
Titanium PCIe® Controller User
Guide

UG-TiPCIe-v1.1
September 2024
www.efinixinc.com

Copyright © 2024. All rights reserved. Efinix, the Efinix logo, the Titanium logo, the Topaz logo, Quantum, Trion, and Efinity are trademarks of Efinix,
Inc. All other trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Titanium PCIe Controller User Guide

Contents

Introduction... 4

Features..5

Functional Description...6
Physical Layer..7

SRIS Operation... 9
RX Lane Margining.. 9

Data Link Layer...23
Data Link Feature Exchange.. 24
Aggregating ACK DLLPs.. 25

Transaction Layer..25
AXI Application Layer..26

AXI Master Read Operation...27
AXI Master Write Operation.. 30
Inbound Message Interface... 33
Ordering Between AXI Master Write and Read Channels.. 39
Inbound PCIe to AXI Address Translation (Root Port)..41
Inbound PCIe to AXI Address Translation (Endpoint)..42
AXI Slave Interface.. 42
AXI Master and Slave Read/Write Length Limitations..64

Interrupt Interface.. 64
Legacy Interrupt Operation..64
MSI and MSI-X Interrupt Modes..65
Interrupt Sideband Signals.. 66

Clock Sources.. 68

Link Control... 69
Link Up...69
Link Down and Reset...69
Reset Types... 70

Cold Reset.. 70
Warm Reset...70
Hot Reset...70

Reset Handshake..70
Function-Level Reset (FLR)..71

Concurrent FLR Request in Multiple PFs/VFs..72
Reset During an FLR... 73

Power Management.. 73
Function Power States... 73
L0s Power State.. 73
L1 Power State..74

Entering L1 via ASPM... 74
Entering L1 via PCI-PM... 75
L1 Exit Triggers.. 75
L1 Register Programming...76
Blocking L1 Explicit Client Exit or Endpoint Entry..76

L1 Power Substates..76
Entering L1 Substate...78
Exiting L1 Substate..78
L1.1 Operation... 78
L1.2 Operation... 80
L1 Substate Register Programming.. 83
Explicit Client Exit or Entry Block..85
Integration Details... 85

www.efinixinc.com

Titanium PCIe Controller User Guide

L2 Power State..86
Entering L2... 86
Wake Up or Exiting L2..87

Configuring Registers with the APB Interface..87

Configuration Snoop Interface..89

Vendor-Specific Extended Capability (VSEC)... 91

Configuration Guide..93
AXI Outbound Access Example...93
Accessing the Configuration TLP.. 93

Method 1.. 94
Method 2.. 94

Programming the Outbound PCIe Descriptor Register... 94
Address Translation..95
Memory or I/O TLP Access...96
Message TLP Access..97
Endpoint Autonomous Link Bandwidth Management... 98
Programming the SR-IOV Registers...98

VF Function Number Allocation.. 98
Setting up the VF BAR Registers...99

Managing Outbound NP Outstanding Requests and Completion Responses (Endpoint)..........100

Interface Signals..102
Clock Signals.. 102
Reset Interface Signals.. 102
AXI Master Interface Signals.. 103
AXI Slave Interface Signals...109
Interrupt Interface Signals.. 113
Message Interface Signals.. 115
Status and Error Indicator Signals...115
Function-Level Reset Signals..119
Configuration Snoop Interface Signals...120
Vendor Specific (VSEC) Interface Signals...121
Power Management Interface Signals.. 122
L1 Interface Signals... 125
L1 Substate Interface Signals...125
APB Interface Signals.. 126

Appendix A: Acronyms and Abbreviations.. 128

Appendix B: Error Handling... 130
Non-Fatal Errors... 130
Multiple Errors.. 134
Multiple-Error Scenarios..135

Appendix C: LTSSM State Encoding... 136

Appendix D: PCIe Configuration Capabilities Linked List..138
Configuration-Specific Capabilities... 139

Revision History.. 141

www.efinixinc.com

Titanium PCIe Controller User Guide

Introduction
Titanium transceivers consist of a physical medium attachment (PMA) and a physical
coding sublayer (PCS). The PMA connects the FPGA to the lane, generates the required
clocks, and converts the data from parallel to serial or serial to parallel. The PCS contains
the digital processing interface between the PMA and the FPGA fabric. The PCS supports
SGMII, 10GBase-KR, and PCIe® Gen4 as well as PMA Direct. This user guide provides the
specifications for the PCIe Controller interface.

Figure 1: Transceiver Used for PCIe

PCIe
Controller

(x1, x2, x4)

Lane 0

PIPE
Lane 1

Lane 2

Lane 3

Core Transceiver

The following table shows the high-level controller configuration. It supports up to Gen4 x4,
which is equivalent to a 16 Gbps lane rate or up to 64 Gbps link bandwidth.

Table 1: PCIe Controller Configuration

Parameter Setting

Operational mode Endpoint or root port(1)

Link width x1, x2, x4

PIPE interface fMAX 500 MHz, Gen 4
250 MHz, Gen 3
125 MHz, Gen 2
62.5 MHz, Gen 1

PCIe Controller core clock(2) 500 MHz

FPGA user clock (AXI interface) fMAX
(3) 125 - 250 MHz

FPGA user data path width (AXI interface) 256 bits

AXI interface address width 64 bits

Power management clock fMAX 40 MHz

The PCIe Controller can be configured to be either endpoint (EP) or root port (RP) mode,
depending on your requirements. PCIe operations initiated by the user side are driven

(1) Root port capabilities are limited in the Efinity® software v2024.1.
(2) The PCIe Controller core clock is an internal clock.
(3) This clock, AXI_CLK, is available to the user application

www.efinixinc.com 4

Titanium PCIe Controller User Guide

through the AXI4 slave port; PCIe operations initiated by the host side are driven through
the AXI4 master port.

Figure 2: PCIe Controller Block Diagram

Lane 0

Lane 1

Lane 2

Lane 3

P
hy

si
ca

l L
ay

er

D
at

a
Li

nk
 L

ay
er

Tr
an

sa
ct

io
n

La
ye

rAXI
Application

Layer

P
IP

E
 (P

C
S

)

P
M

A

AXI4 Slave
AXI4 Master

Interrupts
Messages

Debug

Configuration
RegistersAPB

SerDes

SerDes

SerDes

SerDes

PCIe Controller

Reset ControllerReset perst_n

Status and Error

Core Logic Reference clock

cfg_USER_STATUS

Note: Refer to Appendix A: Acronyms and Abbreviations on page 128 for terms used in this document.
Refer to "PCI Express Interface" in the Titanium Interfaces User Guide for configuration options.

Features
• Fully integrated PMA with PIPE interface and controller (consisting of the physical layer,

data link layer, and transaction layer)
• Programmable as endpoint (EP) or root port (RP)
• AXI4 slave interface port
• AXI4 master interface port
• Dedicated interrupt interface and inbound message interface supporting conventional

interrupts, MSI, and MSI-X
• Supports:

— Power management
— Function-level reset (FLR)
— SR-IOV
— Up to four physical functions; each physical function can support up to 16 virtual

functions
— Up to 64 virtual functions

• Advanced error reporting (AER)
• TLP processing hints (TPH)
• Steering tag

www.efinixinc.com 5

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF

Titanium PCIe Controller User Guide

Functional Description
The following figure shows a high-level overview of the PCIe Controller. This topic provides
an overview of the layers, which are described in detail later.

Figure 3: PCIe Controller High-Level Block Diagram

PIPE Interface

Transaction Layer

AXI Application Layer

AXI4 Slave
Read/Write
Interface

Configuration
Registers

AXI4 Master
Read/Write
Interface

Interrupt
Interface

Flow
Control

PNP Receive
FIFO RAM

Completion
 Receive

FIFO RAM

Data Link Layer

Link
State

Replay
Buffer
RAM

CRC
Check

Physical Layer
LTSSM

CRC
Generator

Physical Layer
On the physical layer's receive (RX) side, data arrives from the link over the PIPE interface.
For all link speeds, each lane is de-scrambled independently. The data from the lanes is de-
skewed to generate aligned data. The PCIe Controller decodes the aligned data and sends the
packets to the data link layer.

On the physical layer's transmit (TX) side, data arrives from the data link layer over a single
interface. The PCIe Controller formats the data into packets by appending SOP and EOP,
and aligns it on the outgoing lanes. For all link speeds, the data from each lane is scrambled
independently before being transmitted on the outgoing PIPE. The physical layer has one
instance of the Link Training and Status State Machine.

