HSIO GPIO Timing Report (begin) ----------

Clkout GPIO Configuration:
===========================

+---------------+-----------+--------------+----------+----------+--------------------+
| Instance Name | Clock Pin | Parameter | Max (ns) | Min (ns) | Reference Pin Name |
+---------------+-----------+--------------+----------+----------+--------------------+
clkout	clk	GPIO_CLK_OUT	2.205	1.470	clk~CLKOUT~18~1
refclk	refclk	GPIO_IN	0.828	0.552	
pll_fbk	pll_fbk	GPIO_IN	0.828	0.552	
+---------------+-----------+--------------+----------+----------+--------------------+

The <project>.pt.sdc template is:

Clock Latency Constraints
############################
set_clock_latency -source -setup <board_max -4.551> [get_ports {clk}]
set_clock_latency -source -hold <board_min -2.989> [get_ports {clk}]

The equations are:
<max calculation> = 0 - 4.551 = -4.551
<min calculation> = 0 - 2.989 = -2.989
The numbers are negative because the PLL compensation is so much larger than the input delay.
The resulting constraints are:

set_clock_latency -source -setup -4.551 [get_ports clk]
set_clock_latency -source -hold -2.989 [get_ports clk]

www.efinixinc.com 23

Efinity Timing Closure User Guide

PLL Cascading Clock Latency
When using cascaded PLLs as a clock source you need to account for the any board delay,
the GPIO input buffer delay (for the PLL's reference clock pin), and the PLL compensation
delay.

Note: You should cascade a maximum of 1 PLL, that is, the source PLL and the
cascaded one.

Figure 10: PLL Cascade Delay

PLL
CLKOUT

CoreInterface

From Pad
pll_clkin

Global
Clock Tree

Clock Insertion Delay

GPIO

PLL
CLKOUT

The SDC constraint formulas for the receive clock delay are:

set_clock_latency -source -setup <max calculation> <clock ports>
set_clock_latency -source -hold <min calculation> <clock ports>

The equations for the source PLL are:

<max calculation> = <max board constraint> - <source PLL clock latency>

<min calculation> = <min board constraint> - <source PLL clock latency>

The equations for the cascaded PLL are:

<max calculation> = <source PLL clock latency>max + <cascaded PLL clock latency>max

<min calculation> = <source PLL clock latency>min + <cascaded PLL clock latency>min

The Efinity software v2023.2 and higher calculates the GPIO input buffer and PLL
compensation delays and provides them in a template in the <project>.pt.sdc file. You still
need to add any board delays (if needed).

For the cascaded PLL, the software includes the clock network delay in the PLL
compensation delay value.

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 24

Efinity Timing Closure User Guide

Example: PLL Cascading Clock Latency
In this example, the PLL clock output is called clk. This example assumes that the clock and data traces on the
board are well matched; therefore, there is no external board delay.
Excerpt of <project>.pt_timing.rpt:

---------- 1. PLL Timing Report (begin) ----------

+--------------+----------+-----------------+-...-+---------------------------------
+---------------------------------+
| PLL Instance | Resource | Reference Clock | ... | PLL Compensation Delay Max (ns) | PLL
 Compensation Delay Min (ns) |
+--------------+----------+-----------------+-...-+---------------------------------
+---------------------------------+
| src_pll | PLL_BL0 | external | ... | 2.346 |
 1.519 |
| casc_pll | PLL_BL1 | core | ... | 2.341 |
 1.516 |
+--------------+----------+-----------------+-...-+---------------------------------
+---------------------------------+

+--------------+-------------+----------------------------+-----------------------+----------+
| Clock | Period (ns) | Enable Dynamic Phase Shift | Phase Shift (degrees) | Inverted |
+--------------+-------------+----------------------------+-----------------------+----------+
| src_pll_clk | 10.0000 | False | 0.0 | false |
| casc_pll_clk | 10.0000 | False | 0.0 | false |
+--------------+-------------+----------------------------+-----------------------+----------+

---------- PLL Timing Report (end) ----------

---------- 2. GPIO Timing Report (begin) ----------

Non-registered GPIO Configuration:
===================================

+---------------+----------+-----------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-----------+----------+----------+
| refclk | refclk | GPIO_IN | 0.828 | 0.552 |
+---------------+----------+-----------+----------+----------+

The <project>.pt.sdc template is:

Clock Latency Constraints
############################
set_clock_latency -source -setup <board_max -1.517> [get_ports {src_pll_clk}]
set_clock_latency -source -hold <board_min -0.967> [get_ports {src_pll_clk}]
set_clock_latency -source -setup <board_max + 0.004> [get_ports {casc_pll_clk}]
set_clock_latency -source -hold <board_min + 0.003> [get_ports {casc_pll_clk}]

The equations for the source PLL are:
<max calculation> = 0 - 1.517 = -1.517
<min calculation> = 0 - 0.967 = -0.967
The equations for the cascaded PLL are:
<max calculation> = 0 - 1.517 + 0.004 = -1.513
<min calculation> = 0 - 0.967 + 0.003 = -0.964
The numbers are negative because the PLL compensation is so much larger than the input delay.
The resulting constraints are:

set_clock_latency -source -setup - 1.517 [get_ports {src_pll_clk}]
set_clock_latency -source -hold - 0.967 [get_ports {src_pll_clk}]
set_clock_latency -source -setup - 1.513 [get_ports {casc_pll_clk}]
set_clock_latency -source -hold - 0.964 [get_ports {casc_pll_clk}]

www.efinixinc.com 25

Efinity Timing Closure User Guide

Clock Relationships
By default, the Efinity® software assumes that all clocks are related and it analyzes the timing
between all clock domains and optimizes all possible paths.

If you set constraints for two clocks, and do not cut the path between them, the software tries
to find the tightest clock-to-clock delay requirement between them. If the timer cannot find a
common clock period for the two clocks after 1,000 clock cycles, it determines that they are
non-expandable. The timer gives these clocks a default constraint of 0.01 ns. If you want to
override this default, use the set_max_delay or set_min_delay constraint.

Important: Efinix recommends that you explicitly set constraints to indicate unrelated clocks. That way
the software does not perform unnecesssary path optimization, which can lead to problems with closing
timing.

Setting Constraints for Unrelated Clocks
The first step is to analyze your design to determine which clocks are related and which are
not. You then use one of the following constraints:
• set_clock_groups—Use when you want to specify bidirectional constraints between

clocks. Generally, this is the simplest method, and the fastest for the Efinity® timer to
analyze. (See set_clock_groups Constraint on page 58.)

• set_false_path—Use when you want to be specific about which clocks connect
with which end points. This constraint is one-directional, so you need to specify two
constraints, one for each direction. (See set_false_path Constraint on page 59.)
Typically, you use these constraints when you want to indicate timing exceptions for a
subset of timing end points in one of the clock domains.

Using the set_clock_groups Constraint
Use this constraint to define the relationship between the clocks and generated clocks you
defined. Typically, only clocks from the same source are related to each other. For example,
clock outputs from the same PLL or clocks from a single clock pin. Any other clocks should
be specified as unrelated.

Unrelated clock groups can be exclusive or asynchronous.

• Exclusive clock groups do not operate at the same time as each other.
• Asynchronous clock groups have no timing relationship between them, for example,

clocks driven from two independent PLLs.

You use the -exclusive or -asynchronous options to define how to treat the clock
groups. The Efinity® software treats both options identically, but some third-party EDA
tools use these constraints when checking for proper clock domain crossing logic. Therefore,
it is a good idea to use the correct option for the relationship.

To illustrate how to set constraints using set_clock_groups, consider a design with four
clocks, clk1, clk2, clk3, and clk4. After design analysis, you determine that clk1 and
clk2 are related to each other and clk3 and clk4 are unrelated to all others. There are two
ways to use the set_clock_groups constraint, both of which are correct.

Example: Use a Single Constraint
The first method is to define the clocks and groups with a single constraint:

set_clock_groups -exclusive -group {clk1 clk2} -group {clk3} -group {clk4}

www.efinixinc.com 26

Efinity Timing Closure User Guide

This constraint defines the relationship between clocks clk1, clk2, clk3, and clk4. If
you later add an additional clock, clk5, and do not update the constraints, the software
assumes that clk5 is synchronous to all other clocks.

Example: Use Separate Constraints
The second method is to use separate constraints for each group:

set_clock_groups -exclusive -group {clk1 clk2}
set_clock_groups -exclusive -group {clk3}
set_clock_groups -exclusive -group {clk4}

In this case, each set_clock_groups constraint only specifies one group, which tells the
software that the clocks in a given group are asynchronous to all others. With this method,
if you later add clk5, the software would consider it to be asynchronous to clk1, clk2,
clk3, and clk4.

It can be tempting to use the second method in case you forget a clock or add one later.
However, whichever method you choose, Efinix recommends that you always include
constraints for each clock in your design and that you update your SDC file when you add
clocks.

Using the set_false_path Constraint
The set_false_path constraint lets you be more specific when setting clock constraints.
This constraint lets you cut the connection between a starting point (from) and an ending
point (to). The from and to can be registers, I/O, or clocks.

The following constraint cuts the connection from clk1 to clk2:

set_false_path -from clk1 -to clk2

Remember, though, that this only cuts the connection in one direction. To specify that there
is no relationship between clk1 and clk2, you also need to use the following constraint:

set_false_path -from clk2 -to clk1

Example: Using set_false_path Constraints
A complete example of the constraints needed for our hypothetical four-clock design is:

set_false_path -from clk1 -to clk3
set_false_path -from clk1 -to clk4
set_false_path -from clk2 -to clk3
set_false_path -from clk2 -to clk4
set_false_path -from clk3 -to clk1
set_false_path -from clk3 -to clk2
set_false_path -from clk3 -to clk4
set_false_path -from clk4 -to clk1
set_false_path -from clk4 -to clk2
set_false_path -from clk4 -to clk3

www.efinixinc.com 27

Efinity Timing Closure User Guide

When you want to cut paths between clock domains, as in this simple example, Efinix
recommends that you use set_clock_groups instead of set_false_path. The
set_false_path constraint becomes more useful when you want to specify exceptions
for registers or I/O, or if you want to cut only one direction of a clock domain pair.

Example: Cut Path to a Port or Pin
To cut only the path from clk1 to a port named testout:

set_false_path -from clk1 -to [get_ports testout]

To cut only the path from clk1 to a pin named testout:

set_false_path -from clk1 -to [get_pins instance|testout]

Clock Synchronizers
If you have asynchronous clock groups and want to transfer data between them, you need to
add synchronizing registers (also known as synchronizers). Synchronizers are register chains
in the receiving clock domain that capture data from the sending domain. They prevent meta-
stable events from propagating into the receiving clock domain.

To designate a register as a synchronizer, use the async_reg synthesis attribute.

When async_reg is true, synthesis does not perform optimization to reduce, merge,
or duplicate these registers. During place and route, the software keeps these registers close
together to improve synchronization between asynchronous clock domains.

Verilog HDL:

(* async_reg = "true" *) reg [1:0] x;

VHDL:

attribute async_reg: boolean;
attribute async_reg of x : signal is true;

www.efinixinc.com 28

Efinity Timing Closure User Guide

Metastable Synchronizer Circuit
This example shows a synchronizer, which is a circuit that stabilizes an input signal that may
produce a metastable output. If possible, the registers in a synchronization chain need to
be placed close to each other. Efinix recommends that you use the async_reg synthesis
attribute for synchronizer registers.

In the following figure, FF1 and FF2 should be close together. Use the async_reg synthesis
attribute for the FF1 and FF2 registers in the RTL netlist., which tells the software to keep
those registers close together during place-and-route.

Figure 11: Metastability Synchronizer Example

D Q

XOR

D Q D Q D Q

D Q D Q

ENA
Source Clock

Result Clock

Data

Valid Shot

FF1 FF2

max_delay = 2 * (fastest clock’s period)
max_delay

How to Set Clock Uncertainty
Trion®, Topaz, and Titanium FPGAs have a default clock uncertainty for setup and hold
analysis. You can view the clock uncertainty in the Static Timing Analysis Report (<project
name>.timing.rpt). If the you have not set the uncertainty, the report uses the default value.
For example, the T8 has 140 ps for setup and 50 ps for hold. You can modify these defaults
by including the set_clock_uncertainty command in your SDC file.

One reason to add uncertainty is to account for the quality of the clock that feeds into the
FPGA, or because you want the design to have more margin. However, keep in mind that
clock uncertainty comes from the timing slack reported for your design, so increasing the
uncertainty makes it harder to meet timing.

Example: Add 60 ps Clock Uncertainty
You want to add 60 ps to the default uncertainty for clk for a T8 design. Add this command to your SDC file:

set_clock_uncertainty -to clk -setup 0.06

The Efinity® software uses 200 ps of clock uncertainty for setup analysis.

See set_clock_uncertainty Constraint on page 59 for details.

www.efinixinc.com 29

Efinity Timing Closure User Guide

Constraining I/O
As discussed earlier, you need to constrain the connections from the interface to the core. All
connections between the core and interface are considered to be I/O for timing analysis.

If a given interface block is synchronizing the connection to the core, the Interface Designer
SDC template includes the set_input_delay and set_output_delay SDC
constraints that you need to use. When it is not synchronized, you need to add external board
delays to the values the Interface Designer shows.

Note: For Trion®, Topaz, and Titanium FPGAs, most interface connections are synchronous. The
exceptions are GPIO blocks in bypass mode and LVDS blocks in x1 bypass mode.

Constrain I/O pins to be timing-equivalent to a register that is clocked with the real or
virtual clock you defined. Then, use the set_input_delay and set_output_delay constraints.

Example: Constraining I/O Pins
In this example, sysclk is a virtual clock.

Figure 12: Clock and I/O Pin Constraint Example

clk

D Q D Qina outa
clk

sysclk

0 ns 10 ns 20 ns 30 ns
Use these constaints to define the clock and set the delays for the pins:

create_clock -name clk -period 10 [get_ports clk]
create_clock -name sysclk -period 10
set_input_delay -clock sysclk -max 2.4 [get_ports ina]
set_output_delay -clock sysclk -max 1.2 [get_ports outa]

Constraining Synchronous Inputs and Outputs
Synchronous inputs and outputs are interface signals that are connected to synchronous
elements in the FPGA's periphery. Because the Interface Designer knows how the clock
and data signals are connected to the synchronous elements, the software can automatically
determine the precise delays for the set_input_delay and set_output_delay
constraints. These delays are provided in the <project name>.pt.sdc file. When the Efinity
software generates the constraints for synchronized output and input pins, it creates a
set_output_delay or set_input_delay that captures the delay values of the
synchronous element and the core clock delay of the FPGA.

When the Efinity software models the timing, the minimum and maximum refer to different
timing corners (fast corner and slow corner), not the minimum/maximum potential delay in
one timing corner.

www.efinixinc.com 30

Efinity Timing Closure User Guide

Understanding Input Delay Values
The following figure shows an example of a peripheral register, clock, clock-to-output delay,
and data path.

Figure 13: Input Delay Example

DIN

CLK
Peripheral
Register

tSETUP
tHOLD

Clock
Tree

Input Delay Constraint

DCLK_INTERFACE

DDATAtCO
IN

Interface Core

• tCO is the peripheral register's clock-to-output delay.
• DDATA is the delay from the peripheral register to the core.
• DCLK_INTERFACE is the clock delay to the peripheral register.

So the equations for the output delay are:

Maximum input delay = DDATA (max) + tCO + DCLK_INTERFACE (max)

Minimum input delay = DDATA (min) + tCO + DCLK_INTERFACE (min)

For example:

Parameter Max Min

DDATA 2 1

tCO 2 1

DCLK_INTERFACE 2 1

• Maximum input delay = 2 + 2 + 2 = 6
• Mininum input delay = 1 + 1 + 1 = 3

The generated constraint has the -reference_pin option, which lets the software
automatically calculate the core clock network delay.

Understanding Output Delay Values
The following figure shows an example of a peripheral register, clock, setup/hold, and data
path.

Figure 14: Output Delay Example

DOUT

CLK
Peripheral
Register

tSETUP
tHOLD

Clock
Tree

Output Delay Constraint

DCLK_INTERFACE

DDATA tCO

OUT

Interface Core

• tSETUP is the peripheral register's setup requirement.
• tHOLD is the peripheral register's hold requirement.

www.efinixinc.com 31

Efinity Timing Closure User Guide

• DDATA is the delay from the core to the peripheral register.
• DCLK_INTERFACE is the clock delay to the peripheral register.

So the equations for the output delay are:

Maximum output delay (setup) = DDATA (max) + tSETUP - DCLK_INTERFACE (max)

Minimum output delay (hold) = DDATA (min) - tHOLD - DCLK_INTERFACE (min)

For example:

Parameter Max Min

DDATA 2 1

tSETUP 2 –

tHOLD – 1

DCLK_INTERFACE 2 1

• Maximum output delay = 2 + 2 - 2 = 2
• Mininum output delay = 1 - 1 - 1 = -1

The generated constraint has the -reference_pin option, which lets the software
automatically calculate the core clock network delay.

Set Constraints
To set a constraint for synchronous inputs and outputs in your constraints file:

1. Go to Result > Interface in the Efinity® dashboard.
2. Double-click <project name>.pt.sdc to open the report.
3. Copy the set_input_delay and set_output_delay constraints and paste them

into your constraints file.

Example: set_output_delay Constraints

set_output_delay -clock Clk -reference_pin [get_ports {Clk~CLKOUT~14~1}] -max 0.287
 [get_ports {MemWrite}]
set_output_delay -clock Clk -reference_pin [get_ports {Clk~CLKOUT~14~1}] -min 0.161
 [get_ports {MemWrite}]

www.efinixinc.com 32

Efinity Timing Closure User Guide

Constraining Unsynchronized Inputs and
Outputs
Unsynchronized inputs and outputs are simple GPIO blocks in bypass mode or LVDS blocks
in x1 bypass mode. For these blocks, you need to factor in any external board delays when
calculating the -min and -max values for the input and output delays.

For blocks in bypass mode, the constraint clock is external to the FPGA:
• A receive clock is generated outside of the FPGA and is passed to the FPGA through a

GPIO pin.
• A forward clock is generated by the FPGA and sent off chip though a GPIO pin in clock

out mode.

Both receive and forward clocks synchronize the signal off chip.

For unsynchronized input or output signals, the GPIO block bypasses the register. GPIO_IN
represents a combinational delay from the pad through the I/O buffer. GPIO_OUT represents
a combinational delay to the pad through the I/O buffer from either the output or output
enable signals.