Data Link Layer
The data link layer receives packet data from the physical layer's RX. A CRC checker checks
the incoming packet LCRC. The PCIe Controller sends the LCRC-stripped data to the
transaction layer. A separate state machine performs the data link layer initialization.

On the TX side, the data link layer receives packets from the transaction layer over a 128-
bit data path. It then adds the LCRC to the packets, multiplexes them with other data link
layer packets (such as ACKs and flow control DLLPs), and forwards them to the physical

www.efinixinc.com 6

Titanium PCIe Controller User Guide

layer. The TX side of the data link layer also has the replay buffer that is required for re-
transmitting packets.

Transaction Layer
At the transaction layer, data arrives on the RX side from the data link layer. The arriving
packets go into a receive FIFO buffer, and packet forwarding only begins when the FIFO
buffer has a complete packet. Packets are decoded and forwarded to the appropriate host
interface, or to an internal module (for example, interrupt messages). The host interfaces
include separate interfaces for posted/non-posted (PNP) and completion packets.

The TX side of the transaction layer receives data from the client logic through separate
interfaces for each type (posted/non-posted and completion). A state machine processes the
data, schedules the packets, and forwards them over a common data path to the data link
layer.

AXI Application Layer
The application layer provides a simple interface to a host bus or DMA engine on the user
side. The application layer has three separate interfaces to the user logic:

• Target memory read/write interface—Provides a straightforward interface to the user
memory controller or DMA engine. This interface also delivers I/O requests and messages
received from the link to the client. EPs need this interface.

• Master read/write interface—Lets an EP generate memory transactions to the host as bus
master; an RP can generate memory, I/O, configuration, and message requests. Devices
that require bus master capability need this interface, e.g., all RPs and EPs that have
master capability.

• Interrupt interface—Communicates the interrupt state between the user application and
the PCIe Controller.

The application interface can maintain the state of up to 256 non-posted transactions
(memory reads, I/O reads and writes, configuration reads and writes) generated on the master
side, allowing their completions to be matched to the requests.

PCIe Controller Configuration
Many of the PCIe Controller's interfaces and features are user configurable with the Efinity
Interface Designer. The settings you make in the Interface Designer are the defaults that the
PCIe Controller uses when you power it up or perform a cold reset. You can also change
many of the settings via the APB interface (if you enable it).

Learn more: Refer to the Titanium Interfaces User Guide for a complete description of the settings you
can configure with the Interface Designer.

Physical Layer
Data arrives from the PIPE interface over one or more lanes. Each lane has a 32-bit interface
and a clock frequency of 62, 125, 250, or 500 MHz depending on the link speed. The data
flow happens as follows:

1. The data is converted to the core clock domain.
2. The PCIe Controller de-scrambles each lane's data independently.
3. Logic checks the data to detect any link power state transitions.
4. Tthe lanes are de-skewed using FIFOs that are aligned on SKP sequences. The lanes are

aligned as a single unit.

www.efinixinc.com 7

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF

Titanium PCIe Controller User Guide

Figure 4: RX PHY Layer

Descrambler

D
es

ke
w

Link State
Management

Link Training
RX State
Machine

Lane 0
Data

Descrambler Link State
Management

Link Training
RX State
Machine

Lane 1
Data

Descrambler Link State
Management

Link Training
RX State
Machine

Lane n
Data

To
LTSSM

Frame
Decoder Data to

Link Layer

A frame decoder decodes the de-skewed data, removes the SOP/EOP framing delimiters from
the packet, and aligns them on the internal data path. The frame decoder can handle varying
link widths and all potential packet alignments on the lanes. The decoded data is sent to the
data link layer with indicators for packet type and errors detected.

The PCIe Controller sends each lane's received data to the Link Training Receive State
Machine, which detects and decodes any training sequences from the lane. Each state machine
passes information extracted from the training sequences to the LTSSM.

On the TX side, data arrives from the data link layer over a 128-bit data path, plus sideband
signals. A frame decoder adds SOP and EOP delimiters to the packets and aligns them on the
lanes. The frame encoder can handle varying link widths and all legal packet alignments on
the lanes.

Figure 5: TX PHY Layer

Scrambler MultiplexerLane 0
Data

Scrambler MultiplexerLane 1
Data

Scrambler MultiplexerLane n
Data

Frame
Encoder

Data from
Link Layer

LTSSM
From RX
State
Machines

The PCIe Controller multiplexes outgoing packets from the frame encoder with training
sequences generated by the LTSSM. The multiplexer disables the data path from the frame
encoder during link training, and allows the LTSSM to control the lanes. Each lane has its
own scrambler to scramble the data before sending it to the PIPE interface. The outgoing

www.efinixinc.com 8

Titanium PCIe Controller User Guide

PIPE interface has 32 bits per lane for all speeds with a PIPE clock frequency of 62, 125, 250,
or 500 MHz), which determines the link speed.

SRIS Operation
The PCIe Controller supports the Separate Reference Clock Independent Spread Spectrum
(SRIS) ECN. With SRIS enabled, the PCIe Controller is in SRIS mode upon power-up and
can transmit and receive the SKP ordered set (OS) as required by the SRIS specifications.
In SRIS mode, the PCIe Controller transmits SKP OS (as per the SRIS and PCIe 3.0
specifications) as follows:

• In 8b/10b encoding mode, the PCIe Controller transmits SKP OS every 128 symbols.
If, due to a transmission of a large TLP, the SKP OS cannot be sent at the 128 symbol
boundary, the controller accumulates all SKP OS and sends them at the end of the TLP.

• In 128/130b encoding mode, the PCIe Controller transmits SKP OS every 32 blocks.
If, due to a transmission of a large TLP, the SKP OS cannot be sent at the 32 block
boundary, the controller accumulates the SKP OS and send them at the end of the TLP.

On the RX side, the PCIe Controller can handle the higher frequency SKP OS reception as
mandated by the SRIS specifications.

When SRIS mode is enabled, the following two features (as defined in the PCIe 3.0
specification) are changed:

• L0s capability is not advertised by the core in the link control register in PCI Express
capability structure in the PCI compatible configuration space.

• The modified compliance pattern at 8G or higher is different. See the SRIS ECN
specification for further details.

When the SRIS control register power-on default value is changed, the L0s capability in
the Link Control register should be updated accordingly via the Local Management/APB
interface.

The SRIS specification has an optional feature called Lower SKP OS generation/reception.
The PCIe Controller implements this feature. With this feature, the PCIe device (if needed)
can revert to the non-SRIS frequency of SKP OS generation when the PCIe link is in the L0
mode. This capability is advertised in the Lower SKP OS Generation/Reception Supported
Speeds Vector field of the Link Capabilities 2 register. This feature is enabled/disabled using
the Enable Lower SKP OS Generation Vector field of the Link Control 3 register.

When the SRIS feature is disabled using the SRIS control register, the Lower SKP OS
Generation/Reception Supported Speeds Vector field of the Link Capabilities 2 register is
disabled by forcing setting the value to zero.

Note: You can enable SRIS in the Interface Designer (PCI Express block > Base tab > SRIS Enable).
During operation, you can update the setting using the APB interface. As a control and debug feature, you
can enable/disable the SRIS feature using a control register in the local management space (refer to "SRIS
Control Register" in the "Local Management Registers" chapter of the Titanium PCIe Controller Registers
User Guide). If you want to enable/disable SRIS mode, set/reset the SRIS Enable register field before
link training begins.

Important: You cannot enable SRIS if active state power management (ASPM) is enabled.

RX Lane Margining
The Receiver lane margining enables system software to obtain the receiver's margin
information while the link is in L0 state. The PCIe Controller:

• Supports RX lane margining for timing and voltage in either direction from the current
RX position.

www.efinixinc.com 9

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG

Titanium PCIe Controller User Guide

• Supports RX lane margining in endpoint and root port modes.
• Supports RX lane margining for PHYs that implement an independent error sampler.

(i.e., MIndErrorSampler ==1). MIndErrorSampler==0 is not supported.
• Supports all lanes being margined simultaneously.
• Supports PIPE interface revision 4.4.1 for margining.
• Implements programmable registers in the local management space for all PHY

parameters related to margining.
• Implements the Lane Margining Capability Register Set in the PF0 configuration space at

address offset 12'h920.
• Implements logic to detect and report invalid margining commands received from host

software and the PHY.

Lane margining is driven by software. Software uses the Lane Margin Control and Status
register in each port (downstream or upstream) for margin control and to obtain status
information for the corresponding RX associated with the port.

When the host writes a new margining command to the Lane Margin Control Register, the
PCIe Controller decodes the command and performs two checks to determine whether the
command is:

• Valid:
— Commands that do not match defined command formats are treated as invalid.
— If the received command is invalid, the PCIe Controller discards the command and

reports the error in LM register.

• Supported (step margin commands):
— Checks if the step margin offset is within the range supported by the device.
— If a step margin command is unsupported, the PCIe Controller responds with NAK

status in the Lane Margin Status Register. An error is not flagged in the LM registers.

Note: Refer to Exception Handling on page 21 for more information on these
checks.

The PCIe Controller then processes commands that are valid and supported. The
PCIe Controller internally executes commands that do not require any action from the PHY,
such as report commands. All other commands are delivered to the PHY over the PIPE
interface.

The PCIe Controller responds to the host by updating the status appropriately in the Lane
Margin Status Register. The register format is:

Table 2: Margining Lane Control and Status Register (i_margining_lane_control_status_regX)
[31:24] [23] [22] [21:19] [18:16] [15:8] [7] [6] [5:3] [2:0]

MPSTS R1 UMSTS MTSTS RNSTS MRGPAY R0 USGMOD MRGTYP RCVNUM

Margin
Payload
Status

Reserved Usage
Model
Status

Margin
Type

Status

RX
Number

Status

Margin
Payload

Reserved Usage
Model

Margin
Type

RX
Number

www.efinixinc.com 10

Titanium PCIe Controller User Guide

Command Processing (Endpoint)
The following table shows how the PCIe Controller processes margining commands in
endpoint mode.

Table 3: Margining Command Processing in Endpoint Mode

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

No Command
Margin Type [2:0]: 111b
Receiver Number [2:0]: 000b
Margin Payload [7:0]: 9Ch

No change Margin Type [2:0]: 111b
Receiver Number [2:0]: 000b
Margin Payload [7:0]: 9Ch

Access Retimer Register
Margin Type [2:0]: 001b
Receiver Number [2:0]:
010b/100b
Margin Payload [7:0]: XXh

No change Invalid command for EP. Reported
as an invalid command in LM
register.

Report Margin Control
Capabilities
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 88h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:5]: 000b
Margin Payload [4:0]:
{MIndErrorSampler,
MSampleReportingMethod,
MIndLeftRightTiming,
MIndUpDownVoltage,
MVoltageSupported}

Report MNumVoltageSteps
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 89h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7]: 0
Margin Payload [6:0]:
MNumVoltageSteps

Report MNumTimingSteps
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Ah

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:6]: 00
Margin Payload [5:0]:
MNumTimingSteps

Report MMaxTimingOffset
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Bh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7]: 0
Margin Payload [6:0]:
MMaxTimingOffset

Report MMaxVoltageOffset
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Ch

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7]: 0
Margin Payload [6:0]:
MMaxVoltageOffset

www.efinixinc.com 11

Titanium PCIe Controller User Guide

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

Report
MSamplingRateVoltage
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Dh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:6]: 00
Margin Payload [5:0]
= {MSamplingRateVoltage [5:0]}

Report MSamplingRateTiming
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Eh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:6]: 00
Margin Payload [5:0]:
{MSamplingRateTiming [5:0]}

ReportMSampleCount
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Fh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7]: 0
Margin Payload [6:0]:
MSampleCount

ReportMMaxLanes
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 90h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:5]: 00
Margin Payload [6:0]: MMaxLane

Set Error Count Limit
Margin Type [2:0]: 010b
Receiver Number [2:0]: 110b
Margin Payload [7:6]: 11b
Margin Payload [5:0]: Error
Count Limit

No change
Register Error Limit [5:0] in the Local
Management Register in the core clock
domain.

Margin Payload [7:6]: 11b
Margin Payload [5:0]: Error Count
Limit registered by the target
receiver

Go to Normal Settings
Margin Type [2:0]: 010b
Receiver Number [2:0]: 000b or
110b
Margin Payload [7:0]: 0Fh

• Write committed to RX Margin
Control 0 with Start Margin = 0.

• Wait for Write Ack response from PHY
or a 10 ms timeout.

• Wait for PHY2MAC write committed
to Margin Status or a 10 ms timeout.

Margin Type [2:0]: 010b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 0Fh

Clear Error Log
Margin Type [2:0]: 010b
Receiver Number [2:0]: 000b or
110b
Margin Payload [7:0]: 55h

• Write committed to RX Margin
Control 0 with Error Count Reset = 1.
Other fields picked up from the RX
Margin Control 0 Mirror Register.

• Wait for Write Ack response from PHY
or a 10 ms timeout.

Margin Type [2:0]: 010b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 55h

www.efinixinc.com 12

Titanium PCIe Controller User Guide

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

Step Margin to Timing Offset
to Right/Left of Default
Margin Type [2:0]: 011b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: XX

If a step margin to voltage is already in
progress or if a step margin to timing in
the opposite direction is in progress:
• Stop margining by issuing write

committed to RX Margin Control 0
with Start Margin = 0.

• Other fields picked up from the RX
Margin Control 0 Mirror Register.

• Wait for Write Ack response from PHY
or a 10 ms timeout.

• Wait for PHY2MAC Write Committed
to Margin Status or a 10 ms timeout.

Check if RX margin command is
supported.
If margin offset is supported:
• Issue Write Uncommitted to RX

Margin Control 1 with Margin Offset
[6:0] = Margin Payload [5:0].

• Issue Write Committed to RX Margin
Control 0 with StartMargin: 1 and
MarginTiming: 1.

• Wait for Write Ack response from PHY
or a 10ms timeout.

• Wait for PHY2MAC Write Committed
to Margin Status or a 10 ms timeout.

Otherwise:
• Issue NAK Status and exit.

Margin Type [2:0]: 011b
Receiver Number [2:0]: 110b
IF (Unsupported Range in
Command)
Margin Payload [7:6]: 11
ELSIF (Write ACK received for
Margin Command)
Margin Payload [7:6]: 01
ELSIF (PIPE MAC RX Margin Register
0 Margin Status)
Margin Payload [7:6]: 10
ELSIF (Error Count > Limit)
Margin Payload [7:6]: 00
Margin Payload [5:0]: Error Count
from RX Margin Status 2 Register

Step Margin to Voltage Offset
to Up/Down of Default
Margin Type [2:0]: 100b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: XX

If a step margin to timing is already in
progress or if a step margin to voltage
in the opposite direction is in progress:
• Stop Margining by issuing Write

Committed to RX Margin Control 0
with Start Margin = 0. Other fields
picked up from the RX Margin Control
0 Mirror Register.

• Wait for Write Ack response from PHY
or a 10ms timeout.

• Wait for PHY2MAC Write Committed
to Margin Status or a 10 ms timeout.

Check if an RX margin command is
valid.
If margin offset is supported:
• Issue Write Uncommitted to RX

Margin Control 1 with Margin Offset
[6:0] = Margin Payload [6:0].

• Issue Write Committed to RX Margin
Control 0 with StartMargin: 1 and
MarginVoltage: 1

• Wait for Write Ack response from PHY
or a 10ms timeout.

• Wait for PHY2MAC Write Committed
to Margin Status or a 10 ms timeout.

Otherwise:
• Issue NAK Status and exit.

Margin Type [2:0]: 100b
Receiver Number [2:0]: 110b
IF (Unsupported Range in
Command)
Margin Payload [7:6]: 11
ELSIF (Write ACK received for
Margin Command)
Margin Payload [7:6]: 01
ELSIF (PIPE MAC RX Margin Register
0 Margin Status)
Margin Payload [7:6]: 10
ELSIF (Error Count > Limit)
Margin Payload [7:6]: 00
Margin Payload [5:0]: Error Count
from RX Margin Status 2 Register

www.efinixinc.com 13

Titanium PCIe Controller User Guide

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

Vendor Defined
Margin Type [2:0]: 101b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: Vendor
Defined

No change Margin Type [2:0]: 101b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: Vendor
Defined
Margin Payload status same as
received in control register.

Command Processing (Root Port)
The following table shows how the PCIe Controller processes margining commands in root
port mode.

Table 4: Command Processing in Roor Port Mode

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

No Command
Margin Type [2:0]: 111b
Receiver Number [2:0]:
000b
Margin Payload [7:0]: 9Ch

No change Margin Type [2:0]: 111b
Receiver Number [2:0]: 000b
Margin Payload [7:0]: 9Ch

Access Retimer Register
Margin Type [2:0]: 001b
Receiver Number [2:0]:
010b/100b
Margin Payload [7:0]: XXh

No change Command sent on Control SKP sent
by downstream port.
Margin Status Updated from the
Control SKP OS received by the
downstream port.