The general procedure for constraining unsynchronized inputs and outputs is:

1. Determine which mode you are constraining (input receive, input forward, output
receive, or output forward).

2. Find the mininum (fast) and maximum (slow) timing values in the Interface Designer
report file <design name>.pt_timing.rpt.

3. Use formulas (provided in later sections) to calculate the delay.
4. Add the constraint to your SDC file.

Receive Clock
A receive clock is passed to the FPGA design by configuring a GPIO in input mode
and and setting the connection type to GCLK or RCLK. GPIO_IN_CLK represents the
combinational delay from the pad through the I/O buffer to the global clock tree.

Figure 15: Receive Clocks

FPGA Board Trace/
External Device

Receive Clock

www.efinixinc.com 33

Efinity Timing Closure User Guide

Forward Clock Using GPIO in clkout Mode
A forward clock is generated by the FPGA design and sent off chip by configuring a GPIO in
clkout mode. GPIO_CLK_OUT represents the combinational delay through the FPGA clock
tree and the I/O buffer to the pad.

Figure 16: Forward Clocks

FPGA Board Trace/
External Device

Forward Clock

Forward Clock Using GPIO in output Mode
Sometimes the clock generated by the FPGA is only used in the external system and is not
a clock in the FPGA design. In this case, you use a regular GPIO block in output mode to
forward the clock off chip.

Figure 17: Forward Clocks

FPGA Board Trace/
External Device

Forward Clock

www.efinixinc.com 34

Efinity Timing Closure User Guide

Input Receive Clock Delay
This example shows how to set constraints for an input receive clock.

Figure 18: Receive Clock Delay (GPIO Input, Register Bypass)

GPIO_IN

GPIO_CLK_IN

Board Trace/
External Device

InterfaceCore

The SDC constraint formulas for the receive clock delay are:

set_input_delay -clock <clock> -max <max calculation> <ports>
set_input_delay -clock <clock> -min <min calculation> <ports>

The equations are:

<max calculation> = <max board constraint> + GPIO_INmax

<min calculation> = <min board constraint> + GPIO_INmin

The following example shows how to calculate the delays and set the constraints.

Example: Constraining Input Receive Clock
You want to constrain the din input with respect to clock clkin with a max board constraint of 4 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Designer timing report file
is:

Non-registered GPIO Configuration:
===================================

+---------------+----------+-------------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-------------+----------+----------+
clkin	clkin	GPIO_CLK_IN	1.954	0.526
din	din	GPIO_IN	1.954	0.526
dout	dout	GPIO_OUT	4.246	1.081
+---------------+----------+-------------+----------+----------+

The equations are:
<max calculation> = 4 + 1.954 = 5.954
<min calculation> = 2 + 0.526 = 2.526
The resulting constraints are:

set_input_delay -clock clkin -max 5.954 din
set_input_delay -clock clkin -min 2.526 din

Note: The GPIO_CLK_IN delay is accounted for in the set_clock_latency constraint. Therefore, you
do not need to include it in the calculation for set_input_delay. Refer to Clock Latency on page 16.

www.efinixinc.com 35

Efinity Timing Closure User Guide

Output Receive Clock Delay
This example shows how to set constraints for an output receive clock.

Figure 19: Receive Clock Delay (GPIO Output, Register Bypass)

GPIO_OUT

GPIO_CLK_IN

Board Trace/
External Device

InterfaceCore

The SDC constraint formulas for the receive clock delay are:

set_output_delay -clock <clock> -max <max calculation> <ports>
set_output_delay -clock <clock> -min <min calculation> <ports>

The equations are:

<max calculation> = <max board constraint> + GPIO_OUTmax

<min calculation> = <min board constraint> + GPIO_OUTmin

The following example shows how to calculate the delays and set the constraints.

Example: Constraining Output Receive Clock
You want to constrain the dout output with respect to clock clkin with a max board constraint of 4 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Design report file is:

Non-registered GPIO Configuration:
===================================

+---------------+----------+-------------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-------------+----------+----------+
clkin	clkin	GPIO_CLK_IN	1.954	0.526
din	din	GPIO_IN	1.954	0.526
dout	dout	GPIO_OUT	4.246	1.081
+---------------+----------+-------------+----------+----------+

The equations are:
<max calculation> = 4 + 4.246 = 8.246
<min calculation> = 2 + 1.081 = 3.081
The resulting constraints are:

set_output_delay -clock clkin -max 8.246 dout
set_output_delay -clock clkin -min 3.081 dout

Note: The GPIO_CLK_IN delay is accounted for in the set_clock_latency constraint. Therefore, you
do not need to include it in the calculation for set_output_delay. Refer to Clock Latency on page 16.

www.efinixinc.com 36

Efinity Timing Closure User Guide

Input Forward Clock Delay (GPIO clkout)
This example shows how to set constratints for an input forward clock.

Warning: Most designs do not need to use this method. For high-performance designs, you should use
the GPIO registers and follow the instructions in Constraining Synchronous Inputs and Outputs on page
30.

Figure 20: Forward Clock Delay (GPIO Input, Register Bypass)

Board Trace/
External Device

GPIO_IN

GPIO_CLK_OUT

InterfaceCore

The SDC constraint formulas for the foward clock delay are:

set_input_delay -clock <clock> -reference_pin <clkout interface name> \
 -max <max calculation> <ports>
set_input_delay -clock <clock> -reference_pin <clkout interface name> \
 -min <min calculation> <ports>

Reference Pin
With forward clocks, you use the -reference_pin option to include the clock latency
delay in the I/O constraint. The -reference_pin pin target is a clkout pad that the
software automatically adds to the netlist. The <project>.pt_timing.rpt file shows the
reference pin name.

Calculate the min and max constraints using the following equations:

<max calculation> = <max board constraint> + GPIO_INmax + GPIO_CLK_OUTmax

<min calculation> = <min board constraint> + GPIO_INmin + GPIO_CLK_OUTmin

The following example shows how to calculate the delays and set the constraints.

Example: Constraining Input Forward Clock
You want to constrain the i input with respect to clock clk_fwd with a max board constraint of 2 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the <project>.pt_timing.rpt file is:

Clkout GPIO Configuration:
===========================

+---------------+-----------+--------------+----------+----------+--------------------+
| Instance Name | Clock Pin | Parameter | Max (ns) | Min (ns) | Reference Pin Name |
+---------------+-----------+--------------+----------+----------+--------------------+
| clk_fwd | clk | GPIO_CLK_OUT | 2.205 | 1.470 | clk~CLKOUT~219~1 |
+---------------+-----------+--------------+----------+----------+--------------------+

Non-registered HSIO GPIO Configuration:
==

+---------------+----------+-------------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-------------+----------+----------+
clk	clk	GPIO_CLK_IN	0.828	0.552
i	i	GPIO_IN	0.828	0.552
o	o	GPIO_OUT	2.205	1.470
+---------------+----------+-------------+----------+----------+

www.efinixinc.com 37

Efinity Timing Closure User Guide

The equations are:
<max calculation> = 2 + 0.828 + 2.205 = 5.033
<min calculation> = 2 + 0.552 + 1.470 = 4.022
The resulting constraints are:

set_input_delay -clock clk -reference_pin clk~CLKOUT~219~1 -max 5.033 [get_ports {i}]
set_input_delay -clock clk -reference_pin clk~CLKOUT~219~1 -min 4.022 [get_ports {i}]

www.efinixinc.com 38

Efinity Timing Closure User Guide

Output Forward Clock Delay (GPIO clkout)
This example shows how to set constratints for an output forward clock.

Warning: Most designs do not need to use this method. For high-performance designs, use the GPIO
registers and follow the instructions in Constraining Synchronous Inputs and Outputs on page 30.

Figure 21: Forward Clock Delay (GPIO Output, Register Bypass)

GPIO_OUT

GPIO_CLK_OUT

Board Trace/
External Device

InterfaceCore

The SDC constraint formulas for the forward clock delay are:

set_output_delay -clock <clock> -reference_pin <clkout interface name> \
 -max <max calculation> <ports>
set_output_delay -clock <clock> -reference_pin <clkout interface name> \
 -min <min calculation> <ports>

Calculate the min and max constraints using the following equations:

<max calculation> = <max board constraint> + GPIO_OUTmax - GPIO_CLK_OUTmax

<min calculation> = <min board constraint> + GPIO_OUTmin - GPIO_CLK_OUTmin

The following example shows how to calculate the delays and set the constraints.

Example: Constraining Output Forward Clock
You want to constrain the o output with respect to clock clk_fwd with a max board constraint of 2 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Designer timing report file
is:

Clkout GPIO Configuration:
===========================

+---------------+-----------+--------------+----------+----------+--------------------+
| Instance Name | Clock Pin | Parameter | Max (ns) | Min (ns) | Reference Pin Name |
+---------------+-----------+--------------+----------+----------+--------------------+
| clk_fwd | clk | GPIO_CLK_OUT | 2.205 | 1.470 | clk~CLKOUT~219~1 |
+---------------+-----------+--------------+----------+----------+--------------------+

Non-registered HSIO GPIO Configuration:
==

+---------------+----------+-------------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-------------+----------+----------+
clk	clk	GPIO_CLK_IN	0.828	0.552
i	i	GPIO_IN	0.828	0.552
o	o	GPIO_OUT	2.205	1.470
+---------------+----------+-------------+----------+----------+

The equations are:
<max calculation> = 2 + 2.205 - 2.205 = 2
<min calculation> = 2 + 1.470 - 1.470 = 2
The resulting constraints are:

set_output_delay -clock clk -reference_pin clk~CLKOUT~219~1 -max 2 [get_ports {o}]
set_output_delay -clock clk -reference_pin clk~CLKOUT~219~1 -min 2 [get_ports {o}]

www.efinixinc.com 39

Efinity Timing Closure User Guide

Input Forward Clock Delay (GPIO output)
This example shows how to set constratints for an input forward clock.

Figure 22: Forward Clock Delay (GPIO Input, Register Bypass)

Board Trace/
External Device

GPIO_IN (Data)

GPIO_OUT (Clock)

InterfaceCore

The SDC constraint formulas for the foward clock delay are:

set_input_delay -clock <clock> -reference_pin <clkout interface name> \
 -max <max calculation> <ports>
set_input_delay -clock <clock> -reference_pin <clkout interface name> \
 -min <min calculation> <ports>

Reference Pin
With forward clocks, you use the -reference_pin option to include the clock latency
delay in the I/O constraint. The reference pin target is the pin name of the GPIO output
used for the clock.

Constraint Calculation
Calculate the min and max constraints using the following equations:

<max calculation> = <max board constraint> + GPIO_INmax
+ <GPIO_OUT for clock pad>max

<min calculation> = <min board constraint> + GPIO_INmin
+ <GPIO_OUT for clock pad>min

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 40

Efinity Timing Closure User Guide

Example: Constraining Input Forward Clock
You want to constrain the i input with respect to clock clk_fwd with a max board constraint of 2 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Designer timing report file
is:

Non-registered HSIO GPIO Configuration:
==
+---------------+----------+-------------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-------------+----------+----------+
clk	clk	GPIO_CLK_IN	0.828	0.552
i	i	GPIO_IN	0.828	0.552
clk_fwd	clk_fwd	GPIO_OUT	2.205	1.470
o	o	GPIO_OUT	2.205	1.470
+---------------+----------+-------------+----------+----------+

For <GPIO_OUT for clock pad>, use the GPIO_OUT value for clk_fwd.
The equations are:
<max calculation> = 2 + 0.828 + 2.205 = 5.033
<min calculation> = 2 + 0.552 + 1.470 = 4.022
The reference pin target is the forwarded clock, clk_fwd.
In this example, the RTL is using a divided down clock, divclk, which is only used to drive the clk_fwd signal
off chip. Therefore, the set_input_delay constraint is relative to that generated clock. See Example: FPGA
Forwarded Clock on page 65 for a more complete example.
The resulting constraints are:

set_input_delay -clock divclk -reference_pin clk_fwd -max 5.033 [get_ports {i}]
set_input_delay -clock divclk -reference_pin clk_fwd -min 4.022 [get_ports {i}]

www.efinixinc.com 41

Efinity Timing Closure User Guide

Output Forward Clock Delay (GPIO output)
This example shows how to set constratints for an input forward clock.

Figure 23: Forward Clock Delay (GPIO Output, Register Bypass)

GPIO_OUT (Data)

GPIO_OUT (Clock)

Board Trace/
External Device

InterfaceCore

The SDC constraint formulas for the foward clock delay are:

set_output_delay -clock <clock> -reference_pin <clkout interface name> \
 -max <max calculation> <ports>
set_output_delay -clock <clock> -reference_pin <clkout interface name> \
 -min <min calculation> <ports>

Reference Pin
With forward clocks, you use the -reference_pin option to include the clock latency
delay in the I/O constraint. The reference pin target is the pin name of the GPIO output
used for the clock.

Constraint Calculation
Calculate the min and max constraints using the following equations:

<max calculation> = <max board constraint> + GPIO_OUTmax
 - <GPIO_OUT for clock pad>max

<min calculation> = <min board constraint> + GPIO_OUTmin
 - <GPIO_OUT for clock pad>min

The following example shows how to calculate the delays and set the constraints.

www.efinixinc.com 42

Efinity Timing Closure User Guide

Example: Constraining Output Forward Clock
You want to constrain the o output with respect to clock clk_fwd with a max board constraint of 2 ns and a min
board constraint of 2 ns. The non-registered GPIO configuration data from the Interface Designer timing report file
is:

Non-registered HSIO GPIO Configuration:
==
+---------------+----------+-------------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------+-------------+----------+----------+
clk	clk	GPIO_CLK_IN	0.828	0.552
i	i	GPIO_IN	0.828	0.552
clk_fwd	clk_fwd	GPIO_OUT	2.205	1.470
o	o	GPIO_OUT	2.205	1.470
+---------------+----------+-------------+----------+----------+

For <GPIO_OUT for clock pad>, use the GPIO_OUT value for clk_fwd.
The equations are:
<max calculation> = 2 + 2.205 - 2.205 = 2
<min calculation> = 2 + 1.470 - 1.470 = 2
In this example, the RTL is using a divided down clock, divclk, which is only used to drive the clk_fwd signal
off chip. Therefore, the set_input_delay constraint is relative to that generated clock. See Example: FPGA
Forwarded Clock on page 65 for a more complete example.
The resulting constraints are:

set_output_delay -clock divclk -reference_pin clk_fwd -max 2 [get_ports {o}]
set_output_delay -clock divclk -reference_pin clk_fwd -min 2 [get_ports {o}]

www.efinixinc.com 43

Efinity Timing Closure User Guide

Timing Exceptions
Timing exceptions are constraints that override the default behavior between clocks. These
constraints are:

• set_false_path—Cuts the path between the source and destination.
• set_max_delay, set_min_delay—Overrides the required time needed from the

source to the destination for the specified paths.
• set_multicycle_path—Changes the clock edges used for the required timing

calculation from the source to the destination.

Tip: Refer to Example: Clock-to-Clock Path with Control on page 44 for an example use case.

When working with exceptions, if the same path has more than one exception, the
constraints are prioritized in the following order:

• set_clock_groups
• set_false_path
• set_max_delay and set_min_delay
• set_multicycle_path

Example: Clock-to-Clock Path with Control
The following figure shows a use case in which a specific clock-to-clock path in a design
can have special control logic. The path from FF1 to FF2 can have a different timing
exception compared to other clock-to-clock paths in the design. You define these
timing exceptions with set_false_path, set_max_delay, set_min_delay, or
set_multicycle_path SDC commands.

Figure 24: Timing Exception Example

PLL_clk

Interface Core

DatapathD Q

FF3

D Q

FF4
PLL

DatapathD Q

FF1

D Q

FF2

Control
Logic Enable

www.efinixinc.com 44

Efinity Timing Closure User Guide

Understanding False Paths
You use the set_false_path constraint to tell the timing analyzer not to analyze (that is,
to cut) a path. For example, a clock may only toggle some of the time, and you do not want
software to try to optimize timing for it.

You can cut paths between entire clock domains or individual points on the timing graph. If
you want to completely cut the path between two clock domains, you should instead use the
set_clock_groups constraint.

Understanding Min and Max Delays
The set_min_delay and set_max_delay constraints override the timing requirements
derived from your clock constraints. These settings tighten or relax the timing requirements
for the paths. For example, you could use these constraints to try to minimize skew within a
bus of signals.

Important: Using set_min_delay and set_max_delay is a very risky way to close timing because
you can mask real setup and hold time violations unintentionally. If you use set_max_delay or
set_min_delay to override the default clock-to-clock constraint calculated by the software, the software
honors your input and does not give any errors. However, the issue would likely appear on your board as a
setup or hold violation. This method is especially risky when used with beneficial skew.

Asynchronous Paths
The set_max_delay and set_min_delay SDC commands support setting a
combinational delay on an asynchronous path between ports. This path does not associate
with any clock. See Figure 25 on page 45. Clock latency and clock uncertainty are not
considered for asynchronous data paths.

Figure 25: Asynchronous Data Path between Ports in Core

Interface Core

Combinational
Datapath

Interface
Block

i

Interface

Interface
Block

o

The constraints that represent this example are:

set_max_delay -from i to o <max delay>
set_min_delay -from i -to o <min delay>

Synchronous Paths
If you specify a maximum delay or a minimum delay for synchronous ports, you must also
specify the clock domains for both -from and -to ports. In the following example, the

www.efinixinc.com 45

Efinity Timing Closure User Guide

input and output ports of the core are connected to flipflops in the interface and special
enable logic controls the clock relationship.

Figure 26: Synchronous Data Path between Ports in Core

Interface Core

i

Interface

o
DatapathD Q

FF1

D Q

FF2

enableenable

inclk_clkout_pad

inclk

outclk_clkout_pad

outclk

Enable
Logic

Clock
Networks

The constraints that represent this example are:

create_clock -period <inclk period> -name inclk [get_ports inclk]
create_clock -period <outclk period> -name outclk [get_ports outclk]
set_input_delay -max <input max delay> -clock inclk -reference_pin <inclk_clkout_pad>
set_input_delay -min <input min delay> -clock inclk -reference_pin <inclk_clkout_pad>
set_output_delay -max <output max delay> -clock outclk -reference_pin <outclk_clkout_pad>
set_output_delay -min <output min delay> -clock outclk -reference_pin <outclk_clkout_pad>
set_max_delay -from -i -to o <max delay>
set_min_delay -from i -to o <min delay>

Notice that the clock out pads are reference pins for the set_input_delay and
set_output_delay commands. The set_max_delay and set_min_delay
commands override the default clock-to-clock constraints calculated by the system. The clock
path latency and clock uncertainty are considered for synchronous ports.