Report Margin Control
Capabilities
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:0]: 88h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:5]: 000b
Margin Payload [4:0]:
{MIndErrorSampler,
MSampleReportingMethod,
MIndLeftRightTiming,
MIndUpDownVoltage,
MVoltageSupported}

Report
MNumVoltageSteps
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:0]: 89h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7]: 0
Margin Payload [6:0]:
MNumVoltageSteps

Report MNumTimingSteps
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b
Margin Payload [7:0]: 8Ah

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:6]: 00
Margin Payload [5:0]:
MNumTimingSteps

www.efinixinc.com 14

Titanium PCIe Controller User Guide

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

Report MMaxTimingOffset
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:0]: 8Bh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7]: 0
Margin Payload [6:0]:
MMaxTimingOffset

Report
MMaxVoltageOffset
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b
through 101b
Margin Payload [7:0]: 8Ch

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7]: 0
Margin Payload [6:0]:
MMaxVoltageOffset

Report
MSamplingRateVoltage
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:0]: 8Dh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:6]: 00
Margin Payload [5:0]:
{MSamplingRateVoltage [5:0]}

Report
MSamplingRateTiming
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:0]: 8Eh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:6]: 00
Margin Payload [5:0]:
{MSamplingRateTiming [5:0]}

ReportMSampleCount
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:0]: 8Fh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7]: 0
Margin Payload [6:0]:
MSampleCount

ReportMMaxLanes
Margin Type [2:0]: 001b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:0]: 90h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:5]: 00
Margin Payload [6:0]: MMaxLane

Set Error Count Limit
Margin Type [2:0]: 010b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:6]: 11b
Margin Payload [5:0]: Error
Count Limit

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:6]: 11b
Margin Payload [5:0]: Error Count
Limit registered by the target
Receiver

Go to Normal Settings
Margin Type [2:0]: 010b
Receiver Number [2:0]:
000b through 101b
Margin Payload [7:0]: 0Fh

• Write Committed to RX Margin Control 0
with Start Margin = 0.

• Wait for Write Ack response from PHY or
a 10 ms timeout.

• Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Margin Type [2:0]: 010b
Receiver Number [2:0]: 001b
Margin Payload [7:0]: 0Fh

www.efinixinc.com 15

Titanium PCIe Controller User Guide

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

Clear Error Log
Margin Type [2:0]: 010b
Receiver Number [2:0]:
000b through 101b
Margin Payload [7:0]: 55h

• Write Committed to RX Margin Control 0
with Error Count Reset = 1. Other fields
picked up from the RX Margin Control 0
Mirror Register.

• Wait for Write Ack response from PHY or
a 10 ms timeout.

Margin Type [2:0]: 010b
Receiver Number [2:0]: 001b
Margin Payload [7:0]: 55h

Step Margin to Timing
Offset to Right/Left of
Default
Margin Type [2:0]: 011b
Receiver Number [2:0]:
001b through 101b
Margin Payload [7:0]: XX

If a step margin to voltage is already in
progress or if a step margin to timing in the
opposite direction is in progress:
• Stop Margining by issuing Write

Committed to RX Margin Control 0 with
Start Margin = 0. Other fields picked
up from the RX Margin Control 0 Mirror
Register.

• Wait for Write Ack response from PHY or
a 10 ms timeout.

• Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Check if RX margin command is supported.
If margin offset is supported:
• Issue Write Uncommitted to RX Margin

Control 1 with Margin Offset [6:0] =
Margin Payload [5:0].

• Issue Write Committed to RX Margin
Control 0 with StartMargin: 1 and
MarginTiming: 1.

• Wait for Write Ack response from PHY or
a 10 ms timeout.

• Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Otherwise:
• Issue NAK Status and exit.

Margin Type [2:0]: 011b
Receiver Number [2:0]: 001b
IF (Unsupported Range in
Command)
Margin Payload [7:6]: 11
ELSIF (Write ACK received for
Margin Command)
Margin Payload [7:6]: 01
ELSIF (PIPE MAC RX Margin Register
0 Margin Status)
Margin Payload [7:6]: 10
ELSIF (Error Count > Limit)
Margin Payload [7:6]: 00
Margin Payload [5:0]: Error Count
from RX Margin Status 2 Register

www.efinixinc.com 16

Titanium PCIe Controller User Guide

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

Step Margin to Voltage
Offset to Up/Down of
Default
Margin Type [2:0]: 100b
Receiver Number [2:0]:
001b through 110b
Margin Payload [7:0]: XX

If a step margin to timing is already in
progress or if a step margin to voltage in
the opposite direction is in progress:
• Stop Margining by issuing Write

Committed to RX Margin Control 0 with
Start Margin = 0. Other fields picked
up from the RX Margin Control 0 Mirror
Register.

• Wait for Write Ack response from PHY or
a 10 ms timeout.

• Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Check if RX margin command is valid.
If margin offset is supported:
• Issue Write Uncommitted to RX Margin

Control 1 with Margin Offset [6:0] =
Margin Payload [6:0].

• Issue Write Committed to RX Margin
Control 0 with StartMargin: 1 and
MarginVoltage: 1

• Wait for Write Ack response from PHY or
a 10 ms timeout.

• Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Otherwsie:
• Issue NAK Status and exit.

Margin Type [2:0]: 100b
Receiver Number [2:0]: 001b
IF (Unsupported Range in
Command)
Margin Payload [7:6]: 11
ELSIF (Write ACK received for
Margin Command)
Margin Payload [7:6]: 01
ELSIF (PIPE MAC RX Margin Register
0 Margin Status)
Margin Payload [7:6]: 10
ELSIF (Error Count > Limit)
Margin Payload [7:6]: 00
Margin Payload [5:0]: Error Count
from RX Margin Status 2 Register

Vendor Defined
Margin Type [2:0]: 101b
Receiver Number [2:0]:
001b
Margin Payload [7:0]:
Vendor Defined

No change Margin Type [2:0]: 101b
Receiver Number [2:0]: 001b
Margin Payload [7:0]: Vendor
Defined
Margin Payload status same as
received in control register.

www.efinixinc.com 17

Titanium PCIe Controller User Guide

Step Margin Command Execution

Figure 6: Step Margin for Timing Command Execution

Step Margin Timing
Command Received

Errors found in
Command format?

Step Margin Voltage
operation in progress Or
Step Timing operation in

Opposite direction in
progress?

Log Error in LM
Register and wait for

next command

Stop Margining.Issue
Write_Committed to

RxMarginControl0 Register
with StartMargin==0

Write_ack And Margin
Status Pulse

Received from PHY

Log Error in LM
Register and wait
for next commandRespond with NAK

Status and wait for
next command

Margin Payload[5:0] >
MNumTimingSteps?

Issue Write_Committed to
RxMarginControl0 Register with
StartMargin=1 and MarginTiming

Write_ack
Received from PHY?

Respond with “Setup In Progress”
Status and wait for next update
from PHY or a new command

Margin Status Pulse
Received from PHY?

Log Error in LM
Register and wait
for next command

Respond with “Margin In
Progress” Status and

wait for next update from
PHY or a new command

Log Error in LM
Register and wait
for next command

Respond with “Too
Many Errors” Status

and wait for next
update from PHY or

a new command

Margin Status Pulse
Received from PHY?

Write_ack
Received from PHY?

GoToNormal
Settings Received

Error Count >
Error Limit?

10 ms Timeout

10 ms Timeout

10 ms Timeout

yes

yes

yes

yes

no

no

no

no

no

no

10 ms Timeout

10 ms Timeout

no

no

yes

yes yes

yes

A

A

www.efinixinc.com 18

Titanium PCIe Controller User Guide

Figure 7: Step Margin for Voltage Command Execution

Step Margin Voltage
Command Received

Errors found in
Command format?

Step Margin Timing
operation in progress Or
Step Voltage operation in

Opposite direction in
progress?

Log Error in LM
Register and wait for

next command

Stop Margining.Issue
Write_Committed to

RxMarginControl0 Register
with StartMargin==0

Write_ack And Margin
Status Pulse

Received from PHY

Log Error in LM
Register and wait
for next commandRespond with NAK

Status and wait for
next command

Margin Payload[6:0] >
MNumTimingSteps

Issue Write_Committed to
RxMarginControl0 Register with

StartMargin=1 and MarginVoltage

Write_ack
Received from PHY

Respond with “Setup In Progress”
Status and wait for next update
from PHY or a new command.

Margin Status Pulse
Received from PHY

Log Error in LM
Register and wait
for next command

Respond with “Margin In
Progress” Status and

wait for next update from
PHY or a new command.

Log Error in LM
Register and wait
for next command

Respond with “Too
Many Errors” Status

and wait for next
update from PHY or

a new command.

Margin Status Pulse
Received from PHY

Write_ack
Received from PHY

GoToNormalSettings
Received

Error Count >
Error Limit

10 ms Timeout

10 ms Timeout

10 ms Timeout

yes

yes

yes

yes

no

no

no

no

no

no

10 ms Timeout

10 ms Timeout

no

no

yes

yes yes

yes

www.efinixinc.com 19

Titanium PCIe Controller User Guide

Step Margin Execution Status
The step margin execution status is updated when a write committed is received from the
PHY. The 2-bit status is derived as shown in the following table.

Table 5: Step Margin Status

Inputs Step Margin
Execution

Status [1:0]

Description

PHY issues Write_Ack in response to a write
committed by the PCIe Controller to start
margining.

01 01b: Set up for margin in progress. The
receiver is getting ready but has not yet
started executing the step margin command.
MErrorCount is 0.

PHY sets the Margin Status bit in RX Margin
Status 0 PIPE MAC Register in response to
a write committed by the PCIe Controller to
start margining.

10 10b: Margining in progress. The receiver
is executing the step margin command.
MErrorCount reflects the number of errors
detected.

PHY sets the margin NAK bit in the RX Margin
Status 0 PIPE MAC Register in response to
a write committed by the PCIe Controller to
start margining.

11 11b: NAK. Indicates that an unsupported lane
margining command was issued. For example,
timing margin beyond +/- 0.2 UI. MErrorCount
is 0.

PHY updates error count bits [5:0] by issuing a
write committed to the MAC RX Margin Status
2 Register. When error count bits [5:0] is
greater than error limit[5:0], update execution
status.

00 00b: Too many errors. The receiver
autonomously went back to its default
settings. MErrorCount reflects the number of
errors detected. Note that MErrorCount might
be greater than the error count limit.

Control SKIP for Lane Margining at Receiver
The Step Margin Execution Status is updated when write committed is received from the
PHY. The 2-bit status is derived as shown in the following tables.

Table 6: Control SKP Ordered Set Format
Where N is 1 - 5.

Symbol Number Value Description

0 through (4*N - 1) AAh SKP Symbol. Symbol 0 is the SKP Ordered Set identifier.

4*N 78h SKP_END_CTL Symbol. Signifies the end of the Control SKP Ordered
Set after three more symbols.

4*N + 1 00-FFh Bit 7: Data Parity
Bit 6: First Retimer Data Parity
Bit 5: Second Retimer Parity
Bits [4:0]: Margin CRC [4:0]

4*N + 2 00-FFh Bit 7: Margin Parity
Bit 6: Usage Model : Set to 0b to indicate RX Lane Margining
Bit [5:3]: Margin Type
Bits [2:0]: Receiver Number

4*N + 3 00-FFh Bits [7:0] : Margin Payload

www.efinixinc.com 20

Titanium PCIe Controller User Guide

Table 7: Control SKP during Root Port and Endpoint Mode

Types Root Port Mode Endpoint Mode

Control SKP TX The contents of the four control fields of the Lane Margin
Control and Status Register in the downstream port are
always shown in the identical fields in the transmitted
Control SKP Ordered Sets.

The Control SKIP is always
transmitted with No Command.

Control SKP RX The PCIe Controller checks the Margin CRC and Margin
Parity in the received Control SKIP Ordered Sets. Any
mismatch detected is reported in the Lane Error Status
Register.
The contents of the Control SKP Ordered Set received in
the downstream port is reflected in the corresponding
status fields of the Lane Margin Control and Status
Register in the downstream port if either of these
conditions are met in the Lane Margin Control and Status
Register:
• Receiver number is 010b - 101b.
• Receiver number is 000b, margin command is clear,

rrror log is no command or Go to Normal Settings, and
there are retimer(s) in the link.

The PCIe Controller checks
the margin CRC and margin
parity in the received Control
SKIP Ordered Sets. Detected
mismatches are reported in the
Lane Error Status Register.
The contents of the Control SKIP
Ordered Sets are ignored in
endpoint mode.

Exception Handling
When host software writes a command into the PCIe Controller's Lane Margin Control
Register, the PCIe Controller performs a Command Valid Check and a Command Supported
Check.

Command Valid Check

The PCIe Controller checks for errors in the Margining Lane Control Register. Commands
that do not match any defined formats are treated as invalid. If the host software writes an
invalid command to the register, the PCIe Controller detects and reports the error in the
Local Management Register Margining Error Status 1 Register.

The PCIe Controller logs the first error and sets the error status bit. The software must clear
this status bit needs before another error can be logged. PCIe Controller continues to accept
subsequent commands written by software in the Margining Lane Control Register regardless
of previous errors.

Table 8: Valid Commands for EndPoint Mode
Any other commands are considered invalid.

Margin Command Margin Type[2:0] Receiver Number[2:0] Margin Payload[7:0]

No Command 111 000 9Ch

Report 001 110 88h to 90h

SetErrorCountLimit 010 110 {11xx_xxxx}

GoToNormalSettings 010 000, 110 0Fh

ClearErrorLog 010 000, 110 55h

StepMarginTimingOffset 011 110 {xxxx_xxxx}

StepMarginVoltageOffset 100 110 {xxxx_xxxx}

VendorDefined 101 110 {xxxx_xxxx}

www.efinixinc.com 21

Titanium PCIe Controller User Guide

Table 9: Valid Commands for Root Port Mode
Any other commands are considered invalid.

Margin Command Margin Type[2:0] Receiver Number[2:0] Margin Payload[7:0]

No Command 111 000 9Ch

Access Retimer 001 010, 100 {xxxx_xxxx}

Report 001 001 through 101 88h to 90h

SetErrorCountLimit 010 001 through 101 {11xx_xxxx}

GoToNormalSettings 010 000 through 101 0Fh

ClearErrorLog 010 000 through 101 55h

StepMarginTimingOffset 011 001 through 101 {xxxx_xxxx}

StepMarginVoltageOffset 100 001 through 101 {xxxx_xxxx}

VendorDefined 101 001 through 101 {xxxx_xxxx}

Command Supported Check

The PCIe Controller performs this check for Step Margin commands. When it receives a
valid Step Margin command, the PCIe Controller further checks whether the Step Margin
Offset is within the supported range. If a Step Margin command is unsupported, the
PCIe Controller responds with NAK status in the Lane Margin Status Register. No error is
flagged in LM registers in this case.

• The Step Margin Timing check is: Check Margin Payload[5:0] <= MNumTimingSteps
• The Step Margin Voltage check is: Check Margin Payload[6:0] <= MNumVoltageSteps

RX Margining PIPE Interface: Write Ack Timeout

During the execution of the GoToNormalSettings, ClearErrorLog, StepMarginTimingOffset
or StepMarginVoltageOffset commands, the PCIe Controller issues a write committed
command to the PHY over the PIPE interface and waits for the PHY to respond with
WriteAck.

PCIe Controller waits for 10 ms to receive a WriteAck. If it is not received, the
PCIe Controller reports an error in the Local Management Register Margining Error Status 2
Register.

Link Transition from Gen4 L0 State

The PCIe Controller only accepts margining commands when the link is in Gen4 L0 state.
After the command is accepted, the PCIe Controller continues processing the command as
long as the link remains in the Gen4 L0 or Recovery states.

While a margining command is being processed, if the link transitions out of the Gen4 L0 or
Recovery states, the PCIe Controller:

• Terminates all margining commands in progress.
• Resets all state machines related to RX Lane Margining to their default states.
• Resets all PIPE MAC registers, defined for RX Lane Margining, to their default values.
• Leaves the margining status in Lane Margin Control and Status Register at the last valid

status just before the link state transition.

www.efinixinc.com 22

Titanium PCIe Controller User Guide

Data Link Layer
On the RX side, the data from the link passes through a decoder state machine for each link.
The decoders verify the packet integrity by matching the received CRC with the generated
CRC, and comparing their sequence numbers with the expected values (for TLPs). There is a
separate CRC module for TLPs (32-bit CRC) and DLLPs (16-bit CRC).