Mixed Asynchronous and Synchronous Paths
The Efinity software issues a warning and ignores the set_max_delay and
set_min_delay SDC commands if one of the -to/-from ports is synchorous and the
other is synchronous. The following example only has a clock associated with the -from
port:

create_clock -name inclk -period 10.00 [get_ports inclk]
set_input_delay -clock inclk 0.1 [get_ports i]
set_max_delay 10 -from [get_ports i] to [get_ports o]

The software gives the following warning and ignores the set_max_delay command.

Ignore the set_max_delay (<sdc_file>:<line#>) constraint due to unconstrained
 port in -to

The following example only has a clock associated with the -to post:

create_clock -name outclk -period 10.00 [get_ports outclk]
set_output_delay -clock outclk 0.2 [get_ports o]
set_max_delay 10 -from [get_ports i] -to [get_ports o]

The software gives the following warning and ignores the set_max_delay command.

Ignore the set_max_delay ((<sdc_file>:<line#>) constraint due to unconstrained
 port in -from

www.efinixinc.com 46

Efinity Timing Closure User Guide

Understanding Multicycle Constraints
In a default single-cycle clock relationship, the two clocks are in phase and toggle together.
The default setup and hold represent a one clock cycle capture window and is the same as
setting a constraint of setup = 1 and hold = 0. The hold is checking one clock cycle before
the capture clock edge. When you use the set_multicycle_path constraint, you are
adjusting the capture window by shifting it, widening it, or both.

If you do not use a multicycle constraint, the software assumes you want the default, single-
cycle relationship.

Figure 27: Default Single-Cycle Relationship

Setup = 1, Hold = 0

Capture
Window

Launch Clock

Capture Clock

The constraints that represent the default are:

set_multicycle_path -setup -from a -to b 1
set_multicycle_path -hold -from a -to b 0

Shifted Capture Window
To shift the capture window you use a constraint for the clock setup. The hold is still one
clock cycle before the capture clock edge; the software assumes the hold is 0. Therefore, the
window is still one clock cycle.

Figure 28: Setup Constraint Shifts the Capture Window

Setup = 2, Hold = 0

Capture
Window

Launch Clock

Capture Clock

The constraints that represent this example are:

set_multicycle_path -setup -from a -to b 2
set_multicycle_path -hold -from a -to b 0

Shifted and Widened Window

www.efinixinc.com 47

Efinity Timing Closure User Guide

To shift and widen the capture window you constrain the hold time as well as the setup time.
A wider window allows multiple clock cycles to capture data. In the following example, the
capture window is two clock cycles.

Figure 29: Setup and Hold Constraints Shift and Widen the Capture Window

Setup = 2, hold = 1

Capture
Window

Launch Clock

Capture Clock

The constraints that represent this example are:

set_multicycle_path -setup -from a -to b 2
set_multicycle_path -hold -from a -to b 1

If n is equal to m, then the constraint would simply be:

set_multicycle_path -setup -from a -to b n
set_multicycle_path -hold -from a -to b n-1

To shift the window by n clock cycles with a window m cycles wide, use the equations:

• setup = n
• hold = m - 1

For example:

• n = 4, m = 3
• setup = 4
• hold = 3 - 1 = 2

These values give you a window that is shifted by 4 clock cycles and is 3 clock cycles wide.

set_multicycle_path -setup -from a -to b 4
set_multicycle_path -hold -from a -to b 2

Constraints between Fast and Slow Clocks
When the launch and capture clocks have the same frequency and phase, it does not matter
which clock waveform you use to calculate the setup and hold; the result will be the
same. However, when the clock frequencies are different, you need to specify which clock
waveform you want to use for the setup and hold calculation using the -start and -end
modifiers. You cannot use both -start and -end at the same time.

• -start uses the launch clock for the calculation.
• -end uses the capture clock for the calculation.

For setup, -start moves the launch edge backwards and -end moves the capture edge
forward. The default is -end.

For hold, the -start moves the launch edge forward and -end moves the capture edge
backward. The default is -start.

When the launch clock is faster than the capture clock, you need to ensure that the
set_multicycle_path constraint is applied to the launch clock. For the setup

www.efinixinc.com 48

Efinity Timing Closure User Guide

constraint, you need to include -start. For hold, -start is the default so you do not need
to include it.

Figure 30: Launch Clock Faster than Capture Clock

Setup = 2, hold = 1

Capture
Window

Launch Clock

Capture Clock

The constraints that represent this example are:

set_multicycle_path -setup -start -from a -to b 2
set_multicycle_path -hold -from a -to b 1

When the launch clock is slower than the capture clock, you need to ensure that the
set_multicycle_path constraint is applied to the capture clock. For the setup
constraint, you need -end, which is the default, so you do not need to include it. For hold,
include -end.

Figure 31: Launch Clock Slower than Capture Clock

Setup = 2, hold = 1

Capture
Window

Launch Clock

Capture Clock

The constraints that represent this example are:

set_multicycle_path -setup -from a -to b 2
set_multicycle_path -hold -end -from a -to b 1

SDC Warnings
While compiling, the Efinity® software displays messages and warnings in the Console.
These messages also are available in the <project name>.place.out file in the outflow
directory. You should review all SDC messages and adjust your constraints as needed.
Warning messages flag issues that can affect timing closure.

Common Mistakes
This topic describes some common mistakes that affect timing.

Latches and Combinational Loops
If you do not assign an output for all possible conditions in an if or case statement (that
is, incomplete assignment), the software infers a latch. Trion®, Topaz, and Titanium FPGAs

www.efinixinc.com 49

Efinity Timing Closure User Guide

do not support latches natively in hardware. The Efinity® synthesis tool infers look-up tables
(LUTs) to provide latch behaviour.

You also may create a latch accidentally when you meant to use a flipflop. From a timing
perspective, the latch causes a combinational loop and the timing graph cannot have a loop.
Therefore, if the software detects a combinational loop it cuts the loop at an arbitrary point.

To resolve this issue, make sure if and case statements are complete and use flipflops
instead of latches.

Unintended Virtual Clock
If you create a clock with the -name option without a target (e.g., get_ports), you create a
virtual clock. Make sure to use a target unless you really want a virtual clock.

create_clock -period 40 -name clk_in [get_ports clk_in] # defined clock
create_clock -period 40 -name virtual_clk # virtual clock

The Efinity software prints an info message when it finds a virtual clock definition so you can
double check your constraints. See Virtual Clocks on page 14 for more information.

Undefined Clocks
If you have an SDC file and do not define all clocks, the software cannot perform timing
analysis on any logic controlled by those clocks. This situation leads to unoptimized results.
Therefore, you should always define all clocks in your design.

Incorrect Constraint Order
The order of constraints in the SDC file is important. If you use the wrong order you get
unintended results. For example, always define a clock before using set_input_delay or
set_output_delay constraints for that clock. Refer to About SDC Files on page 8 for
more information about the expected constraint order.

www.efinixinc.com 50

Efinity Timing Closure User Guide

SDC Tips and Tricks
The following sections provide some tips for working with SDC files.

SDC Syntax
In SDC syntax:
• # starts a comment; remaining text on this line is ignored.
• \ at the end of a line indicates that a command wraps to the next line.

Wildcard Commands
An * indicates a wildcard. Use * by itself to match all signals, or use it to create a partial
wildcard. For example clk* would match clk and clk2.

Example: Constraining with Wildcards
You want to constrain all Oled signals with respect to clock clk. The resulting constraints are:

set_input_delay -max 10.214 -clock clk Oled*
set_input_delay -min 3.607 -clock clk Oled*

Regular Expressions
You can use regular expressions (in the Perl regular expression format) with the object
specifier. You must encapsulate the object specifiers in square brackets []; arguments must be
enclosed in curly braces {}.

To use Perl regular expressions, include the -regexp option in your command. Escape Perl
regular expression characters if the provided string argument contains those characters.

Example: Using Regular Expressions
Simple wildcard:

get_pins y_r[*]~FF|D

Using Perl regular expressions:

regexp get_pins -regexp { y_r\[.*\]~FF|D }

www.efinixinc.com 51

Efinity Timing Closure User Guide

Inverted Clocks
For an inverted external clock (one that uses the negative edge), include the clock_fall
option in your set_input_delay or set_output_delay command.

Example: Inverting a Clock

set_output_delay -clock <clock> -clock_fall -max -3.1 <ports>
set_output_delay -clock <clock> -clock_fall -min -2.85 <ports>

Square Brackets in Clock Names
The Efinity software v2023.2 and higher supports square brackets in clock names. You do not
need to use the -name option in your SDC constraint.

For versions of software prior to 2023.2, if your clock names have square brackets, you need
to use the -name option in your SDC constraint (this is a known limitation in the software).

For example, the following constaints for clk4096rx[1]_2, clk4096rx[2]_2, and
clk4096rx[3]_2 will NOT work correctly:

create_clock -period 10 clk4096rx[1]_2
create_clock -period 10 clk4096rx[2]_2
create_clock -period 10 clk4096rx[3]_2

Instead use the -name options:

create_clock -period 10 -name clk4096rx1_2 [get_ports {clk4096rx[1]_2}]
create_clock -period 10 -name clk4096rx2_2 [get_ports {clk4096rx[2]_2}]
create_clock -period 10 -name clk4096rx3_2 [get_ports {clk4096rx[3]_2}]

www.efinixinc.com 52

Efinity Timing Closure User Guide

SDC Constraints (Alphabetical)
The Efinity software supports the following SDC constraints. Options in square brackets []
are optional.

check_timing
create_clock
create_generated_clock
get_fanins
get_fanouts
report_sdc

set_clock_groups
set_bus_syntax
set_clock_latency
set_clock_uncertainty
set_false_path

set_input_delay
set_multicycle_path
set_max_delay
set_min_delay
set_output_delay

create_clock Constraint
create_clock -period <float> [-waveform {rising_edge falling_edge}] \
 [-name <clock name>] [<targets>] [-add]

This command defines a clock with the desired period (in ns) and waveform, and applies it to
the target nodes. If you do not specify a target, the software considers the clock to be a virtual
clock. You can use the virtual clock to constrain inputs and outputs to a clock external to the
design. The tool does not support multiple clock assignments to the same target.

Note: You can refer to netlist clocks using regular expressions.

• -period indicates the clock period in ns.
• -waveform indicates the rising and falling edges (duty cycle) of the clock as two time

values: the first rising edge and the next falling edge. If you omit the waveform option, the
command creates a clock with a rising edge at 0 and a falling edge at the half period, which
is equivalent to using -waveform {0 <period/2>}.

• -name indicates the clock name. If omitted, the software gives the clock the name of the
first target.

• -add defines multiple clocks for the same target. First use -name to specify the new
clock name. If you already used the same clock name or did not define it, the last SDC
command overwrites the existing clock.

If you assign a virtual clock using the create_clock command, you must reference it
elsewhere in a set_input_delay or set_output_delay constraint.

For examples, see
• Defining Clocks on page 11
• Example: Dynamic Multiplexers and create_clock -add on page 64

Tip: The timing analysis and place-and-route runtime is affected by the number of clocks you define in your SDC
file. Therefore, if possible, you should only define the most critical clocks to reduce the runtime.

www.efinixinc.com 53

Efinity Timing Closure User Guide

create_generated_clock Constraint
create_generated_clock -source <source clock object> [-divide_by <factor> | \
 -multiply_by <factor>] [-duty_cycle <percentage>] [-invert] \
 [-name <virtual clock name>] <target> [-master_clock <master clock>] \
 [-phase <degree>][-offset <offset value>] \
 [-edges <n1 n2 n3>] [-edge_shift <n1 n2 n3>] \
 [-add]

This constraint is useful for designs with internally generated clock signals because it provides
more accurate timing analysis. First, use the create_clock constraint on the source clock
that generates the internal clock signal. Then, use this constraint.

• -source is the generated clock’s source port, pin, or net.
• -divide_by is the division factor.
• -multiply_by is the multiplication factor.
• -duty_cycle is the duty cycle as a percentage of the clock period.
• -invert inverts the clock.
• -name is the name of the generated clock.
• <target> is the name of the net that implies that it is an internally generated clock signal.
• -master_clock specifies the master clock for the generated clock target.
• -phase is the phase shift in degrees based on the master clock (the default is 0).
• -offset is the absolute time shift in ns relative to the master clock.
• -edges is a list of three values that specify the first rising clock edge, the first falling

clock edge, and the second rising clock edge for the generate clock's edges as they relate to
the edges of the master clock waveform.

• -edge_shift is a list of three values that specify the edge shift in ns relative to the edges
defined in -edges.

• -add defines multiple clocks for the same target. First use -name to specify the new
clock name. If you already used the same clock name or did not define it, the last SDC
command overwrites the existing clock.

You can use -phase and -offset with the -divide_by, -multiply_by, and -
invert options.

You can use -edges and -edge_shift together; however, you cannot use these options
with -divide_by, -multiply_by, or -invert.

See Defining Clocks on page 11 for additional examples.

Tip: The timing analysis and place-and-route runtime is affected by the number of clocks you define in your SDC
file. Therefore, if possible, you should only define the most critical clocks to reduce the runtime.

Example: Using -phase and -offset Options

In this example, clkA has a 50% duty cycle and a clock period of 10 ns. The clkA waveform is {0 5}.
The divclk waveform is derived from clkA with a divide by 2, resulting in a clock period os 20 ns.
With a phase shift of 45 degree, (20 ns * 45) / 360 = 2.5 ns plus a 4 ns offset, resulting in a 6.5 ns shift.
The resulting divclk waveform is {6.5 16.5}.

create_clock -period 10 clkA
creage_generated_clock -source [get_ports clkA] -divide_by 2 \
 [get_pins divclk|q] - name divclk -phase 45 -offset 4

www.efinixinc.com 54

Efinity Timing Closure User Guide

Example: Using -edge and -edge_shift Options

In this example, -edge {1 2 3} refers to the first rising_edge, the first falling_edge, and the second
rising edge of the generated clock relative to the source clock. In this example, the generated clock's:
• First rising edge is the first edge of the source clock
• First falling edge is the second edge of the source clock
• Second rising edge is the third edge of the source clock

-edge_shift indicates the amount of shifted delay (positive or negative) in ns based on the -edge
values.

create_clock -name clkin -period 10 [get_ports clkin]
create_generated_clock -name clkshift -source [get_clocks clkin] \
 -edges {1 2 3} -edge_shift {2.5 0 2.5} [get_ports divclk|Q]

First rising edge: 0 ns + 2.5 ns = 2.5 ns
Second rising edge: 5 ns + 0 ns = 5 ns
Second rising edge: 10 ns + 2.5 ns = 12.5 ns

get_fanouts Constraint
get_fanouts [-no_logic] -through <names> <start point>

This command returns a string of fanout ports and registers. This command supports the
following options

• -no_logic if used, the software does not follow combinational timing arcs
• -through pins, cells or nets (see -through Option on page 62 for supported use

cases)
• <names> can be a net, cell, or pin
• <start point> is a port, pin, or net

By default, the get_fanouts command traces through combinational timing arcs.

The following example sets different multicycle path constraints for registers based on the
flipflops' enable signals. The get_fanout SDC command finds which registers are controlled
by the specific enable signals.

create_clock -period 10.00 -name clkin [get_ports clkin]
set_multicycle_path -setup -from [get_clocks clkin] -to [get_fanouts ce_y] 4
set_multicycle_path -hold -from [get_clocks clkin] -to [get_fanouts ce_y] 3
set_multicycle_path -setup -from [get_clocks clkin] -to [get_fanouts ce_x] 2
set_multicycle_path -hold -from [get_clocks clkin] -to [get_fanouts ce_x] 1

Note: This constraint returns a string, not an Efinity Tcl object. Therefore, you cannot use it in a nested
format with object specifiers such as get_nets or get_cells.

www.efinixinc.com 55

Efinity Timing Closure User Guide

get_fanins Constraint
get_fanins [-no_logic] -through <names> <start point>

This command returns a string of fanout ports and registers. This command supports the
following options:

• -no_logic if used, the software does not follow combinational timing arcs
• -through pins, cells or nets (see -through Option on page 62 for supported use

cases)
• <names> can be a net, cell, or pin
• <start point> is a port, pin, or net

By default, the get_fanins command traces through combinational timing arcs.

Given a set of register clock pins, find the clock source
set reg_pattern "o*\[*\]~FF"
set reg_cells [get_cells ${reg_pattern}]
foreach reg $reg_cells {
 # use get_pins to look for clock pin with pattern end with "|CLK"
 set pin_pattern "${reg}|CLK"
 set reg_pins [get_pins $pin_pattern]

 # Find the clock source from register clock pins
 foreach clk_pin $reg_pins {
 set fanins [get_fanins $clk_pin]
 puts "CLK_PIN: $clk_pin $fanins"
 }
}

Note: This constraint returns a string, not an Efinity Tcl object. Therefore, you cannot use it in a nested
format with object specifiers such as get_nets or get_cells.

www.efinixinc.com 56

Efinity Timing Closure User Guide

set_bus_syntax_mode Command
set_bus_syntax_mode <mode>

Tcl normally interprets square brackets as containing commands. For bus names, this
functionality means that you need to escape any square brackets that do not contain
commands, specifically bus names. set_bus_syntax_mode changes how the brackets
are processed, so you can use square brackets for bus indic(es) without having to use escape
characters.

The set_bus_syntax_mode command has one option, <mode>, which is natural
(you do not need to use escape characters) or disabled. The default is natural.

For example:
• In natural mode, you can use bus_name[0] (single-dimensional bus) or

bus_name[0][1] (multi-dimensional bus).
• In disabled mode, you need to use bus_name\[0\].

You can disable natural bus syntax processing at any point in your SDC script with the
command set_bus_syntax_mode disabled. The software parses all bus names after
the disabled command with normal Tcl syntax. Use set_bus_syntax_mode natural
to turn it on again. For example:

Using natural mode
set bus_index 10
set bus_name bus[$bus_index]

disable natural mode
set_bus_syntax_mode disabled
set bus_index 10
set bus_name bus\[$bus_index\]

Turn natural mode back on
set_bus_syntax_mode natural

You can also use the set_bus_syntax_mode command in the Tcl console (in the GUI
and at the command line). The setting does not persist across sessions. That is, if you close
and then re-open the Tcl Command Console (GUI or command-line), you need to use the
set_bus_syntax_mode again to ensure the correct setting.

The following example shows commands in the Tcl Command Console:

set x 10
puts var[$x]
puts var[*1]
set_bus_syntax_mode disabled
puts var\[$x\]
set_bus_syntax_mode natural
puts var[$x]

www.efinixinc.com 57

Efinity Timing Closure User Guide

set_clock_groups Constraint
set_clock_groups [-exclusive | -asynchronous] -group {<clock>} [-group {<clock>} -group ...]