Figure 8: RX Data Link Layer

Packet DecoderFrom PHY
Layer

ACK/NAK Processing

ACK/NAK Generation

Data to Transaction Layer

To TX Link Layer

To TX Link Layer

The packet decoder extracts the sequence number, CRC check, and strips the CRC.

After comparing and removing the link-layer CRC, the DLLP decoders pass the received
packet to its target module based on the packet type. The DLLP decoders pass all TLPs they
receive onto the the transaction layer (after first removing their sequence number and LCRC
fields). The PCIe Controller processes data link layer acknowledgements (ACKs and NAKs)
within the data link layer itself, and sends credit DLLPs to the flow control module.

After the CRC check, the PCIe Controller sends arriving data link layer acknowledgements
to the transmit side for processing. Logic on the transmit side matches the acknowledgements
with outstanding packets and handles any errors.

The receive side also generates acknowledgements (ACKs and NAKs) for the received TLPs.
The PCIe Controller sends these packets to the transmit side where they are multiplexed
with outgoing TLPs.

Figure 9: TX Data Link Layer

TLP Encoder

Replay BufferMultiplexer/
Arbiter

Data from Transaction Layer

ACKs from RX Link Layer

From RX ACK/NAK Generator

Credit DLLPs from
Flow Control Module

To PHY
Layer

The TLP encoder adds the sequence number and CRC.

On the TX side, the PCIe Controller formats the received transaction layer data for
transmission to the physical layer by inserting a sequence number and CRC. The
PCIe Controller multiplexes the formatted TLPs with other outgoing DL packets—such
as ACKs, NAKs, and credit packets—and sends them to the physical layer over a data path
shared by both links.

The TX side also contains the replay buffer associated with the link. The reply buffer is
responsible for re-transmitting packets when needed and uses an external single-port RAM for
storing the packets. There is also an internal pointer RAM for keeping track of packets stored
in the replay buffer.

The data link layer also generates power management DLLPs to facilitate transitions of the
link to the L1 and L2 states.

www.efinixinc.com 23

Titanium PCIe Controller User Guide

Data Link Feature Exchange
The PCIe Controller supports the data link feature exchange as per the PCI Express Base
4 specification. You enable/disable this feature by programming the DL Feature Exchange
Enable bit in the dl_feature_capabilities_reg Configuration register. When enabled, the
PCIe Controller's Data Link Control and Management State Machine enters the DL_Feature
state from the DL_Inactive state after the LTSSM is in L0. In the DL_Feature state, the
PCIe Controller transmits data link feature DLLPs continuously. It does not transmit any
other TLPs or DLLPs in this state.

The PCIe Controller transitions from the DL_Feature state to the DL_Init state when a DL
Feature DLLP is received with the feature Ack bit set. If the remote end device does not
support DL Feature Exchange, the PCIe Controller transitions from the DL_Feature state to
the DL_Init State when it receives a a InitFC1 DLLP.

The PCIe Controller supports the Scaled Flow Control Data Link features as described in the
following topics.

RX Scaled Flow Control
The PCIe Controller advertises the maximum available header and payload credit limits for
posted, non-posted, and completion RX buffers. When scaled flow control is activated, the
PCIe Controller advertises a scale factor of 01 by default.

The firmware can:
• Override the scale and limit values prior to link training.
• Program the scale factor in the Local Management DL Layer flow control scaling

management Register.
• Program the limit value in the Local Management Receive Credit Limit Register 0/1.

Additionally, the firmware must ensure that the programmed values do not exceed the
maximum credits that were present upon reset.

If Flow Control Scaling is not activated during DL Feature Exchange, the PCIe Controller
overrides the programmed scale factor with 00. The programmed credit values are adjusted to
the scale factor of 00.

TX Scaled Flow Control
The PCIe Controller captures the current posted, non-posted, and completion limit values
received in the INIT_FC and UPDATE_FC DLLPs.

Firmware can read:
• Received credit limit in Local Management Transmit Credit Limit Register 0/1
• Received credit scale factors in the Local Management DL Layer flow control scaling

management register

TX Flow Control Error Handling
The PCIe Controller detects the following errors and reports them as flow control protocol
errors:

• An RX that does not support scaled flow control must never cumulatively issue more
than 2,047 data payload outstanding unused credits to the TX or 127 unused header
credits. Additionally The RX must never cumulatively issue more outstanding unused
data or headers to the TX than the maximum credit values based on the scaled flow
control scaling factors. The PCIe Controller checks for violations of this rule and reports
a Flow Control Protocol Error (FCPE).

• If scaled flow control is activated for a virtual channel, the HdrScale and DataScale
fields in the UpdateFCs must match the values advertised during initialization. The

www.efinixinc.com 24

Titanium PCIe Controller User Guide

PCIe Controller checks for violations of this rule and reports a Flow Control Protocol
Error (FCPE).

The PCIe Controller does not support infinite credit advertisement.

Aggregating ACK DLLPs
The PCIe Controller supports ACK aggregation in certain conditions:

• Typically, the PCIe Controller schedules one ACK DLLP for transmission for each TLP
that it receives.

• If the TX is idle, it transmits an ACK DLLP immediately. However, if the TX is busy
with a TLP transmission, the ACK DLLP waits till the ongoing TLP is completely
transmitted.

• While the ACK DLLP is waiting for transmission, if the TX receives another TLP, the
PCIe Controller aggregates the two pending ACK DLLPs into a single ACK DLLP with
the higher sequence number.

Transaction Layer
On the RX side, data arrives from the data link layer over a 128-bit data path. Logic in the
transaction layer decodes the packet header, performs ECRC check when the packet has
a TLP digest, and aligns the payload on the data path. The data then goes through store-
and-forward FIFO buffers. The PCIe Controller has separate FIFO buffers for posted, non-
posted, and completion packets.

Figure 10: RX Transaction Layer

PNP RX
FIFO

PNP
Interface

From Link
Layer Completion

RX FIFO
Completion

Interface

Data to
Configuration

Module

ECRC Check
Header Extraction
Payload Alignment

Error Check

Configuration
Request

Processing

Interrupt
Processing

Configuration
Registers

Local
Management

Registers

Local Management
Bus Interface

Interrupt
Interface

Local
Management

Interface

To Host PNP
RX Interface

To Host SC
RX Interface

32-, 64-, 128-, or
256-bit Data plus
128-bit Header

The PCIe Controller only reads a packet from the FIFO when the entire packet has been
received. The decoding logic classifies packets based on their TLP header and forwards them
to the appropriate modules.

The PCIe Controller processes all read/write requests to configuration registers within the
transaction layer, which routes these requests to the register set of the function addressed by
the request, and returns completion packets back to the link. All interrupt-related messages
are processed by a separate interrupt processing module, which controls the interrupt
interface. An error handling module processes error messages.

www.efinixinc.com 25

Titanium PCIe Controller User Guide

The RX flow control parameters (payload and header credit for posted, non- posted, and
completion) are set based on the available space in the receive FIFO buffers. The flow control
protocol ensures that the FIFO buffers do not overflow. The FIFO buffers communicate
their state to the flow control module so that when the packet is forwarded out of the FIFO
buffers, the corresponding credit becomes available and can be advertised to the link.

In the TX side of the transaction layer, PNP requests and completion (SC) packets arrive
from the host over separate interfaces. The transaction layer multiplexes the packets, inserts
the TLP header (and optionally the ECRC) and forwards them to the data link layer. The
completions and messages generated are multiplexed on the same data path to the data link
layer.

Figure 11: TX Transaction Layer

To Link
Layer

TX
Scheduler

Interrupt
Message
Generator

Interrupt
Interface

From Host PNP
TX Interface

From Host SC
TX Interface

32-, 64-, 128-, or
256-bit Data plus
128-bit Header

TLP Formation
ECRC Insertion

Ready for PNP
Ready for SC

Consumed Credit to
TX Flow Control Module

Credit from TX Flow
Control Module

AXI Application Layer
The application layer provides an AXI interface (that conforms to the AMBA AXI protocol)
to the client application. This feature lets you use AXI signals to communicate with the
PCIe Controller instead of having to use PCIe protocols. The AXI interface has:

• An AXI master read/write interface that connects to a memory controller or DMA
engine. This interface is needed for all endpoints, and for root ports that allow endpoints
to access their memory space. All AXI master interface signals in the core start with the
prefix TARGET_AXI (see AXI Master Interface Signals on page 103).

• An AXI slave read/write interface that enables the endpoint or root port to generate
memory transactions to the link partner as bus master. This interface is required for root
ports. It is only required for endpoints that need bus master capability (see AXI Slave
Interface Signals on page 109).