• -exclusive indicates a mutually exclusive clock
• -group indicates a clock list
• -asynchronous specifies asynchronous clocks

This command instructs the timing analyzer to not analyze paths between one or more
specified groups of clock domains in either direction. You can use this command with netlist
or virtual clocks in any combination. The set_clock_groups constraint is equivalent to
a set_false_path constraint between the clocks in different groups. For example, the
command

set_clock_groups -exclusive -group {clk} -group {clk2 clk3}

is equivalent to

set_false_path -from [get_clocks{clk}] -to [get_clocks{clk2 clk3}]
set_false_path -from [get_clocks{clk2 clk3}] -to [get_clocks{clk}]

If you specify only one clock group, it cuts all paths to and from the specified clock domain(s)
to all others.

Note: If you do not specify either -exclusive or -asynchronous, the software defaults to
-exclusive.

See Setting Constraints for Unrelated Clocks on page 26 for examples.

set_clock_latency Constraint
set_clock_latency [-clock <names>] [-rise] [-fall] -source <latency>
 [-setup] [-hold] <latency> <target clock, port, or pin>

The source latency represents the time it takes (in ns) for a clock signal to get from the source
to the destination such as the delay from an oscillator to the FPGA's input pad. You can only
set the clock source latency for clock and clock source pins. You musty specify a source. If do
no specify -rise or -fall, the latency is applied to both clock edges.

• -clock Specifies a list of clocks associated with the latency assigned to the specified clock
source.

• -rise Defines the latency for the rising clock edge.
• -fall Defines the latency for the falling clock edge
• -source Defines the specified <latency> as the source latency. This argument is

required.
• -setup Define the clock edge delay for setup analysis
• -hold Define the clock edge delay for hold analysis

set_clock_latency -source -rise -0.5 [get_ports clk200]
set_clock_latency -source -fall -0.4 [get_ports clk200]
set_clock_latency -source -fall 0.1 {clk25~FF|Q} -clock {clk200 clk50}
set_clock_latency -source 0.7 [get_pins clk_50~FF|Q]

www.efinixinc.com 58

Efinity Timing Closure User Guide

set_clock_uncertainty Constraint
set_clock_uncertainty [-setup] [-hold] [-from <clock>] [-rise_from <clock>] \
 [-fall_from <clock>] [-to <clock>] [-rise_to <clock>] [-fall_to <clock>] \
 <uncertainty>

This constraint specifies the uncertainty for clocks or clock-to-clocks transfers. The tool
added the specified uncertainty value to the derived uncertainty. If you do not specify source
or destination clocks, the tool applies the uncertainty to all clocks in the design. If you do not
specify a setup or hold, the tool uses the uncertainty value for both setup and hold.

• -setup is the clock uncertainty for setup analysis
• -hold is the clock uncertainty for hold analysis
• -from source clock
• -rise_from source clock with rising edge
• -fall_from source clock with falling edge
• -to destination clock
• -rise_to destination clock with rising edge
• -fall_to destination clock with falling edge
• <uncertainty> is the clock uncertainty value

See How to Set Clock Uncertainty on page 29.

set_false_path Constraint
set_false_path [-setup] [-hold] -from <start point> -through <names> -to <end point>

This command cuts paths unidirectionally:
• between clock domains
• from start or end points

Points can be a register or an I/O. If you do not specify a setup or hold, the tool cuts both
setup and hold.

• -setup is the false path for setup analysis
• -hold is the false path for hold analysis
• -to the clock domain destination, I/O, or register end point
• -from the clock domain source, I/O, or register start point
• -through pins, cells or nets (see -through Option on page 62 for supported use

cases)
• <start point> is the the clock domain source, I/O, or register start point
• <end point> is the clock domain destination, I/O, or register end point
• <names> is a clock domain source/destination, I/O, or register start/end point

Note: Use the set_clock_groups constraint if both directions are false paths.

See Setting Constraints for Unrelated Clocks on page 26 for examples.

www.efinixinc.com 59

Efinity Timing Closure User Guide

set_input_delay and set_output_delay
Constraints

set_input_delay -clock <clock> [clock_fall] [-max] [-min] <delay> [-reference_pin] \
 <ports> [-add_delay]
set_output_delay -clock <clock> [clock_fall] [-max] [-min] <delay> [-reference_pin] \
 <ports> [-add_delay]

• Use set_input_delay to analyze timing paths from input I/Os.
• Use set_output_delay for timing paths to output I/Os. If you do not specify these

commands in your SDC, paths from and to I/Os will not be analyzed.

These commands constrain each I/O pad specified to be timing-equivalent to a register
clocked on the clock specified after -clock. This register can be either a clock signal in your
design or a virtual clock that does not exist in the design but that you use to specify the I/O
timing.

The command also adds <delay> through each pad, thereby tightening the time constraint
along paths traveling through the I/O pad. You can use this additional delay to model board-
level delays. -max is the setup constraint, -min is the hold constraint; if you specify neither,
the tool uses <delay> for both max and min.

• -clock is the clock name
• -clock_fall is the input delay relative to the clock’s falling edge
• -max is the maximum data arrival time
• -min is the minimum data arrival time
• <delay> is the delay value
• -reference_pin is an optional flag to include the clock delay to the pin when

calculating the input or output delay (Titanium only). When you generate constraints in
the Interface Designer, the software automatically includes this option for synchronous
interface signals (such as GPIO or LVDS).

• <ports> is the list of input or output ports
• -add_delay specifies any additional delay or clock condition for the port. If you do

not specify this option, then any latter set_input_delay or set_output_delay command
replaces the prior commands.

See Constraining I/O on page 30.

www.efinixinc.com 60

Efinity Timing Closure User Guide

set_max_delay and set_min_delay Constraints
set_max_delay -from <start point> -through <names> -to <end point> <delay>
set_min_delay -from <start point> -through <names> -to <end point> <delay>

These commands override the default timing constraint (calculated using the information
from create_clock) with a user-specified delay. This constraint may produce unexpected
results.

• -to the clock domain destination, I/O, or register end point
• -from the clock domain destination, I/O, or register end point
• -through pins, cells, or nets (see -through Option on page 62 for supported use

cases)
• <start point> is the clock domain source, I/O, or register start point
• <end point> is the clock domain destination, I/O, or register end point
• <delay> is the delay value in ns

Important: Using set_min_delay and set_max_delay is a very risky way to close timing because
you can mask real setup and hold time violations unintentionally. If you use set_max_delay or
set_min_delay to override the default clock-to-clock constraint calculated by the software, the software
honors your input and does not give any errors. However, the issue would likely appear on your board as a
setup or hold violation. This method is especially risky when used with beneficial skew.

set_multicycle_path Constraint
set_multicycle_path [-setup] [-start] [-hold] [-end] -from <start point>] \
 -through <names> -to <end point> <value>

This command creates a multicycle at the clock domain level. It adds (<value> - 1) times
the period of the destination clock to the default setup time constraint. If you do not specify
-setup or -hold, the tool applies the constraint to both.

• -setup applies the multicycle value to setup analysis
• -hold applies the multicycle value to hold analysis
• -start the multicycle value is relative to the source clock
• -end the multicycle value is relative to the destination clock (default)
• -to the clock domain destination, I/O, or register end point
• -from the clock domain source, I/O, or register start point
• -through pins, cellls, or nets (see -through Option on page 62 for supported use

cases)
• <value> is the multicycle value

www.efinixinc.com 61

Efinity Timing Closure User Guide

-through Option
The set_false_path, set_max_delay, set_min_delay, and
set_multicycle_path commands have a -through option; These use cases are
supported:

set_false_path -through [get_pins <pin name1>]
set_false_path -through [get_pins {add*|CI}]
set_false_path -through [get_pins <pin name1>] -through [get_pin <pin name2]]
set_false_path -through [get_cells {add*}]
set_false_path -through [get_cells <cell name1>] -through [get_cells <cell name2>]

However, the -through option cannot be used with multiple get_* commands (i.e.,
get_pins, get_cells, get_nets). Cases like the following are not supported:

set_false_path -through [[get_pins <pin name1>] [get_pin <pin name2]]

Object Specifiers
SDC constraints and Tcl commands support explicit object specifiers. Implicit naming is
implied if you do not use an object specifier with the constraint command. If you do not use
an object specifier the software executes the search on the objects in the following order: nets,
pins, cells.

The name you provide to the object specifier is based on the post-mapped design name; refer
to the generated post-mapped Verilog HDL netlist—autogenerated by the software at the end
of synthesis—for these names.

Note: The pipe (|) character is the separator between the instance name and the referenced port name.

In the Efinity software v2024.1 and higher, the object specifiers return Efinity Tcl objects or
collections (in earlier versions they returned strings). This functionality allows you to use the
results with Tcl list functions to navigate a netlist or generate custom timing reports. (See Tcl
List Functions (Alphabetical) on page 98.)

• all_clocks—Retrieves a collection Efinity Tcl objects representing all of the design's
clocks.

• all_inputs—Retrieves a collection of Efinity Tcl objects representing all of the design's
input ports.

• all_registers—Retrieves a collection of Efinity Tcl objects representing all of the
design's register instances.

• all_outputs—Retrieves a collection of Efinity Tcl objects representing all of the
design's output ports.

• get_cells [-regexp] [<filter>]—Retrieves Efinity Tcl objects that match the
specified cell name or pattern.(1)

• get_clocks [-regexp] [<filter>]—Retrieves Efinity Tcl objects that match
the specified clock name or pattern. The tool looks first for the clock name, if it exists.
Next, it checks the clock net name (includes virtual clocks).(1)

• get_nets [-regexp] [<filter>]—Retrieves a collection of Efinity Tcl objects
that matches the specified net name or pattern.(1)

(1) By default, you do not need to escape brackets. However, if you use the -regexp option, you must escape all brackets.

www.efinixinc.com 62

Efinity Timing Closure User Guide

• get_pins [-regexp] [<filter>]—Retrieve a collection of Efinity Tcl objects
that matches the specified pin name or pattern. The pin name format is <cell>|<port>.
Escape square brackets for cell names; you do not need to escape square brackets for ports
if the port has bit indexing.(1)

• get_ports [-regexp] [<filter>]—Retrieve a collection of Efinity Tcl objects
that matches the specified port name or pattern.(1)

Because these object specifiers return return Efinity Tcl objects, you can use them together in
a nested format.

Example 1: Get a group of cells based on a pattern and the find the pins for the selected cells:

set pin_list [get_pins [get_cells <pattern>]]

Example 2: Get a set of pins based on a pattern and then find the nets for those pins:

set net_list [get_nets [get_pins <pattern>]]

Example 3: Get a group of cells based on a pattern and then find the net connection based on the pins:

set nets_on_cell_pin [get_nets [get_pins [get_cells <pattern>]]]

Example 4: Get the nets for a group of ports:

set nets_on_ports [get_nets [get_ports out[*]]]

www.efinixinc.com 63

Efinity Timing Closure User Guide

SDC Examples
The following sections provide a variety of examples on how to use the SDC constraints.

Example: Dynamic Multiplexers and
create_clock -add
Titanium FPGAs have dynamic multiplexers that you can configure at run-time. You can
choose which clock source is active in the Interface Designer. Only one of the four input
clock sources is active at a time. You define multiple clocks at the core clock pad using the
create_clock -add option. The following figure shows the corresponding timing constraint
associated with this use case. It is good practice to define only the most critical clock, if
possible, because adding more clocks to the system increases the runtime for timing analysis
and place-and-route. Notice that the examples uses the set_clock_groups command
because only one of the four clocks is active at a given time; therefore, from a timing
perspective, those clocks are considered exclusive.

Figure 32: Dynamic Clock Multiplexer Example

clk0
clk0_shift

clk1
clk1_shift

DatapathD Q

FF1

D Q

FF1

clkin

Interface Core

Example: SDC Commands

create_clock -period 10 [get_ports clkin] -name clk0

The following constraints use -add to avoid overwriting the previous setting
create_clock -period 10 –waveform {2.5 7.25} [get_ports clkin] -name clk0_shift -add
create_clock -period 20 [get_ports clkin] -name clk1 -add
create_clock -period 20 –waveform {4 16} [get_ports clkin] -name clk1_shift -add

The four clocks are exclusive because they cannot operate at the same time
set_clock_groups -exclusive -group {clk0} -group {clk0_shift} -group {clk1} -group {clk1_shift}

To learn more about the dynamic multiplexers, refer to:
• Titanium data sheets, "Driving the Global Clock Network" section.
• Titanium Interfaces User Guide, "Configuring the Dynamic Clock Multiplexers"

section.

www.efinixinc.com 64

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF

Efinity Timing Closure User Guide

Example: FPGA Forwarded Clock
The following figure illustrates how to use a generated clock as a forward clock. The
generated clock, ADC_1_SCLK, is generated from the PLL output PLL_sCLK50 in the
interface. ADC_1_SCLK is a forward clock to clock an off-chip flipflop outside the FPGA.
The flipflop generates another signal, ADC_1_DOUT, that inputs back to the core.

Figure 33: Generated Clock Forward Clock Example

Enable
Logic

D Q
PLL_sCLK50

Interface Core

ADC_1_SCLK ADC_1_SCLK

divclk

DatapathD Q

FF1

D Q

FF2

PLL

D Q

FF
Off Chip

ADC_1_DOUT

On Board
(Outside FPGA)

Example: SDC Commands

create_clock -name {outclk_0_pll} -period 20 [get_ports PLL_sCLK50]
create_generated_clock -name ADC_1_SCLK -source [get_ports PLL_sCLK50] -divide_by 4 ADC_1_SCLK
set_input_delay -clock [get_clocks ADC_1_SCLK] -reference_pin [get_ports ADC_1_SCLK] \
 -max 24.000 [get_ports ADC_1_DOUT]
set_input_delay -clock [get_clocks ADC_1_SCLK] -reference_pin [get_ports ADC_1_SCLK] \
 -min 4.000 [get_ports ADC_1_DOUT]

www.efinixinc.com 65

Efinity Timing Closure User Guide

Example: Generated Clock with Clock
Multiplexer
The following figure illustrates multiple generated clocks defined at the same divclk Q
pin. Because multiple clocks are defined at the same clkin pin, the generated clock pin also
needs to have multiple clocks defined to address all cases. Notice that the examples uses the
set_clock_groups SDC command because only one of the two clocks are active at a
given time.

Figure 34: Dynamic Clock Multiplexer Example

clk0
clk0_shift

Enable
Logic

D Q
clkin

Interface Core

Core
Logic

Interface
Logic

clkout gen_clk

divclk

Example: SDC Commands

Create 2 clocks and use the -add option to avoid overwriting the second one
create_clock -period 10 -name clk0 [get_ports clkin]
create_clock -period 10 -waveform {2.5 7.25} -name clk0_shift [get_ports clkin] -add

There are 2 master clocks, so this example needs 2 generated clocks as well
create_generated_clock -source [get_ports clkin] -master_clock [get_clocks clk0] \
 -divide_by 2 [get_pins divclk|Q] -name gen_clk0
create_generated_clock -source [get_ports clkin] -master_clock [get_clocks clk0_shift] \
 -divide_by 2 [get_pins divclk|Q] -name gen_clk0_shift -add

clk0 and it's generated counterpart operate independently from the clk0_shift and
it's counterpart
set_clock_groups -exclusive -group {clk0 gen_clk0} -group {clk0_shift gen_clk0_shift}

www.efinixinc.com 66

Efinity Timing Closure User Guide

Example: Soft SERDES
This example is for a soft SERDES. It has LVDS bypass mode sampling with 4 different clock
phases (0, 90, 180 and 270 degrees). In this use case, you use the -add_delay option to set
constraints for both edges of both clocks. If you did not use the -add_delay option then
the second constraint would overwrite the first one.

Figure 35: Dynamic Clock Multiplexer Example

0

90

FF

FF

FF

FF

Example: SDC Commands

these constraints are for 0 degrees
set_input_delay -clock i_sclk_000 -max 0.924 [get_ports {i_lvds_rxd}]
set_input_delay -clock i_sclk_000 -min 0.616 [get_ports {i_lvds_rxd}]

The following constraints use -add_delay to avoid overwriting the previous setting

these constraints are for 90 degrees,
set_input_delay -clock i_sclk_090 -max 0.924 [get_ports {i_lvds_rxd}] -add_delay
set_input_delay -clock i_sclk_090 -min 0.616 [get_ports {i_lvds_rxd}] -add_delay

these constraints are for 180 degrees
set_input_delay -clock i_sclk_000 -clock_fall -max 0.924 [get_ports {i_lvds_rxd}] -add_delay
set_input_delay -clock i_sclk_000 -clock_fall -min 0.616 [get_ports {i_lvds_rxd}] -add_delay

these constraints are for 270 degrees
set_input_delay -clock i_sclk_090 -clock_fall -max 0.924 [get_ports {i_lvds_rxd}] -add_delay
set_input_delay -clock i_sclk_090 -clock_fall -min 0.616 [get_ports {i_lvds_rxd}] -add_delay

www.efinixinc.com 67

Efinity Timing Closure User Guide

Example: Disable Impossible Paths
In this example, special control logic exists for LUT2 and FF2. Therfore, the path from FF1
to FF2 though LUT2 can be ignored by timing analysis.

Figure 36: Set a False Path Example

PLL_clk

Interface Core

D Q

FF3
PLL

D Q

FF1[3:0]

D Q

FF2

Control
Logic

Enable

LUT2

LUT3

LUT1

Enable

Example: SDC Commands

set_false_path -from [get_pins {FF1|CLK}] -through [get_cells LUT2] -to [get_pins {FF2|D]

In another example, a group of flipflops, FF1[3:0], use a naming pattern and the same
connection as the FF1 flipflop in the previous example. In this case you can use a wildcard
with the set_false_path command to constrain the whole group.

Figure 37: Set a False Path for a Bus Example

PLL_clk

Interface Core

D Q

FF3
PLL

FF1[3:0]

D Q

FF2

Control
Logic

Enable

LUT2

LUT3

LUT1

Enable

D Q
Bus [3:0]

Example: SDC Commands

set_false_path -from [get_pins {FF1[*]|CLK}] -through [get_cells LUT2] -to [get_pins {FF2|D]

www.efinixinc.com 68

Efinity Timing Closure User Guide

Interpreting Timing Results
When you compile your design, the Efinity® software generates the static timing analysis
report. The first two sections of the report are about the clocks:

• Clock Frequency Summary
• Clock Relationship Summary

Note: The Efinity timing engine uses clock periods in ps; the units for timing in the report files are shown
in ns. Therefore, all numbers are shown with 3 decimal places.