• An interface to signals received messages from the PCIe link.

www.efinixinc.com 26

Titanium PCIe Controller User Guide

Figure 12: AXI Modules

TLPs from
Transaction

Layer

TX
Scheduler

AXI Master
Read/Write
Interface

AXI Slave
Read/Write
InterfaceMessages

Completion Data

Memory, I/O, Configuration
and Message Requests

Header
Decoder

Memory Requests
I/O Requests
Messages
Completions

AXI Master
Interface

AXI Slave
Interface

Split
Completion

Table

AER and Power
Management

Message
Generation

TLPs to
Transaction

Layer

AXI
Wrapper

The PCIe Controller first decodes TLPs arriving from the transaction layer into memory
requests, I/O requests, messages, and completion packets. Configuration requests are
forwarded to the configuration module. The PCIe Controller sends decoded requests to
the AXI master interface. The PCIe Controller performs write operations as indivisible
operations (that is, address followed by data). Read operations allow delayed completions,
thus allowing the address and data phases of multiple transactions to be interleaved.

With the AXI slave interface, the client can perform DMA reads and writes to the link
partner's memory space, acting as a PCI master (this capability is required for root ports,
and optional for endpoints). In root port, the the client application also uses the AXI slave
interface to transmit I/O and configuration requests on the link. The AXI slave interface
receives the client request and its associated parameters from the client application. If the
transaction is a memory write or message operation, the AXI slave interface constructs a TLP
containing the data to be written, and sends it to the transaction layer for delivery to the
PCIe link. The core maintains no state for these posted transactions.

If the transaction is a non-posted transaction—memory read, I/O read, I/O write,
configuration read, or configuration write—the AXI slave interface module forwards the
request to the transaction layer and records the request parameters in the completion state
memory (or split completion table). The PCIe Controller permits storage for the state
of up to 256 pending transactions in the split completion table. When the corresponding
completion TLP is received from the transaction layer, the AXI slave interface module
matches it with the request and forwards the data to the application over the AXI slave
interface. The AXI slave interface also handles completion timeouts by removing the
transaction state from the completion state memory and signaling to the client using a
dummy response across the AXI slave interface.

AXI Master Read Operation
An AXI read is a split transaction with independent address and data signals associated with
the corresponding channels. That is, the client application can return the data for the read
later. When the data for a read request becomes available, the client application transfers it
using the AXI master read data channel signals. The client must send back all of the requested
data in one single burst transaction.

www.efinixinc.com 27

Titanium PCIe Controller User Guide

The client must follow the slave protocol for the read address and data channel as described
in the AXI Specification v1.0. The PCIe Controller follows the master protocol for the read
address and data channel as described in the AXI specification v1.0.

Note: Refer to AXI Master Interface Signals on page 103 for the signal descriptions.

Figure 13: AXI Master Read Waveform

Response Code

Transaction ID

Transaction ID

Burst Width

Burst Length

Word 0 Word 1
Word n-1

Word n

TLP Address

AXI_CLK

TARGET_AXI_ARADDR

TARGET_AXI_ARVALID

TARGET_AXI_ARREADY

TARGET_AXI_ARLEN

TARGET_AXI_ARSIZE

TARGET_AXI_ARID

TARGET_AXI_RVALID

TARGET_AXI_RDATA

TARGET_AXI_RREADY

TARGET_AXI_RLAST

TARGET_AXI_RID

TARGET_AXI_RRESP

The read operation starts by placing the parameters associated with the read request
on the AXI master's read address channel signals. The read address channel signals
are ready the TARGET_AXI_ARVALID signal is asserted. The starting read address is
in on TARGET_AXI_ARADDR. The client logic accepts the requests when it asserts
TARGET_AXI_ARREADY. The PCIe Controller maintains the request and its associated
descriptor until it receives acknowledgement from the client.

The client initiates a read data transfer by asserting TARGET_AXI_RVALID and placing the
data aligned to the request address on TARGET_AXI_RDATA. The alignment requirement
is only for the first cycle of the burst transfer. Subsequent data transfer should have valid
data from the least significant byte. The client should flag the last data transfer cycle by
asserting TARGET_AXI_RLAST. The PCIe Controller may pace the data transfer by
asserting TARGET_AXI_RREADY; in this case the client should hold the each data cycle on
the TARGET_AXI_RDATA bus until the PCIe Controller asserts the ready signal.

If the inbound TLP length is greater than the maximum AXI burst size, the PCIe Controller
splits the PCIe transaction into multiple AXI read transactions with the same
TARGET_AXI_ARID. This process ensures that read data coming back for the read requests
are in order. The PCIe Controller issues multiple split completions back to the requester on
receipt of every read data from the AXI interface.

Note: The AXI master interface does not support read data interleaving.

TLP (2 bytes, Aligned Address)
For TLP read of lengths (2n up to 32 bytes), which are naturally aligned to the 256
bit AXI data bus, the PCIe Controller issues a single cycle burst request and controls
TARGET_AXI_ARSIZE accordingly to read the exact amount of data from the AXI sub-
system.

www.efinixinc.com 28

Titanium PCIe Controller User Guide

TLP (2n and 2n>1, up to 32 Bytes, Unaligned Address)
A TLP read of lengths 2n and 2n>1 up to 32 bytes, with an un-aligned address results in a read
on the AXI sub-system that is greater than the number of bytes requested in the TLP. Due
to the address alignment, the PCIe Controller nay read a few extra bytes from the aligned
starting address lower than the unaligned address. Additionally, a few extra bytes are read
beyond the intended bytes.

Note: The client should ensure that the extra reads from the sub-system does not cause undesirable side
effects.

Table 10: TLP Read Lengths 2n and 2n>1 up to 32 bytes, Unaligned Address

TLP Parameter AXI Read Address Channel

Addr[4:0] (Hex) Length in Bytes (Decimal) Addr[4:0] (Hex) ARSIZE (Binary) ARSIZE (Hex)

0x5 2 0x5 010 0x0

0x3 2 0x3 011 0x0

0x1 4 0x1 011 0x0

0x7 4 0x7 100 0x0

0x2 8 0x2 100 0x0

0x4 16 0x4 101 0x0

0x12 16 0x12 101 0x1

0x1 32 0x1 101 0x1

TLP (Other, up to 32 Bytes)

Table 11: TLP Read of Other Lengths up to 32 Bytes

TLP Parameter AXI Read Address Channel

Addr[4:0] (Hex) Length in Bytes (Decimal) Addr[4:0] (Hex) ARSIZE (Binary) ARSIZE (Hex)

0x0 5 0x0 011 0x0

0x1 3 0x1 010 0x0

0x2 3 0x2 011 0x0

0x3 5 0x3 011 0x0

0x5 7 0x5 100 0x0

0x4 18 0x4 101 0x0

0x1A 30 0x1A 101 0x1

TLP Read of Lengths > 32 Bytes

Table 12: TLP Read of Lengths > 32 Bytes

TLP Parameter AXI Read Address Channel

Addr[4:0] (Hex) Length in Bytes (Decimal) Addr[4:0] (Hex) ARSIZE (Binary) ARSIZE (Hex)

0x1 34 0x1 101 0x1

0x5 50 0x5 101 0x1

www.efinixinc.com 29

Titanium PCIe Controller User Guide

TLP Parameter AXI Read Address Channel

Addr[4:0] (Hex) Length in Bytes (Decimal) Addr[4:0] (Hex) ARSIZE (Binary) ARSIZE (Hex)

0x1E 72 0x1E 101 0x3

Error Handling
During read data transfers, the client can indicate read data errors by asserting
TARGET_AXI_RRESP to an error code (i.e., SLVERR or DECERR) on any valid data
transfer cycle. The PCIe Controller sends a completer abort completion status back to the
requester. The client must not do an early burst termination and transfer all the data cycles as
indicated by the TARGET_AXI_ARLEN signal during the request cycle.

AXI ID Handling
The PCIe Controller can place outstanding read requests on the AXI master read
channel. That is, the PCIe Controller might place subsequent read requests before the
read data of a previous request has come back. At any point, the PCIe Controller has
no more than 32 outstanding read requests on the AXI master read interface for link 0
and link 1. The PCIe Controller ensures that each outstanding read request has a unique
TARGET_AXI_ARID so that the client can send back data for the outstanding read requests
in any order, as per the AXI ordering rules. The PCIe Controller keeps a table that maps
inbound outstanding PCIe tags to the outstanding AXI master read requests IDs.

When the client returns read data for a particular ID, the PCIe Controller does an internal
lookup to find the corresponding PCIe tag and forms an appropriate completion TLP to be
sent on to the link.