Clock Frequency Summary
The Clock Frequency Summary consists of the following data.
• The User target constrained clocks table lists the user constrained clocks; that is, the

clocks you defined with the create_clock and create_generated_clock
constraints in your SDC file. The clock target is the specific pin or port in the core timing
netlist.

• The Maximum possible analyzed clocks frequency table shows the maximum clock
frequency that each clock can achieve using the critical paths.

• The geomean is the geometric mean of the clock periods.

Note: This Clock Frequency Summary only shows the setup result. However, later, the report shows the
most critical hold paths (you need to scroll down to after the detailed most critical setup path section).

Example: Clock Frequency Summary

---------- 1. Clock Frequency Summary (begin) ----------

User target constrained clocks
 Clock Name Period (ns) Frequency (MHz) Waveform Targets
 Oclk 99999.992 0.010 {0.000 49999.996} {Oclk}
 Fclk 6.400 156.250 {0.000 3.200} {Fclk}
 Sclk 12.800 78.125 {0.000 6.400} {Sclk}

Maximum possible analyzed clocks frequency
 Clock Name Period (ns) Frequency (MHz) Edge
 Oclk 0.584 1712.329* (R-R)
 Fclk 0.749 1335.113* (R-R)
 Sclk 1.038 963.391 (R-R)

* CAUTION: Frequency is limited to 1000.000 MHz by global clock network

Geomean max period: 0.769

---------- Clock Frequency Summary (end) ---------------

www.efinixinc.com 69

Efinity Timing Closure User Guide

Clock Relationship Summary
The Clock Relationship Summary section lists the related clocks, their constraints, and the
slack. The report shows measurements using the active clock edge. The number in the Slack
(ns) column shows you how much margin you have for each clock relationship. The Edge
column shows the active edge for the launch and capture clocks. R is rising edge triggered and
F is falling edge triggered.

Important: If any of the clock relationships have negative slack, your design has not closed timing.

A timing path with negative slack indicates that there is insufficient time for the signal to
arrive, resulting in design instability. When trying to close timing, do not adjust the clock
period. Instead, adjust the constraints in your SDC file or modify your design.

Tip: You can quickly see if your design has closed timing in the Result pane in the Timing section. If the Least
Slack number is negative, the design did not close timing.

Example: Did My Design Close Timing?
This summary shows that the design has not closed timing because the slack for the Fclk to Fclk relationship is
negative (-0.875).

---------- 2. Clock Relationship Summary (begin) ----------

Setup (Max) Clock Relationship
 Launch Clock Capture Clock Constraint (ns) Slack (ns) Edge
 Oclk Oclk 99999.992 99999.408 (R-R)
 Fclk Fclk 6.400 -0.875 (R-R)
 Sclk Sclk 12.800 11.762 (R-R)

Hold (Min) Clock Relationship
 Launch Clock Capture Clock Constraint (ns) Slack (ns) Edge
 Oclk Oclk 0.000 0.101 (R-R)
 Fclk Fclk 0.000 0.070 (R-R)
 Sclk Sclk 0.000 0.109 (R-R)

NOTE: Values are in nanoseconds.

---------- Clock Relationship Summary (end) ---------------

Critical Paths
The final two report sections show the path detail reports for the maximum (setup)
and minimum (hold) critical paths. The report only shows the most critical path for
each relationship. To see additional paths, use the report_timing Tcl command (see
report_timing Command on page 97). A typical path report consists of the following
sections:

• Header—Specifies the launch and capture clock domains.
• Path summary—Lists the start and end points of a given path. It also shows the launch and

capture clock information as well as the associatged clock edges, the slack, and a summary
of the arrival and required time calculations.

• Launch clock path—The path the clock signals takes.
• Data path—The path the data signal takes
• Capture clock path—The path the capture clock takes.

The following example shows a snippet of the report for Oclk.

www.efinixinc.com 70

Efinity Timing Closure User Guide

Example: Max Critical Path, Detail Report

##
Path Detail Report (Oclk vs Oclk)
##

++++ Path 1 ++

Path Begin : Oled[2]~FF|CLK
Path End : Oled[3]~FF|D
Launch Clock : Oclk (RISE)
Capture Clock : Oclk (RISE)
Slack : 99999.408 (required time - arrival time)
Delay : 0.358

Logic Level : 1
Non-global nets on path : 1
Global nets on path : 0

Launch Clock Path Delay : 2.342
+ Clock To Q + Data Path Delay : 0.474

End-of-path arrival time : 2.816

Constraint : 99999.992
+ Capture Clock Path Delay : 2.342
- Clock Uncertainty : 0.110

End-of-path required time : 100002.224

Launch Clock Path
 name model name delay (ns) cumulative delay (ns) pins on net location
==
Oclk inpad 0.000 0.000 0 (334,318)
Oclk inpad 0.110 0.110 6 (334,318)
Oclk net 2.232 2.342 6 (334,318)
 Routing elements:
 Manhattan distance of X:214, Y:314
Oled[2]~FF|CLK ff 0.000 2.342 6 (120,4)

Data Path
 name model name delay (ns) cumulative delay (ns) pins on net location
===
Oled[2]~FF|Q ff 0.113 0.113 4 (120,4)
Oled[2] net 0.304 0.417 4 (120,4)
 Routing elements:
 Manhattan distance of X:0, Y:1
LUT__77|in[2] lut 0.054 0.471 4 (120,5)
LUT__77|out lut 0.000 0.471 2 (120,5)
Oled[3]~FF|D ff 0.003 0.474 2 (120,5)

Capture Clock Path
 name model name delay (ns) cumulative delay (ns) pins on net location
==
Oclk inpad 0.000 0.000 0 (334,318)
Oclk inpad 0.110 0.110 6 (334,318)
Oclk net 2.232 2.342 6 (334,318)
 Routing elements:
 Manhattan distance of X:214, Y:313
Oled[3]~FF|CLK ff 0.000 2.342 6 (120,5)

www.efinixinc.com 71

Efinity Timing Closure User Guide

Constraining Logic and Routing Manually
(Beta)

The Efinity software v2022.1 and higher lets you assign logic to a specific location in the
FPGA's core. With this method, you can place your design's logic manually instead of letting
the software place it for you.

In v2022.2 and higher, you can also manually constrain routing to specific paths. When you
constrain routing you also need to constraint the logic to which the nets connect.

Placing logic and/or routing manually is an advanced technique, so make sure that you fully
understand the rules and restrictions as described in the following sections.

Important: These features are beta.

Tiles
The FPGA is made up of a grid of tiles. Most tiles are for logic/routing and others are for
functions like RAM, multipliers, or DSP. The following table shows the types of tiles by
family and their use.

Table 1: FPGA Tile Types

Tile Trion Titanium Used for

EFT Logic and routing with register

EFL Logic and routing without register

EFM Logic, routing, register, and shift register

RAM RAM blocks

MULT Multiplier blocks

DSP48 DSP blocks

When you view your design's placement in the Floorplan Editor, you can click on a tile to
view its type and other details. In the following figure, the selected blue tile is an EFT and is
used for logic.

Tip: The Floorplan Editor provides a graphical way to find logic you want to constrain.

www.efinixinc.com 72

Efinity Timing Closure User Guide

Figure 38: Tiles in the Floorplan Editor

Notice that some tiles in the floorplan have a number. This number indicates how many
routing lines are used in that tile. A tile used for logic (blue) can also be used as routing
(indicated by the number). Orange means a tile is only used as routing.

www.efinixinc.com 73

Efinity Timing Closure User Guide

Working with Primitives
During synthesis, the software maps your design's logic—LUTs, RAM, flipflops, etc.—to
primitives. These primitives occupy specific locations (tiles or groups of tiles). Each tile has
one or more sub-blocks in which to place a primitive. Placing multiple primitives into the
same tile is called packing.

The following tables show the types of primitives, the tiles where you can place them, and
the sub-blocks they can occupy.

Table 2: Mapping Trion Primitives to Tiles and Sub-Blocks

Sub-BlockTile

0 1 2 3

EFT EFX_LUT4
EFX_ADD

– EFX_FF –

EFL EFX_LUT4
EFX_ADD

– – –

RAM EFX_RAM_5K
EFX_DPRAM_5K

Reserved – –

MULT EFX_MULT – – –

Table 3: Mapping Titanium Primitives to Tiles and Sub-Blocks

Sub-BlockTile

0 1 2 3

EFT EFX_LUT4
EFX_ADD

EFX_COMB4

Reserved EFX_FF –

EFM EFX_LUT4
EFX_ADD

EFX_COMB4
EFX_SRL8

Reserved EFX_FF –

RAM EFX_RAM10
EFX_DPRAM10

Reserved – –

DSP48 EFX_DSP48
EFX_DSP24
EFX_DSP12

EFX_DSP24
EFX_DSP12

EFX_DSP12 EFX_DSP12

www.efinixinc.com 74

Efinity Timing Closure User Guide

The following table shows another view of the same mappings.

Table 4: Mapping Primitives to Tiles

Compatible TilesPrimitive

Trion Titanium

Allowed Sub-
Block Indices

EFX_LUT4 EFT, EFL EFT, EFM 0

EFX_ADD EFT, EFL EFT, EFM 0

EFX_COMB4 EFT, EFL EFT, EFM 0

EFX_FF EFT EFT, EFM 2

EFX_SRL8 – EFM 0

EFX_RAM_5K RAM – 0

EFX_DPRAM_5K RAM – 0

EFX_RAM10 – RAM 0

EFX_DPRAM10 – RAM 0

EFX_MULT MULT 0

EFX_DSP48 – DSP48 0

EFX_DSP24 – DSP48 0, 1

EFX_DSP12 – DSP48 0, 1, 2, 3

Finding Primitive Cell Names
When the software maps your design to primitives, it assigns a cell name to each instance. To
view the primitive cell names:
• In the Dashboard's Netlist tab, click the Load Synthesized Netlist icon and expand Leaf

Cells.
• Open the <project>.map.v file (in the Dashboard, go to Result pane > Synthesis).

This file is in the project's outflow directory.

Enabling Manual Assignments
Because manual assignments are beta in the Efinity software v2022.1, v2022.2, and 2023.1,
you must enable them with an .ini file.

1. Create a text file named efx_pnr_settings.ini and save it in your project directory.
2. Add the following line to the .ini file:

loc_assignment = <filename>.placeloc

When you synthesize your design, the software uses the assignments in the
<filename>.placeloc file.

www.efinixinc.com 75

Efinity Timing Closure User Guide

Assignment Rules
Follow these rules when creating assignments.

General Rules
• You can only constrain logic in the core (use the Interface Designer for I/O constraints).
• You can only constrain primitive cells. If two primitives cells can be packed together,

you can assign them to the same location. The sub-block index must be unique for each
primitive cell in a location. For example, if you assign four EFX_DSP12 primitives to the
same tile, they must each have a different sub-block.

• The software does not pack manually assigned cells with unassigned cells. For example, if
you place a EFX_DSP12 into a DSP tile at sub-block 0 and do not assign any other sub-
blocks, the software will not pack any other DSP logic into that tile, leaving sub-blocks
1, 2, and 3 empty. Similarly, only assigning flipflops (which use sub-block 2) uses more
overall resources because sub-block 0 is left empty.

Important: Because assigned and unassigned cells are not packed together, make
sure to "fill up" the tile with logic. Otherwise you can end up using more tiles than
needed.

Flipflops
• An EFX_FF can be packed alone or with its driver cell (EFX_LUT4, EFX_SRL8,

EFX_ADD, or EFX_COMB4).
• An EFX_FF can only be packed with an EFX_SRL8 if they share CE and CLK inputs

and if the EFX_FF does not have an inverted input.
• An EFX_FF cannot be packed if it has an inverted input connected to a multi-fanout net.

RAM, Multiplier, and DSP
• EFX_MULT, EFX_DSP48, and all RAM primitives cannot share a tile with any other

cells.
• Two EFX_DSP24 primitives or up to four EFX_DSP12 primitives not connected by

CASCIN/CASCOUT signals can be packed together and share a location.

Chains
EFX_DSP48, EFX_DSP24, EFX_DSP12, EFX_ADD, and EFX_SRL8 can form chains. If
one cell in the chain is assigned a location, every other cell in the chain must also be assigned
a location, in the correct order.

Creating a Location Assignment File
The location assignment file is a text file with the extension .placeloc. Each assignment is on
a single line with tabs or spaces between the data:

<block name> <x> <y> <subblk>

• <block name> is the primitive cell name.
• <x> is the horizontal location.
• <y> is the vertical location.
• <subblk> is the sub-block location.

You must include all data for each assignment.

www.efinixinc.com 76

Efinity Timing Closure User Guide

Any text following a # character is ignored (treated as a comment).

Tip: Use the Floorplan Editor to help you find the x, y coordinates for a tile. When you click a tile the coordinates
are shown in ().

x,y coordinates for the selected tile

To make it easier for you to create assignments, the Efinity software can dump all placement
data into a file when placement finishes. You can copy and paste the primitive cells you want
to constrain into your .placeloc file and then modify the x, y coordinates.

To dump the placement data, add the following line to your efx_pnr_settings.ini file and re-
run the placer.

dump_placeloc = on

Important: Do NOT simply copy and paste the entire dump file into your .placeloc file or the software
may not be able to perform placement efficiently. Only copy the primitives you want to constrain.

Example: LUT and Flipflop
The example packs an EFX_FF with its driver, LUT_A, an EFX_LUT4.

#block name x y subblk
#---------- -- -- ------
LUT_A 3 3 0
FF_B 3 3 2 # LUT_A drives FF_B

Example: SRL8 Chain
This example assigns locations to every cell in an SRL8 chain.

#block name x y subblk
#---------- -- -- ------
first_srl8 5 4 0
second_srl8 5 5 0
third_srl8 5 6 0
fourth_srl8 5 7 0

Example: Parallel Cascaded DSP Block
This example assigns locations to every EFX_DSP24 across two chains. There can be two EFX_DSP24 cells per DSP
tile.

#block name x y subblk
#---------- -- -- ------
chain0_dsp24_0 17 2 0
chain1_dsp24_0 17 2 1
chain0_dsp24_1 17 22 0
chain1_dsp24_1 17 22 1

www.efinixinc.com 77

Efinity Timing Closure User Guide

Constraining Routing Manually (Titanium Only,
Beta)
With the Efinity software v2022.2 and higher the router lets you manually constrain routing
traces for Titanium FPGAs. This feature is beta.

Important: The feature is only supported for Titanium FPGAs.

After you compile your design once, you can lock down (or constrain) specific nets to specific
paths. For any future compilations, the software routes these constrained nets in the same
way. To constrain nets, you also need to constrain the logic to which the nets connect. See
Constraining Logic and Routing Manually (Beta) on page 72 for information on making
logic constraints.

You can combine constrained logic and constrained routing to preserve the placement and
routing of a small part of your design, letting the rest change as you compile. This feature can
be useful when logic (such as a sampling delay line) with very specific routing requirements
must be locked down early in the design cycle. Additionally, this feature lets you preserve
place and route for connections that have difficult timing constraints.

Routing Constraint Flow
To use routing constraints, follow this procedure:

1. Determine which nets and cells should be constrained.
2. Run the Efinity software, adjusting your design for each iteration, until the nets meet

timing.
3. When the nets meet timing, use an .ini file to tell the software to save the placement and

routing data to templates. (See Generate .rcf Template on page 79)
4. Do not make any changes to the design and re-compile.

The software creates these template files:
• Placement template <project>.out.placeloc
• Routing template <project>.rcf.template

The software also creates a routing traces file <project>.troutingtraces.
5. Move these three files out of the outflow directory, for example, move them up one level

to the main project directory.
6. Copy and paste the cells and nets you want to constrain from the two template files

to your own files. You do not want to copy everything! (See Creating a Routing
Constraint File on page 79 and Creating a Location Assignment File on page 76)

7. Add your new constraint files to an .ini file. (See Enabling Routing Constraints on page
78)

8. Continue to change your design as needed. When you compile, the software will place
and route the constrained logic and nets as defined in the constraint files.

Enabling Routing Constraints
Because routing constraints are beta in the Efinity software v2022.2, you must enable them
with an .ini file. Because routing constraints are used with logic constraints, you enable them
both.

1. Create a text file named efx_pnr_settings.ini and save it in your project directory.

www.efinixinc.com 78

Efinity Timing Closure User Guide

2. Add the following lines to the .ini file:

loc_assignment = <path>/<filename>.placeloc
rcf_file = <path>/<filename>.rcf

When you synthesize your design, the software uses the assignments in the specified files.

Generate .rcf Template
You tell the software to generate templates in the efx_pnr_settings.ini file. Because routing
constraints are used with logic constraints, you enable templates for both.

1. If you do not already have one, create a text file named efx_pnr_settings.ini and save it
in your project directory.

2. Add the following lines to the .ini file:

dump_placeloc = on
generate_rcf_template = on

When you compile your design, the software generates the <project>.out.placeloc and
<project>.rcf.template files.

Important: Do not generate these templates until you are ready to lock down the routing.

Creating a Routing Constraint File
The routing constraint file is a text file with the extension .rcf. The file format is line-
oriented; each command is on a single line with spaces between the data.

To make it easier for you to create assignments, the Efinity software can dump all routing
data into a template file when routing finishes. (See Generate .rcf Template on page 79)
You copy and paste the nets you want to constrain into your own .rcf.

Important: Do NOT simply copy and paste the entire template file into your .rcf or the software may not
be able to perform routing efficiently. Only copy the nets you want to constrain.

The .rcf has these components:

• routeTraceFile <path>/<filename>.troutingtraces is the file that has the saved
net traces you want to use.

• restoreNetFromTraceFile <net> is the net you want to constrain
• Lines beginning with # are comments

The constrained router flow will use the following trace file to restore constrained nets
routeTraceFile <path>/<project>/<filename>.troutingtraces

Here is a list of available nets that can be restored from the trace file
You can use (#) to comment any net that you would like to exclude
restoreNetFromTraceFile rst_i
restoreNetFromTraceFile net_1
restoreNetFromTraceFile net_2
restoreNetFromTraceFile net_3 # this net is ignored

www.efinixinc.com 79

Efinity Timing Closure User Guide

Best Practices for Constraining Routing
Follow these guidelines when constraining routing to ensure consistency for register and
signal names when you re-compile.

• Use a consistent naming convention, such as netname_LOCKED, for all constrained nets.
This methodology lets you identify them in the template files more easily.

• Limit routing constraints (if possible) to named single-fanout signals between named
registers.

• Use the syn_keep synthesis attribute—for all locked registers and the signals between
locked registers—to tell synthesis to keep the signals during optimization. If you do not
use syn_keep, the software might optimize away the net you want to constrain.

(* syn_keep = "true" *) wire netname_LOCKED;

• In your .rcf, do not point to the .troutingtraces file in the project outflow directory.
This file is overwritten each time you compile. Instead, move the .troutingtraces file into
another directory and point to it in that location.

• Use routing constraints sparingly; excessive constraints make it hard to close timing.
• Implement constrained routing as late in the design cycle as possible (when you have

fewer changes to your design).

Note: Although you can use constrained routing on combinational paths, primitive cell names (for
example LUT names) on these paths may change if you modify unrelated sections of the design and re-run
synthesis. As a result, you may need to update your <project>.out.placeloc file to reflect the new primitive
cell names.

www.efinixinc.com 80

Efinity Timing Closure User Guide

Example Flow
Assume that your design has the following register path: rlock0 to rlock1 to rlock2,
and that this path meets timing. We want to constrain this path while we modify another
part of the design (that is independent from this constrained path).

1. To prevent synthesis from optimizing away the registers and wires, use syn_keep in the
Verilog HDL design:

(* syn_keep = "true" *) reg rlock0;
(* syn_keep = "true" *) reg rlock1;
(* syn_keep = "true" *) reg rlock2;
(* syn_keep = "true" *) wire rlock0_net;
(* syn_keep = "true" *) wire rlock1_net;
(* syn_keep = "true" *) wire rlock2_net;

2. Run place and route with the options dump_placeloc = on and
generate_rcf_template = on. You add these options to a efx_pnr_settings.ini
file, one option per line, and save the file in the project folder.

3. Examine the generated file <project>.out.placeloc to identify the placed location of the
locked registers:

rlock0~FF 16 49 2
rlock1~FF 16 50 2
rlock2~FF 16 44 2

4. Examine the generated file <project>.rcf.template to find the nets between the registers
in the .rcf.template file:

restoreNetFromTraceFile rlock0_net
restoreNetFromTraceFile rlock1_net

5. Remove all cells except the locked ones from the <project>.out.placeloc file and save
it as your own file called my.placeloc. Similarly, remove all nets except the constrained
ones from <project>.rcf.template and save it as your own file called my.rcf file.

6. Add the following settings to your efx_pnr_setting.ini file:

loc_assignment = my.placeloc
rcf_file = my.rcf

You can now modify any other part of the design and re-run the synthesis and place and
route. The software constrains the paths you specified.

www.efinixinc.com 81

Efinity Timing Closure User Guide

Methods for Closing Timing
You have created your RTL, you have designed your board, now you need to close timing,
and you are stuck. Knowing what to do for that last bit of tweaking to achieve your desired
fMAX can be difficult. When creating the Efinity® software, Efinix® software engineers have
chosen default values for the tool flow to achieve the best trade-off between performance and
runtime for a large number of benchmark designs. Your design, however, is unique, and may
benefit from non-default settings to get the performance you need.

In general, it is best to start by choosing good synthesis options, then placement options, then
routing options. First choose high-level options that work well, then run a seed sweep using
those options to take advantage of noise and use the best result. You set synthesis and place-
and-route options for your project in the Project Editor.

Tip: When trying to close timing, remember that you can also adjust the constraints in your SDC file or modify
your design.

Synthesis Options
Changes in synthesis results may or may not help you achieve your final fMAX target. Usually
it is best to use these options with different place and route options as part of your design
exploration.

Tip: You set synthesis options in the Project Editor. Choose File > Edit Project and then click the Synthesis tab.

Table 5: Synthesis Options (All Families)

Name Choices Description

--allow-const-ram-index 0, 1 Infer RAM if an array is accessed through constant indices. This
option can be useful if memory is written such that a constant
index refers to each segment (e.g., in a byte-enable read/write).
See example.
0: Default. Do not infer.
1: Infer.

--blackbox-error 0, 1 Generate an error when synthesis encounters an undefined
instance or entity.
0: No error.
1: Default. Generate error.

--blast_const_operand_adders 0, 1 If one of the operands to an arithmetic operation is constant,
implement it as logic instead of adders.
0: Disable.
1: Default. Enable.

--bram_output_regs_packing 0, 1 Enables the software to pack registers into the output of BRAM.
0: Disable.
1: Default. Enable

www.efinixinc.com 82

Efinity Timing Closure User Guide

Name Choices Description

--create-onehot-fsms 0, 1 Create onehot encoded state machine when appropriate.
Synthesis can only create these state machines if the state
variables do not have explicit encoding in the HDL. If a state
machine is coded using onehot encoding, a new section
in the map report (<project>.map.rpt) shows the encoding
information. See example.
0: Default. Disabled.
1: Enabled.

--fanout-limit 0 to n If something is high fanout, the tool duplicates the fanout
source.
0: Default. Disable.
n: Indicate the fanout limit at which to begin duplication.

--hdl-compile-unit 0, 1 When considering multiple source files, resolve `define or
parameters independently or across all files. This option only
works with SystemVerilog files.
0: Across all files.
1: Default. Independently.

--infer-clk-enable 0, 1, 2, 3, 4 Infer flip-flop clock enables from control logic. See examples.
0: disable.
1, 2, 3, 4: Effort levels.

--infer-sync-set-reset 0, 1 Infer synchronous set/reset signals.
0: Disable.
1: Default. Enable.

--max_ram -1, 0, n -1: Default. There is no limit to the number of RAM blocks to
infer.
0: Disable.
n: Any integer.

--max_mult -1, 0, n -1: Default. There is no limit to the number of multipliers to
infer.
0: Disable.
n: Any integer.

--max_threads -1, n Choose how many threads that the synthesis tool can launch.
-1: Default. The tool uses the maximum number of available
processors.
n: Any integer.

--min-sr-fanout 0, n Infer the flipflop's synchronous set/reset signal from control
logic if the set/reset signal fanout is greater than n. This option
is useful if the design has a lot of small fanout set/reset signals
that may create routing congestion.
0: Default. Disable.
n: Signal fanout.

--min-ce-fanout 0, n Infer the flipflops clock enable from c ontrol logic if the clock
enable signal fanout is grester than n.
0: Default. Disable.
n: Signal fanout.

--mode speed,
area, area2

speed: Default. Optimizes for fastest fMAX.
area: Optimizes for smallest area.
area2: Uses techniques that help to optimize large multiplexer
trees.

www.efinixinc.com 83

Efinity Timing Closure User Guide

Name Choices Description

--mult-auto-pipeline Integer Performs automatic pipelining for wide-multipliers to increase
performance at the cost of extra latency. Inserts pipeline
registers at the output of partial multiplies and partial sums. On
Titanium FPGAs these pipeline registers can be packed into
DSP48 primitives as W registers. The software inserts additional
registers at the multiplier input and output to balance latency
issues caused by the register insertion.
The value of this option determines the number of cycles of
latency added as a result of inserting pipeline registers. When
the value is set to 1, 1 set of pipeline registers will be inserted
into the wide-multiplier DSP chain. The pipeline register will be
inserted after the partial adder such that the longest path within
the wide-multiply DSP chain will be minimized.
Setting this option to a higher value reduces the longest path of
the wide-multiplier at the cost of higher latency.
Note: the software may not always pack these registers into
DSP48 primitives. The value of this option must be smaller
than the number of DSP48 primitives in your DSP chain. For
example, a 32x32 multiplier is mapped to a chain of 4 DSP48
primitives. In this case, the value of --mult-auto-pipeline must
be less than 4.
0: Default. Disabled.

--mult-decomp-retime 0, 1 Perform retiming after decomposition of a wide multiplier to
improve performance.
0: Default. Disable.
1: Enable.

--peri-syn-inference 0, 1 Enable unified netlist inference flow. See syn_peri_port for the
synthesis attribute that you use with this option.
0: Default. Disable.
1: Enable.

--peri-syn-instantiation 0, 1 Enable unified netlist instantiation flow. See syn_peri_port for
the synthesis attribute that you use with this option.
0: Default. Disable.
1: Enable.

--operator-sharing 0, 1 Extract shared operators
0: Default. Disable
1: Enable

--optimize-adder-tree 0, 1 Optimize skewed adder trees
0: Default. Disable
1: Enable

--optimize-zero-init-rom 0, 1 Opitmize ROMs that are initialized to zero.
0: Disable
1: Default. Enable

--retiming 0, 1, 2 Perform retiming optimization. Software moves registers to
balance the combinational delay path.
0: Disable.
1: Default. Enable.
2: Advanced algorithm that can benefit some designs.

www.efinixinc.com 84

Efinity Timing Closure User Guide

Name Choices Description

--seq_opt 0, 1 Turn on sequential optimization. This option can reduce LUT
usage but may impact fMAX.
0: Disable.
1: Default. Enable.

--seq-opt-sync-only 0, 1 Sequential synthesis only considers synchronous reset flipflops.
0: Default. Consider all flipflops.
1: Consider synchronous flipflops only.

--use-logic-for-small-mem 0 to n Set the size limit of small RAM blocks implemented in LEs.
0: Disable.
64: Default.

--use-logic-for-small-rom 0 to n Set the size limit of small ROM blocks implemented in LEs. The
number is the maximum number of LEs used.
0: Disable.
64: Default.

Handling High Fanouts
When a signal has a high fanout, it may have higher path delays and therefore reduced
performance. Additionally, when you have optimized the depth of the design so that there
are very few levels of logic on the critical path, even modest high-fanout nets may be limiting.
In these cases, you can tweak the synthesis to address high fanout either globally or manually.

Limit Fanout Globally
You can set the maximum fanout using the --fanout-limit synthesis setting. You set
this option in the Project Editor > Synthesis tab. This option is a global project setting and
affects your whole design.

To identify signals with high fanout:

1. Perform a full compile.
2. Open the timing report (<project name>.timing.rpt) by double-clicking the filename under Result >

Routing or opening the file in the outflow directory.
3. By default, the timing report shows the most critical path. Fanout is reported in the pins on net column.

Data Path
pin name model name delay (ns) cumulative delay (ns) pins on net location
===
 Fled[1]~FF|Q ff 0.650 0.650 300 (55,78)
 Fled[1]~FF|O_seq eft 5.210 5.861 300 (55,78)
 Routing elements:
 Manhattan distance of X:55, Y:14
 Fled[1] io 0.420 6.281 300 (0,92)

If the pins on net is a large number (300 in the above example) and there is a large delay,
try setting the --fanout-limit to a lower number. The software duplicates the logic as
needed to limit the fanout. This setting trades off area for delay; it may use more logic but
run faster.

Example: Set Fanout Limit to 100
1. Open the Project Editor.
2. Click the Synthesis tab.
3. Set the Value for --fanout-limit to 100.
4. Click OK.
5. Recompile.

www.efinixinc.com 85

Efinity Timing Closure User Guide

Limit Fanout Manually
If you do not want to limit the fanout with a global setting, you can limit it manually by
duplicating logic and using the syn_preserve synthesis attribute to tell synthesis not to
minimize the duplicated logic.

This attribute applies to signals. When it is set to true, yes, or 1, synthesis keeps the
signal through optimization, that is, synthesis does not minimize or remove the signal.
This attribute can be helpful when you want to simulate or view a signal in the Debugger.
Although the signal is kept, synthesis may still choose to implement downstream functions
that depend on this signal independent of this preserved signal.

In the Efinity software v2022.2 and higher, the syn_preserve attribute is supported on a
user hierarchy instance. The effect is equivalent to tagging all boundary signals of the instance
with syn_preserve.

Verilog HDL:

(* syn_preserve = "true" *) wire x;

VHDL:

attribute syn_preserve: boolean;
attribute syn_preserve of x : signal is true;

Note: A signal with syn_preserve usually has it’s name preserved through synthesis flow. However, if
the signal is connected directly to a top-level port, the name in the map.v netlist may be changed to that of
the top-level port name.

www.efinixinc.com 86

Efinity Timing Closure User Guide

Place-and-Route Options
The best place to start with adjusting the place-and-route settings is to use one of the
optimization levels. Each level is a "recipe" that controls both placement and routing; one
is not necessarily better than the other. Efinix developed them to introduce as much useful
variation as possible into the place-and-route process. These options will not help all designs,
and often the default settings are actually the best choice.

Note: Using these options can cause significantly higher run-time. In fact, some options trigger
completely different optimization algorithms than the standard flow.

Try running all of these optimization levels and choose the one that works best for your
design. The timing values are best for designs that are easy to route while the congestion
values are best for designs that are very difficult to route. For congested designs, these options
resolve congestion early in the process so that the router can focus on meeting timing. If
the number of routing iterations is greater than 20, the design is hard to route. The power
options can help reduce a design's power consumption. See Optimization Sweeping on page
89 for details on how to sweep these options using a script.

The seed option introduces random noise in the placer (see Seed Sweeping on page 89
for a detailed discussion). The fMAX difference between the best and worst seed in a 5-seed
sweep can be up to 10%. But keep in mind that a good seed only applies to one specific design
for one Efinity® release on one operating system. So if you want to reproduce the same result
for the same design, you need to use the same software release and same operating system.

Sometimes small design changes may appear to reduce fMAX by up to 10%. You should run a
5-seed sweep to verify that the decrease was actually due to the design change and not simply
noise from the placer.

Tip: You set these options in the Project Editor. Choose File > Edit Project and click the Place and Route tab.

Table 6: Optimization Options

Optimization Value Description

NULL Disabled (default).

TIMING_1 Recipe 1 to meet timing for a non-congested design.

TIMING_2 Recipe 2 to meet timing for a non-congested design.

TIMING_3 Recipe 3 to meet timing for a non-congested design.

CONGESTION_1 Recipe 1 to meet timing and help a congested design route.

CONGESTION_2 Recipe 2 to meet timing and help a congested design route.

CONGESTION_3 Recipe 3 to meet timing and help a congested design route.

POWER_1 Recipe 1 to reduce a design's power consumption.

--optimization_level

POWER_2 Recipe 2 to meet a design's power consumption.

seed Integer Enter any integer to insert a random seed into the place-and-route
algorithm. Read more about seed sweeping in the next section.

--placer_effort_level 1, 2, 3, 4, 5 Controls how much runtime the placer uses to attempt to improve
placement quality.
Default: 2

www.efinixinc.com 87

Efinity Timing Closure User Guide

Optimization Value Description

--max_threads Integer Choose the maximum number of threads that the placer can
launch. Typically you want to use the default, -1, which means the
placer can launch as many threads as it needs. However, if you are
running other pocesses on your computer, you may want to limit
the number of threads.
Default: -1

--beneficial-skew on, off When turned on, the software "borrows" slack from one clock to
meet timing on another. (Titanium FPGAs only)
Default: on

Beneficial Skew
Beneficial skew (sometimes called "slack borrowing") is a process in which the software
adjusts clocks to better close timing. In the following figure, Delay 1 meets timing and has
extra slack. Delay 2 does not meet timing. The software adjust the clocks to take some slack
from Delay 1 and give it to Delay 2, allowing both to meet timing.

This option is only available for Titanium FPGAs.

Figure 39: Beneficial Skew Example

D Q

FF1

D Q

FF2

D Q

FF3

Logic Logic

Delay 1 Delay 2

Take some slack
from FF2’s clock

and give it to
FF3’s clock

!

Sweeping Script
Efinix provides helper scripts that you can use to compile a design multiple times using
various place-and-route settings.
• Linux—scripts/efx_run_pnr_sweep.py
• Windows—bin/efx_run_pnr_sweep.bat

The scripts use this syntax:

efx_run_pnr_sweep.py <project file> {sweep_opt_levels | sweep_seeds {--num_seeds <integer>}
 {--start_seed <integer>} } [-h]

efx_run_pnr_sweep.bat <project file> {sweep_opt_levels | sweep_seeds {--num_seeds <integer>}
 {--start_seed <integer>} } [-h]

where:
• <project file> is your project's XML file
• sweep_opt_levels sweeps through all of the possible optimization settings
• sweep_seeds sweeps through seeds
• -h, --help shows the help

Note: You sweep through either optimizations or seeds. You cannot sweep both at the same time.

www.efinixinc.com 88

Efinity Timing Closure User Guide

The software summarizes the timing results of the runs in the timing.sum.rpt file in the
project directory. You can find the corresponding result files in the run_sweep_<string>
directory.

Important: You should run these script in your project directory, not the Efinity installation directory.
Otherwise, the scripts cannot find all of the required files.

Optimization Sweeping
You can use the scripts to sweep through all of the place-and-route optimization settings to
find out which one works best for your design.

Example Usage
To sweep all of the optimization levels for project helloworld:

efx_run_pnr_sweep.py helloworld.xml sweep_opt_levels
efx_run_pnr_sweep.bat helloworld.xml sweep_opt_levels

Using the Results
When sweeping completes, open the timing.sum.rpt file in the project directory. It gives
an overview of the clocks analyzed and their frequency for each optimization setting. The
following code shows and excerpt of the summary report for sweeping optimization levels
for the pt_demo project.

|---|
Maximum possible analyzed clocks frequency

Clock Name: Oclk

CONGESTION_1
CONGESTION_2
CONGESTION_3
TIMING_1
TIMING_2
TIMING_3

You can also review detailed reports in the run_sweep_<string>/seed_<number>/
outflow directory.

If you are happy with the results for one of the optimization levels, you can set that option in
your project:

1. Open the Project Editor.
2. Click the Place and Route tab.
3. Choose the Value you want to set for the optimization level.
4. Click OK.
5. Recompile.

Seed Sweeping
After you choose an appropriate optimization level (or the default), try running a seed
sweep and taking the best of these runs to close timing. The annealer uses a random number
generator that you can control using a seed parameter. Running a 10-seed sweep typically
results in an fMAX variation of 10% to 20% in a well-behaved circuit, but can be higher for
random differences that only occur in one seed. Keep these tips in mind:

• Run a seed sweep every time you make a small change to the design.

www.efinixinc.com 89

Efinity Timing Closure User Guide

• No seed value is better than any other.
• Different seed values may be best on different machines.

Example Usage
Sweep seeds using the default settings. In this mode, the script runs 10 different seeds with
seed numbers 0 - 9. That is, it runs seed=0, seed=1, etc.

efx_run_pnr_sweep.py helloworld.xml sweep_seeds
efx_run_pnr_sweep.bat helloworld.xml sweep_seeds

Compile 6 seeds with seed numbers 0 - 5:

efx_run_pnr_sweep.py helloworld.xml sweep_seeds --num_seeds 6
efx_run_pnr_sweep.bat helloworld.xml sweep_seeds --num_seeds 6

Compile with seed numbers 3, 4, and 5:

efx_run_pnr_sweep.py helloworld.xml sweep_seeds --start_seed 3 --end_seed 5
efx_run_pnr_sweep.bat helloworld.xml sweep_seeds --start_seed 3 --end_seed 5

Compile with 6 seeds, starting with seed number 3:

efx_run_pnr_sweep.py helloworld.xml sweep_seeds --start_seed 3 --num_seeds 6
efx_run_pnr_sweep.bat helloworld.xml sweep_seeds --start_seed 3 --num_seeds 6

www.efinixinc.com 90

Efinity Timing Closure User Guide

Using the Results
When seed sweeping completes, open the timing.sum.rpt file in the project directory. It
gives an overview of the clocks analyzed and their frequency for each seed. The following
code shows and excerpt of the summary report for seed sweeping the pt_demo project with
the default 10 seeds. The number after seed_ is the random seed number the compiler used.

|---|
Maximum possible analyzed clocks frequency

Clock Name: Oclk

seed_0
seed_1
seed_2
seed_3
seed_4
seed_5
seed_6
seed_7
seed_8
seed_9

You can also review detailed reports for each run in the run_sweep_<string>/
seed_<number>/outflow directory.

If you are happy with the results for one of the seeds, you can set that option in your project.
For example, to apply seed_9 to your project:

1. Open the Project Editor.
2. Click the Place and Route tab.
3. Enter 9 in the Value cell.
4. Click OK.
5. Recompile.

Closing Timing with High DSP Block Utilization
If your design has a >50% of the DSP Blocks implemented with EFX_DSP24 or
EFX_DSP12 primitives, the fMAX can vary significantly depending on the placement seed.
Therefore, it is a good idea to try 3 or 4 seeds to see if it helps with timing closure, more so
than for a typical design.

Learn more: Refer to the Efinity Timing Closure User Guide for information on how to perform seed
sweeping.

www.efinixinc.com 91

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Timing Closure User Guide

Tcl Console
The Efinity software uses a Tcl interpreter to process SDC constraints and to support timing
analysis. The Tcl Console is an interactive shell that you use to execute Tcl commands.

To explore timing, you use a combination of the Tcl Console, the Timing Browser, and the
Floorplan Editor. In the Tcl Console, you enter commands to query timing reports. The
software reports specific timing paths based on their slack or propagation delay. For example:

• Use the report_path command to query propagation delays between the specified end
points.

• Use the report_timing command to query the slack between the specified end points.

Specify the details of the timing path that you want to analyze. You can specify the starting
and ending points explicitly or leave them as implicit. The software analyzes the timing path
based on the arguments provided to the constraints.

Open the Tcl Console in the Efinity GUI by:

• Clicking the Show/Hide Tcl Command Console icons in the main toolbar.
• Choosing File > > Show/Hide Tcl Command Console.
• Pressing the Ctrl + T keys.

Note: In the Efinity software v2024.1 and higher you can also use the Tcl Console in a terminal (see
Command-Line Tcl Console on page 103).

Figure 40: Tcl Console

In the Efinity software v2024.1 and higher you can use multi-line commands in the Tcl
Console. Press Shift + Enter to insert a new line (pressing Enter executes the command). You
can also copy and paste multi-line commands into the console.

The Tcl Console has an auto-correct feature. In the Efinity software v2024.1 and higher, this
feature is turned off by default. You can turn it on in the Preferences dialog box (File >
Preferences).

www.efinixinc.com 92

Efinity Timing Closure User Guide

General Commands
These commands are for reading and writing SDC files, working with timing model
information, and clearing or reseting the Tcl Console.

delete_timing_results Command
delete_timing_results

This command deletes path data—reported using the report_path and report_timing
commands—that the software has stored in memory.

get_available_timing_model Command
get_available_timing_model

Returns a list of available operating conditions for the current FPGA. The FPGA must be
loaded for this command to execute.

get_timing_model Command
get_timing_model

Returns the current operating conditions for the device. The device must be loaded for this
command to execute.

read_sdc Command
read_sdc <file>

This command reads in the SDC file specified with <file>. If you do not specify a file, the
tool loads the SDC file list that you set in your project. The SDC file overrides previous
constraints. If a constraint is overwritten by a later constraint, the software issues a warning
similar to:

SDC <file name>: <line number>] A clock with name 'Oclk' already exists.
 Overwriting the previous clock with the same name

reset_timing Command
reset_timing

Removes the timing data, all constraints, and all reported paths.

set_timing_model Command
set_timing_model

Specify the operating conditions for the current design. Use get_available_timing_model
to view the list of supported conditions. You can only use this command after you have
performed place and route.

www.efinixinc.com 93

Efinity Timing Closure User Guide

write_sdc Command
write_sdc <file>

Write the timing constraints in memory to the SDC file specified with <file>.

Note: The software does not add the SDC file to your project; you need to add it separately in the using
the Project Editor dialog box.

Report Commands
These commands are for generating various timing reports.

check_timing Constraint
check_timing [-file <file>] [-override_defaults <checks>] [-exclude <checks>] [-verbose]

This command performs 5 types of checks by default. You can exclude or override specific
defaults.

Table 7: Timing Check Types

Check Type Description

no_clock Report any synchronous blocks without a clock constraint.

unconstrained_internal_endpoints Report any flipflop D pins that do not have a clock signature.

no_input_delay Report any input ports without an input constraint.

no_output_delay Report any output ports without an output constraint.

multiple_clock Report clock pins that are associated with multiple clocks. This check helps
find unintentional multiple clock assignments. This check also detects
clock pins with dynamic clocks.

This command supports the following options:

• -file if used, writes the results to the named file in the outflow directory.
• -override_defaults overrides the default timing checks and run the specified checks

only.
• -exclude specifies the checks to be excluded from the list of default timing checks.
• -verbose lists the pin(s) that violate(s) the specific check(s).

The following example uses the no_clock and multiple_clock checks only:

check_timing -override_defaults {no_clock multiple_clock}

The following example excludes the no_input_delay and no_output_delay checks:

check_timing -exclude {no_input_delay no_output_delay}

report_clocks Command
report_clocks [-file <file>] [-stdout]

This command generates a clock report. If you do not specify a file name, the software prints
the report to the Console (stdout) by default.

www.efinixinc.com 94

Efinity Timing Closure User Guide

report_path Command
report_path [-file <file>] [-npaths <number>] [-nworst <number>] \
 [-show_routing] [-stdout] [-summary] [-through <names>] -to <names> \
 -from <names> -id <number> [-min_path]

This constraint reports the longest delay path and the corresponding delay value.

• -file writes the results to a file in the outflow directory.
• -npaths is the maximum number of paths to report. If you do not specify the number

of paths, the software only provides the single longest delay path.
• -nworst is the maximum number of paths reported for each unique endpoint. Without

this option, the number of paths reported for each destination node is restricted by -
npaths only. If you use this option but not -npaths, -npaths defaults to the value
specified for -nworst.

• -show_routing displays detailed routing information.
• -stdout writes the results to the Console during compilation only. If you re-generate

timing, use the -file option instead.
• -summary generates a table that summarizes the results.
• -through restricts analysis to paths that go through specified pins or nets. Paths that are

reported can not start before or go beyond a keeper node (register or port); this restriction
considers register pins as combinational nodes in the design.

• -from and -to limit the analysis to specific start and end points. Any node or cell in the
design is a valid endpoint.

• -id is the position in the Timing Browser where the tool displays the result.
• -min_path reports the minimum delay paths.

www.efinixinc.com 95

Efinity Timing Closure User Guide

report_sdc Constraint
report_sdc [-from <clocks>] [-to <clocks>] [-details] [-file <file>]

This command reports the clock domain crossing (CDC) paths in the design. This command
supports the following options:

• -from specifies the source clocks.
• -to specifies the destination clocks.
• -details prints a detailed CDC report.
• -file if used, writes the results to the named file in the outflow directory.

By default, the report_cdc command would print out a summary report like the following
example:

Source Clock }| Destination Clock | Exceptions | Endpoints
==
clk_write | clk_read | None | 23
clk_read | clk_write | None | 12

When you use the -details option, the report shows the CDC path description. The
current check lists all endpoints, and groups the source/destination as buses by their names.
The tool supports the following descriptions:

• 1-bit and multi-bit unknown CDC circuitry
• 1-bit and multi-bit synchronized with ASYNC_REG property
• 1-bit and multi-bit synchronized with missing ASYNC_REG property
• Combinational logic detected before a synchronizer
• 1-bit CDC path on a non-FF primitive
• Multi-clock fan-in to synchronizer

The following code shows an example report:

CDC Report
Source Clock: clk_write
Destination Clock: clk_read

Row|Exception| Description | Source (From) | Destination (To)
===
 1 | None | 1-bit unknown CDC circuitry | r_ptr_sync[0]~FF|CLK | data_count_r[0]~FF|D
 2 | None | Multi-bit unknown CDC circuitry | w_ptr_q[2:1]~FF|CLK | data_count_r[2:1]~FF|D
 3 | None | 1-bit synchronized with missing | w_prt_q[11]~FF|CLK | w_grey_sync[11]~FF|D
 | | ASYNC_REG property | |

www.efinixinc.com 96

Efinity Timing Closure User Guide

report_timing Command
report_timing [-detail summary|path_only|path_and_clock|full_path] \
 [-file <name>] [-from_clock <names>] -from <names>
 [-fall_from_clock <names>] [-rise_from_clock <names>]
 [-less_than_slack <slack limit>] [-npaths <number>] [-nworst <number>]
 [-show_routing] [-stdout] [-through <names>] -to <names> -to_clock <names>
 [-rise_to_clock <names>] [-fall_to_clock <names>] [-id <number>]
 [-hold] [-setup]

This command reports the worst-case paths and their associated risk. The tool displays paths
in order of increasing slack.

• -detail specifies how much detail is shown in the path report.
• -file writes the results to a file in the outflow directory.
• -from_clock and -to_clock are valid source and destination clocks, respectively.
• -from and -to limit the analysis to specific start and end points. Any node or cell in the

design is a valid endpoint.
• -fall_from_clock and -fall_to_clock are the starting and ending points of the

falling edge of the clock domain, respectively.
• -rise_from_clock and -rise_to_clock are the starting and ending points of the

rising edge of the clock domain, respectively.
• -less_than_slack displays only those paths with slack less than the specified limit.
• -npaths sets the number of paths to report. If you do not specify the number of paths,

the software only provides the single longest delay path.
• -nworst limits the number of paths reported for each unique endpoint. Without this

option, the number of paths reported for each destination node is restricted by the -
npaths only. If you use this option but not -npaths, -npaths defaults to the value
specified for -nworst.

• -show_routing displays detailed routing information.
• -stdout writes the results to the Console.
• -through restricts analysis to paths that go through specified pins or nets. Paths that are

reported can not start before or go beyond a keeper node (register or port); this restriction
considers register pins as combinational nodes in the design.

• -id is the position in the Timing Browser where the tool displays the result. Use -id to
overwrite existing constraints in the Timing Browser. 0 is reserved for the critical path.
If the specified ID number is larger than the existing constraint ID, the tool ignores this
option. By default, it returns clock setup paths if you do not specify -setup or -hold.

• -setup reports the clock setup paths.
• -hold reports the clock hold paths.

report_timing_summary Command
report_timing_summary [-file <file>] [-hold] [-setup]

This command performs timing analysis and generates the critical path timing report. The
software saves the report as <project>.timing.rpt by default. To specify a different file
name, use the -file option. By default, the tool prints setup and hold paths.

• -file writes the results to a file in the outflow directory.
• -setup reports the clock setup paths.
• -hold reports the clock hold paths.

www.efinixinc.com 97

Efinity Timing Closure User Guide

Tcl List Functions (Alphabetical)
The following topics describe the Tcl list functions the Tcl Console supports.

lappend
lappend <list name> <new list or element> <new list or element> ...

This function appends Efinity Tcl objects to a collection. It modifies the <list name>
collection and returns the modified object.

Append $ff_list to the end of $lut_list
set lut_list [get_cells LUT*]
set ff_list [get_cells *~FF]
lappend lut_list $ff_list

Append a single Efinity Tcl object to the end of $lut_list
lappend lut_list [get_cells cell1]

lassign
lassign <list> <variable 1> <variable 2> ...

This function assigns multiple Efinity Tcl objects to multiple variables.

Assign the first three elements on the list to variables
x, y, and z
lassign [get_cells *~FF] x y z]
set pins_on_x [get_pins $x]
set pins_on_y [get_pins $y]
set pins_on_z [get_pins $z]

lindex
lindex <list> <index>

This function returns a specific Efinity Tcl objects from the collection based on the specified
index value. end is the index value of the last element.

Return the index 2 objects from the collection
set element [lindex [get_cells *~FF] 2]

Return the last element from the collection
set last [lindex [get_cells *~FF] end]

www.efinixinc.com 98

Efinity Timing Closure User Guide

linsert
linsert <list> <index> <new list or element>

This function inserts a new list or elements before the specified <index> in the collection.
All elements must be Efinity Tcl objects.

Insert the ff_list in the first position of the lut_list
set lut_list [get_cells LUT*]
set ff_list [get_cells *~FF]
set combined [linsert $lut_list 1 $ff_list]

Insert the ff_list at the end of the lut_list
set lut_list [get_cells LUT*]
set ff_list [get_cells *~FF]
set combined [linsert $lut_list end $ff_list]

Add one cell to the end of the lut_list
set combined [linsert $lut_list end [get_cells cell1]]

llength
llength <list>

This function returns the length of an Efinity Tcl object collection.

Return the number of cells with the format *~FF
llength [get_cells *~FF]

foreach_in_collection
foreach_in_collection <variable> <list>

This function loops through a single collection of Efinity Tcl objects.

loop through a group of flops and get pins from each flop
foreach_in_collection c [get_cells <pattern>] {
 set pin_on_cell [get_pins $c]
 ...
}

foreach
foreach <variable 1> <list 1> <variable 2> <list 2> ...

This function loops through multiple collections of Efinity Tcl objects. All collections must
be of the same Efinity Tcl object type.

loop through two flipflop lists and get a timing report for
each pair; the two lists should have the same length.
foreach launch_ff [get_cells <launch_pattern>] \
 capture_ff [get_cells <capture_pattern>] {
 report_timing -from $launch_ff -to $capture_ff
}

www.efinixinc.com 99

Efinity Timing Closure User Guide

lrange
lrange <list> <start index> <end index>

This function returns a range of Efinity Tcl objects from the collection based on the range of
index values. end is the index value of the last element. In the following example, the end-2
index is the third element from the end.

Return the first three elements of a collection
set elements [lrange [get_cells *~FF] 0 2]

Return the last three elements of a collection
set elements [lrange [get_cells *~FF] end-2 end]

lreplace
lappend <list> <start index> <end index> <new list or element> <new list or
 element> ...

This function deletes the elements from <start index> to <end index> (inclusive) and
replaces them with the new specified lists or elements. All elements must be Efinity Tcl
objects.

set lut_list [get_cells LUT*]
set ff_list [get_cells *~FF]

Replace the second to fourth elements of $lut_list with elements in $ff_list
set combined [lreplace $lut_list 2 4 $ff_list]

Append the list $ff_list to the end of $lut_list
set combined [lreplace $lut_list end+1 end+1 $ff_list

lreverse
lreverse <list>

This function reverses the order of elements in an Efinity Tcl object collection.

let cells be a collection { cell1 cell2 cell3 }
Return {cell3 cell2 cell1}
lreverse $cells

lsearch
lsearch [-all | -ascii | -exact | -glob | -not | -regexp | -start <index>]
 <list> <pattern>

This function returns the index of the first matching element in the specified <list>. It
returns -1 if it does not find a match. Refer to the lsearch function on the Tcl Developer
Xchange web site (www.tcl.tk) for a detailed explanaion of the options.

Return the index of o12[1]
lsearch [get_nets [get_ports o12[*]]] {o12\[1\]}
lsearch –exact [get_nets [get_ports o12[*]]] o12[1]

Return the index of the first element that is not o12[1]
lsearch -not -exact [get_nets [get_ports o12[*]]] o12[1]

Return the indices of elements with the regex format o12\[.\]
lsearch -all -regexp [get_nets [get_ports o12[*]]] {o12\[.\]}

www.efinixinc.com 100

https://www.tcl.tk/man/tcl8.4/TclCmd/lsearch.htm
https://www.tcl.tk/man/tcl8.4/TclCmd/lsearch.htm

Efinity Timing Closure User Guide

lsort
lsort [-increasing] [-decreasing] <list>

This function sorts the specified <list> according to the order specified (increasing or
decreasing). The software sorts the elements using ASCII string comparison.

sort cells in increasing order
set sorted_cells [lsort -increasing [get_cells LUT*]]

sort cells in decreasing order
set sorted_cells [lsort -decreasing [get_cells LUT*]]

Tcl Script Examples
The following example Tcl scripts show how to use Tcl commands in SDC files and for
custom reporting.

Identify Pins with a Regular Expression
This script shows how to identify a flipflop's input, output, and clock pins using a regular
expression.

Given a register pattern, find the nets connected to the register's pins
set reg_pattern "o11\[*\]~FF"
set reg_cells [get_cells ${reg_pattern}]
puts $reg_cells

get all the pins from cells with the pattern "|*"
foreach reg $reg_cells {
 set pin_pattern "${reg}|*"
 set reg_pins [get_pins $pin_pattern]

 foreach p $reg_pins {
 set is_clock_pin 0
 set is_in_pin 0
 set is_out_pin 0

 # For flipflops, the pin type can be identified by specific pin name
 if {[regexp {\|CLK$} $p]} {
 set is_clock_pin 1
 } elseif {[regexp {\|Q$} $p]} {
 set is_out_pin 1
 } else {
 set is_in_pin 1
 }

 set net_on_pin [get_nets $p]
 puts "PIN $p is_clock=${is_clock_pin} is_in_pin=${is_in_pin} /
 is_out_pin=${is_out_pin} NET: $net_on_pin"
}

www.efinixinc.com 101

Efinity Timing Closure User Guide

Create Clocks with Different Periods
This script shows how to create clocks that have different clock periods.

Procedure to create a clock with different clock periods
proc define_clock_data {clk_id} {
 set period 10
 set waveform {0 5}
 if {$clk_id >= 0 && $clk_id < 10} {
 set period 20
 set waveform {5 10}
 } elseif {$clk_id >=10 && $clk_id < 20} {
 set period 30
 set waveform {10 15}
 }
 return [list $period $waveform]
}

create the clocks
for {set i 0} {$i < 32} {incr i} {
 set clock_data [define_clock_data $i]

 create_clock -period [lindex $clock_data 0] \
 -waveform [lindex $clock_data 1] \
 -name clk_in[$i] [get_ports clk_in[$i]]
}

Set clock groups after all clocks are defined
for {set i 0} {$i < 32} {incr i} {
 set_clock_groups -exclusive -group clk_in[$i]
}

Generate a Report with get_fanouts
This script shows how to use the get_fanouts constraint to generate different reports with
the report_timing command.

set file_path "./tests"
set ena0_ffs [get_fanouts [get_ports ena[0]]]

foreach ena0_ff $ena0_ffs {
 report_timing -from $ena0_ff -setup -npaths 10 \
 -file ${file_path}/${ena0_ff}_path.rpt
}

Generate Report with a Subset of Clocks
This script shows how to generate a report for a subset of clock indices with the
report_timing command.

set file_path "./tests"
set clk_index_list { 0 12 24 }

foreach clk_id $clk_index_list {
 report_timing -from_clock [get_clocks clk_in[$clk_id]] -setup -npaths 10 \
 -file ${file_path}/test1_clk_in_${clk_id}_path.rpt
}

www.efinixinc.com 102

Efinity Timing Closure User Guide

Use Variable for Min/Max Delay Calculation
This script shows how to use variables in the set_input_delay constraint. This code uses
the same example as in Input Receive Clock Delay on page 35.

set max_board_delay 4
set min_board_delay 2

copy values from outflow/<project>.pt_timing.rpt
set GPIO_IN_max 1.954
set GPIO_IN_min 0.526

set_input_delay -clock -max [expr $max_board_delay + $GPIO_IN_max] din
set_input_delay -clock -min [expr $min_board_delay + $GPIO_IN_min] din

Command-Line Tcl Console
In the Efinity software v2024.1 and higher, you can use the Tcl Console at the command line
to run Tcl scripts on a fully compiled design. (If you have not compiled yet, the software
issues an error message.)

To enter the interactive Tcl Console, use the sta_tclsh flow option with the efx_run.py
Python 3 script. The terminal or command prompts displays an interactive Tcl Console
similar to tclsh. You can enter Tcl commands and expressions for evaluation. Use this
command to start the Tcl Console:

Windows
efx_run.bat --flow sta_tclsh --prj <project>.xml

Linux
efx_run.py --flow sta_tclsh --prj <project>.xml

You can also run the Tcl Console in batch mode. In this mode you also specify a script name.
The Tcl Console runs the script and exists after executing it.

Windows
efx_run.bat --flow sta_tclsh --prj <project>.xml --tcl_script <Tcl script>

Liinux
efx_run.py --flow sta_tclsh --prj <project>.xml --tcl_script <Tcl script>

Note: You can use these shortcuts: -f instead of -flow and -t instead of -tcl_script.

www.efinixinc.com 103

Efinity Timing Closure User Guide

Appendix

About the <project>.pt.sdc File
When you generate constraints in the Interface Designer, the software creates the
<project>.pt.sdc in the outflow directory; this template file has the interface block
constraints. You copy and paste these constraints into your project SDC file. Some
generated constraints require you to modify them, for example, to add a clock period or
name. These constraints are commented out so they do not generate errors if you include
them in your SDC file without modifying them.

Important: Do not add the <project>.pt.sdc file to your project! It is re-created
every time you generate constraints and any changes you make will be overwritten.

The PLL Constraints section has the create_clock SDC command for all PLL outout
clocks. Use these commands as is without modification.

PLL Constraints
#################
create_clock -period 10.0000 i_hbramClk_fb
create_clock -waveform {1.2500 3.7500} -period 5.0000 i_hbramClk90
...

The GPIO Constraints, HSIO GPIO Constraints, and MIPI RX/TX Lane Constraints
sections have constraints for these blocks, some of which are templates that you need to
modify.

Use SDC constraints for registered inputs and outputs as is without modification.

For GPIO and LVDS blocks used as clock sources, the Interface Designer includes a
create_clock template line. To constrain these clocks, replace <USER_PERIOD> with
the clock period and uncomment the line.

Non-registered inputs and outputs also have template lines. Modify them as follows:

• Replace <CLOCK> with the clock name.
• (Optional) Replace <clkout_pad> with the reference clock pin name and remove the

brackets []. If you do not want to use a reference clock pin, delete [-reference_pin
<clkout_pad>]

• Replace <MAX CALCULATION> and <MIN CALCULATION> with the values you
calculate as described in Constraining Unsynchronized Inputs and Outputs on page 33.

• Uncomment the line.

GPIO Constraints
####################
create_clock -period <USER_PERIOD> [get_ports {clock}]
set_input_delay -clock <CLOCK> [-reference_pin <clkout_pad>]
-max <MAX CALCULATION> [get_ports {i_arstn}]
set_input_delay -clock <CLOCK> [-reference_pin <clkout_pad>]
-min <MIN CALCULATION> [get_ports {i_arstn}]
set_output_delay -clock_fall -clock i_hbramClk90 -reference_pin [get_ports
 {i_hbramClk90~CLKOUT~75~322}] -max 0.263 [get_ports {hbc_ck_n_LO hbc_ck_n_HI}]
set_output_delay -clock_fall -clock i_hbramClk90 -reference_pin [get_ports
 {i_hbramClk90~CLKOUT~75~322}] -min -0.140 [get_ports {hbc_ck_n_LO hbc_ck_n_HI}]
set_input_delay -clock i_hbramClk_cal -reference_pin [get_ports
 {i_hbramClk_cal~CLKOUT~32~322}] -max 0.414 [get_ports {hbc_dq_IN_LO[0] hbc_dq_IN_HI[0]}]
set_input_delay -clock i_hbramClk_cal -reference_pin [get_ports
 {i_hbramClk_cal~CLKOUT~32~322}] -min 0.276 [get_ports {hbc_dq_IN_LO[0] hbc_dq_IN_HI[0]}]
...

www.efinixinc.com 104

Efinity Timing Closure User Guide

The Clock Latency Constraints section has templates for the set_clock_latency constaint.
Clock Latency on page 16 and Constraining I/O on page 30 describe how to use these
templates.

Clock Latency Constraints
############################
set_clock_latency -source -setup <board_max -2.834> [get_ports {clk}]
set_clock_latency -source -hold <board_min -1.417> [get_ports {clk}]
set_clock_latency -source -setup <board_max + 1.476> [get_ports {refclk}]
set_clock_latency -source -hold <board_min + 0.738> [get_ports {refclk}]

The JTAG Timing Report shows the SDC constraints for the JTAG signals. Additionally,
you should use set_clock_groups to make the JTAG clocks unrelated to other clocks.

JTAG Constraints
####################
create_clock -period <USER_PERIOD> [get_ports {jtag_inst1_TCK}]
create_clock -period <USER_PERIOD> [get_ports {jtag_inst1_DRCK}]
set_output_delay -clock jtag_inst1_TCK -max 0.117 [get_ports {jtag_inst1_TDO}]
set_output_delay -clock jtag_inst1_TCK -min -0.075 [get_ports {jtag_inst1_TDO}]
...

www.efinixinc.com 105

Efinity Timing Closure User Guide

About the <project>.pt_timing.rpt File
This report shows the timing for your design's interface blocks. When you generate
constraints in the Interface Designer, the software creates this file in the outflow directory.

Clocks can come from several sources: PLL, GPIOs, MIPI RX Lane, MIPI RX PHY, JTAG.

The PLL Timing Report shows details about the clocks generated by PLLs in the interface,
including the clock period, any phase shift, and whether the clock is inverted. This data
matches the create_clock SDC template. The report also shows the PLL compensation
delay. Clock Latency on page 16 and Constraining I/O on page 30 describe how to use the
data.

---------- 1. PLL Timing Report (begin) ----------
+--------+--------+---------+----------+----+-----------------+--------------+--------------+
PLL	Resource	Reference	Core Clock	FB	Core	PLL	PLL
Instance		Clock	Reference	Mode	Feedback Pin	Compensation	Compensation
			Pin			Delay Max (ns)	Delay Min (ns)
+--------+--------+---------+----------+----+-----------------+--------------+--------------+							
pll	PLL_TR0	external		core	clk~CLKOUT~40~482	4.310	2.155
+--------+--------+---------+----------+----+-----------------+--------------+--------------+

+-------+-------------+-----------------------+
| Clock | Period (ns) | Phase Shift (degrees) |
+-------+-------------+-----------------------+
| clk | 10.0000 | 0 |
+-------+-------------+-----------------------+

The GPIO Timing Report and HSIO GPIO Timing reports give timing information about
the GPIO or HSIO blocks used in your design. The data is grouped by non-registered and
registered blocks.

For non-registered blocks, the Max value is the worst case (slowest corner) and the Min is the
best case (fastest corner). When you are constraining unsynchronized inputs and outputs, you
use these maximum and minimum numbers for the calculations.

Non-registered GPIO Configuration:
===================================

+----------------------+----------------------+-----------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+----------------------+----------------------+-----------+----------+----------+
| i_arstn | i_arstn | GPIO_IN | 1.177 | 0.785 |
| sw1 | sw1 | GPIO_IN | 1.177 | 0.785 |
...

For registered blocks, the values correspond to the system timing as observed at the FPGA's
pins. The table shows the max (worst) and min (best) values for setup, hold, and clock to
output. You use these values to confirm that your system timing requirements are met.

Registered HSIO GPIO Configuration:
====================================

+---------------+----------------+-------+-------+------+------+----------+----------+
Instance Name	Clock Pin	Max	Min	Max	Min	Max	Min
 | Setup | Setup | Hold | Hold | Clock to | Clock to |
 | (ns) | (ns) | (ns) | (ns) | Out (ns) | Out (ns) |
+---------------+----------------+-------+-------+------+------+----------+----------+
hbc_dq[0]	i_hbramClk_cal	0.618	0.412	-0.408	-0.272		
hbc_ck_n	~i_hbramClk90					2.226	1.484
hbc_ck_p	~i_hbramClk90					2.226	1.484
...

Important: The reported numbers assume that the clock pin came from a GPIO used as a global clock
source (GCLK).

www.efinixinc.com 106

Efinity Timing Closure User Guide

The JTAG Timing Report gives the max and min values for the JTAG pins used in your
design.

---------- 3. JTAG Timing Report (begin) ----------

+---------------+----------------+-----------+----------+----------+
| Instance Name | Pin Name | Parameter | Max (ns) | Min (ns) |
+---------------+----------------+-----------+----------+----------+
| jtag_inst1 | jtag_inst1_TDI | JTAG_IN | 3.164 | 2.109 |
| jtag_inst1 | jtag_inst1_TMS | JTAG_IN | 2.471 | 1.647 |
...

www.efinixinc.com 107

Efinity Timing Closure User Guide

Where to Learn More
The Efinity® software includes documentation as PDF user guides and on-line HTML help.
This documentation is provided with the software. You can also access the latest versions of
PDF documentation in the Support Center:

• Efinity Software User Guide
• Efinity Synthesis User Guide
• Efinity Timing Closure User Guide
• Efinity Software Installation User Guide
• Efinity Trion Tutorial
• Efinity Debugger Tutorial
• Titanium Interfaces User Guide
• Trion Interfaces User Guide
• Efinity Interface Designer Python API
• Quantum® Trion Primitives User Guide
• Quantum® Titanium Primitives User Guide
• Quantum® Topaz Primitives User Guide

In addition to documentation, Efinix field application engineers have created a series of videos
to help you learn about aspects of the software. You can view these videos in the Support
Center.

www.efinixinc.com 108

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTDBG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TZPRIM

Efinity Timing Closure User Guide

Revision History

Table 8: Revision History

Date Version Description

November 2024 7.0 Added check_timing and report_cdc commands. (DOC-2168)
Described how to read SDC files into a top-level SDC file. (DOC-2168)
An EFX_FF primitive cannot be placed in a Trion ELF tile. (DOC-2197)

June 2024 6.0 Added Tcl Console section describing the enhanced Tcl support in v2024.1.
(DOC-1824, DOC-1881)
Added get_fanins and set_bus_syntax_mode. (DOC-1722)
Added new options for create_generated_clock constraint. (DOC-1768)
Updated Best Practices for Constraining Routing and added example flow.
(DOC-1891)
Added note emphasizing that you can only constrain routing for Titanium
FPGAs. (DOC-1801)

December 2023 5.0 Added examples for setting min and max delays on synchronous and
asynchronous paths.
Added get_fanouts constraint.
Updated Clock Latency section; the Efinity software v2023.2 now provides a
SDC template for set_clock_latency.
Added clock latency topic for PLL cascading.
Updated section on constraining I/O.
Added section of common mistakes.
Updated topic about the <project>.pt.sdc file.
Updated topic about the <project>.pt_timing.rpt file.
In SDC files, square brackets are supported in clock names without using the -
name option.

June 2023 4.0 Updated the create_clock, create_generated_clock, set_input_delay, and
set_ouput_delay constraint descriptions (new flags).
Added information on multiple SDC file support, including how the software
handles multiple constraints for the same clock.
Added new examples for Clock Latency.
Added explanation for virtual clocks.
Added more detail and examples for constrainting unsynchronized inputs
and outputs.
Added SDC examples.
Updated Best Practices for Constraining Routing to reflect syn_keep synthesis
option.
Interpreting Timing Results topic updated for new report format.
Explained how to use clock names with square brackets in the name.

December 2022 3.0 The create_generated_clock -source option is a port, pin, or net. (DOC-1027)
set_false_path, set_min_delay, and set_max_delay support clock domain, I/
O and registers as the start and end point; they also support the -through
option. (DOC-995)
Added section on constraining routing manually.

www.efinixinc.com 109

Efinity Timing Closure User Guide

Date Version Description

August 2022 2.4 Added more details on synchronous input and output delays.
Added section on constraining logic.
Updated description for set_false_path constraint. Removed limitation that
one end point much be a clock. (DOC-875)
Added set_clock_latency SDC constraint.
Updated the synthesis options. (DOC-870)
Updated the place-and-route options. (DOC-889)

April 2022 2.3 Added a note to remind users not to include the <design name>.pt.sdc in
their project. (DOC-670)

December 2021 2.2 Added -reference_pin flag to set_input_delay and set_output_delay.
(DOC-488)
Added new synthesis options.

June 2021 2.1 Updated for Efinity software v2021.1.
Added recommendation for closing timing for DSP Blocks.

March 2021 2.0 Incorporated content from AN 008: Setting Trion Timing Constraints in the
Efinity Software (DOC-369).
Updated section on place-and-route options.
Restructured document and added more examples.

December 2020 1.1 Added the -asynchronous option to set_clock_groups (DOC-317).
Added the efx_run_pnr_sweep.bat helper script.

June 2020 1.0 Initial release.

www.efinixinc.com 110

	Contents
	Introduction
	About Constraints
	Tools for Exploring Timing

	SDC File Overview
	About SDC Files
	Create an Empty SDC File
	Add an SDC File to Your Project
	Using Multiple SDC Files
	Efinity Files You Use to Create Constraints

	Constraining Clocks
	Defining Clocks
	Using the create_clock Constraint
	Using the create_generated_clock Constraint
	Virtual Clocks

	Clock Latency
	GPIO Clock Latency
	PLL Local Feedback Clock Latency
	PLL Core Feedback Clock Latency
	PLL External Feedback Clock Latency
	PLL Cascading Clock Latency

	Clock Relationships
	Setting Constraints for Unrelated Clocks
	Using the set_clock_groups Constraint
	Using the set_false_path Constraint
	Clock Synchronizers
	Metastable Synchronizer Circuit

	How to Set Clock Uncertainty

	Constraining I/O
	Constraining Synchronous Inputs and Outputs
	Constraining Unsynchronized Inputs and Outputs
	Input Receive Clock Delay
	Output Receive Clock Delay
	Input Forward Clock Delay (GPIO clkout)
	Output Forward Clock Delay (GPIO clkout)
	Input Forward Clock Delay (GPIO output)
	Output Forward Clock Delay (GPIO output)

	Timing Exceptions
	Example: Clock-to-Clock Path with Control
	Understanding False Paths
	Understanding Min and Max Delays
	Understanding Multicycle Constraints
	Shifted Capture Window
	Shifted and Widened Window
	Constraints between Fast and Slow Clocks

	SDC Warnings
	Common Mistakes
	SDC Tips and Tricks
	SDC Syntax
	Wildcard Commands
	Regular Expressions
	Inverted Clocks
	Square Brackets in Clock Names

	SDC Constraints (Alphabetical)
	create_clock Constraint
	create_generated_clock Constraint
	get_fanouts Constraint
	get_fanins Constraint
	set_bus_syntax_mode Command
	set_clock_groups Constraint
	set_clock_latency Constraint
	set_clock_uncertainty Constraint
	set_false_path Constraint
	set_input_delay and set_output_delay Constraints
	set_max_delay and set_min_delay Constraints
	set_multicycle_path Constraint
	-through Option

	Object Specifiers
	SDC Examples
	Example: Dynamic Multiplexers and create_clock -add
	Example: FPGA Forwarded Clock
	Example: Generated Clock with Clock Multiplexer
	Example: Soft SERDES
	Example: Disable Impossible Paths

	Interpreting Timing Results
	Clock Frequency Summary
	Clock Relationship Summary
	Critical Paths

	Constraining Logic and Routing Manually (Beta)
	Tiles
	Working with Primitives
	Enabling Manual Assignments
	Assignment Rules
	Creating a Location Assignment File
	Constraining Routing Manually (Titanium Only, Beta)
	Routing Constraint Flow
	Enabling Routing Constraints
	Generate .rcf Template
	Creating a Routing Constraint File
	Best Practices for Constraining Routing
	Example Flow

	Methods for Closing Timing
	Synthesis Options
	Handling High Fanouts

	Place-and-Route Options
	Beneficial Skew
	Sweeping Script
	Optimization Sweeping
	Seed Sweeping

	Closing Timing with High DSP Block Utilization

	Tcl Console
	General Commands
	delete_timing_results Command
	get_available_timing_model Command
	get_timing_model Command
	read_sdc Command
	reset_timing Command
	set_timing_model Command
	write_sdc Command

	Report Commands
	check_timing Constraint
	report_clocks Command
	report_path Command
	report_sdc Constraint
	report_timing Command
	report_timing_summary Command

	Tcl List Functions (Alphabetical)
	lappend
	lassign
	lindex
	linsert
	llength
	foreach_in_collection
	foreach
	lrange
	lreplace
	lreverse
	lsearch
	lsort

	Tcl Script Examples
	Identify Pins with a Regular Expression
	Create Clocks with Different Periods
	Generate a Report with get_fanouts
	Generate Report with a Subset of Clocks
	Use Variable for Min/Max Delay Calculation

	Command-Line Tcl Console

	Appendix
	About the <project>.pt.sdc File
	About the <project>.pt_timing.rpt File

	Where to Learn More
	Revision History