Note: Although the PCIe Controller issues outstanding read requests with unique TARGET_AXI_ARID,
it expects the client to return the entire data for one AXI outstanding request before sending data for
a different outstanding request. In other words, the AXI master interface does not support read data
interleaving.

Zero Length Reads
The AXI master interface signals a zero-length memory read transaction as a normal read
request with a burst size TARGET_AXI_ARLEN of 0. The client must respond to a zero-
length request in the same manner as a one-cycle read request by transferring a dummy
one-cycle read data burst. The PCIe Controller then sends a completion TLP with a one-
DWORD payload and byte count set to 1, as required by the PCIe specification.

Non-Contiguous Reads
The AXI master interface does not distinguish between memory read requests received
from the link with non-contiguous byte enables versus contiguous byte enables. The
PCIe Controller presents a single DWORD, non-contiguous read on the AXI master
interface with TARGET_AXI_ARLEN = 3'b0 and TARGET_AXI_ARSIZE = 3'b010.
A two DWORD non-contiguous read can be presented on the AXI master interface
with TARGET_AXI_ARLEN equal to 3'b000 or 3'b001, depending on the address
alignment of the read request with respect to the 256-bit AXI data bus. In either case, the
TARGET_AXI_ARSIZE is 3'b011. The user must implement memory reads free of side
effects so that an entire word can be read from memory without side effects even when only a
part of the word is requested by the read transaction.

AXI Master Write Operation
An AXI write transaction is a split transaction with independent address and data signals
associated with the corresponding channels. The client must follow the slave protocol

www.efinixinc.com 30

Titanium PCIe Controller User Guide

for the write address and data channel as described in the AXI Specification v1.0. The
PCIe Controller follows the master protocol for the write address and data channel as
described in the AXI specification v1.0.

Figure 14: AXI Master Write Waveform

Response Code

Transaction ID

Burst Width

Burst Length

Word 0 Word 1
Word n-1

Word n

TLP Address

AXI_CLK

TARGET_AXI_AWADDR

TARGET_AXI_AWVALID

TARGET_AXI_AWREADY

TARGET_AXI_AWWEN

TARGET_AXI_AWSIZE

TARGET_AXI_AWID

TARGET_AXI_WVALID

TARGET_AXI_WDATA

TARGET_AXI_WREADY

TARGET_AXI_WLAST

TARGET_AXI_BVALID

TARGET_AXI_BID Transaction ID

TARGET_AXI_BRESP
TARGET_AXI_BREADY

The write operation starts by placing the write request parameters on the AXI
master write address channel signals. The write address channel signals are qualified
by asserting the TARGET_AXI_AWVALID signal. The starting write address is
placed on TARGET_AXI_AWADDR. The client accepts requests when it asserts
TARGET_AXI_AWREADY input to the PCIe Controller. The PCIe Controller maintains the
request and its associated descriptor until it receives acknowledgement from the client.

The PCIe Controller begins to transfer the data words by placing them on the AXI master
write data channel signals and asserting TARGET_AXI_WVALID. The client can pace the
data transfer by controlling the TARGET_AXI_WREADY input to the PCIe Controller.
The PCIe Controller keeps each data word on the TARGET_AXI_WDATA data bus until
it samples the ready input as high on a positive edge of the clock. The PCIe Controller
indicates the last data transfer cycle by asserting the TARGET_AXI_WLAST signal. It does
not perform an early burst termination and transfers the entire burst data as indicated in the
TARGET_AXI_AWLEN signal during the request cycle.

The TARGET_AXI_WSTRB[31:0] outputs to indicate the valid bytes in the data transfer
cycle on the first and last cycles of the data transfer. The transfer may start and finish at any
byte position in the data path. For writes of a single DWord, the byte valids may be non-
contiguous, as allowed by the PCIe specification. Likewise, for two-DWORD writes, the
byte valids may be non-contiguous if the starting address is aligned on an even DWORD
boundary.

If the inbound TLP length is greater than the maximum AXI burst size, the PCIe Controller
splits the PCIe transaction into multiple AXI write transaction with the same
TARGET_AXI_AWID. This process ensures that write data read requests are committed to the
client in order.

www.efinixinc.com 31

Titanium PCIe Controller User Guide

Poison Bit Forwarding to AXI
If poisoned bit forwarding is enabled in the AXI features control register, the poisoned
TLP is flagged in the AWUSER bit [43]. Additionally, the PCIe Controller adds a message
interface bit to indicate when a poisoned TLP is forwarded to the message interface.

The MASTER_AXI_BUSER is added to send a UR completion for poisoned non-posted write
responses. You need to set this bit along with the write response if the non-posted write
request had a poisoned TLP bit set in bit 43 of TARGET_AXI_AWUSER.

Error Handling
The client can indicate an error response for a write request on the AXI master write
response channel signals by asserting TARGET_AXI_BVALID and indicating an error code
on the TARGET_AXI_BRESP signal. The PCIe Controller ignores the response type (i.e.,
good or bad) for a posted write request. For a non-posted write request, the PCIe Controller
sends back a completer abort completion to the requester; otherwise, on receipt of a good
response for a non-posted write request, PCIe Controller sends back a good completion to
the requester.

AXI ID Management
All inbound posted write TLPs are issued with the same TARGET_AXI_AWID so that
they complete in order on the client memory subsystem. Each inbound non-posted write
TLP is issued a unique TARGET_AXI_AWID so that the write responses can come back
in any order. The PCIe Controller internally manages the mapping between an incoming
PCIe tag of a TLP and the corresponding TARGET_AXI_AWID issued on the AXI master
interface for a non-posted TLP. The PCIe Controller returns a completion TLP on receipt
of a write response; it maps the incoming TARGET_AXI_BID to the corresponding PCIe
tag of the TLP and sends back the completion with the appropriate tag information. The
PCIe Controller cannot have more than 32 outstanding write transactions for link 0 and link
1 at any time.

Note: The PCIe Controller does not support write data interleaving. That is, the write interleaving depth is
1.

Zero-Length Writes
The PCIe Controller ignores zero-length memory write transactions received from the
inbound PCIe link. The PCIe specification does not require completions for posted writes
and the AXI specification does not support zero-length write requests.

Non-Contiguous Writes
The PCIe specification allows memory writes with non-contiguous byte enables for single-
DWord writes, and for two-DWORD writes when the address is aligned on an 8-byte
boundary. For these write transactions, the AXI master interface sets the byte valid bits on
the TARGET_AXI_WSTRB signal based on the valid bytes indicated in the header of the
request TLP. The client must ensure that the individual bytes on the TARGET_AXI_WDATA
bus are only written to memory when the corresponding byte valid is asserted.

Ordering Between Posted and Non-Posted Writes
The PCIe Controller ensures strict ordering between posted and non-posted writes
on the AXI master write interface. All posted write requests are issued with the same
TARGET_AXI_AWID so that they complete in order in the AXI subsystem.

When a non-posted write follows a posted write, the PCIe Controller ensures that all
outstanding posted writes complete (i.e., TARGET_AXI_BVALID is received for all

www.efinixinc.com 32

Titanium PCIe Controller User Guide

outstanding write transactions) before issuing the non-posted write. This process ensures that
non-posted transactions are not processed before posted transactions.

Inbound Message Interface
The PCIe Controller includes a dedicated interface for inbound messages. The inbound
message interface is suitable for driving a message gathering FIFO (the PCIe Controller
does not include this FIFO). You can place message-type decode logic to filter messages
into different FIFOs, take specific action, or discard redundant messages, depending on the
application needs.

The interface is synchronous to AXI_CLK and does not support back pressuring. It includes
valid, start, and end strobes, as well as strobes to identify vendor-defined header and data. The
message interface width is the same as the AXI master port data bus.

The message header always occupies 64 bits with an additional 64 bits for header bits [127:64]
of a vendor-defined message.

www.efinixinc.com 33

Titanium PCIe Controller User Guide

Table 13: Message Header Bit Allocation

Bits Bit Description Header Stripe

255:128 Unused 0

127:64 Vendor Defined Message Header
Page Request Messages:
• [127:120] Page Address [63:56]
• [119:112] Page Address [55:48]
• [111:104] Page Address [47:40]
• [103:96] Page Address [39:32]
• [95:88] Page Address [31:24]
• [87:80] Page Address [23:16]
• [79:76] Page Address [15:12]
• [75:67] Page Request Group Index
• [66] L bit (last request in PRG)
• [65] W bit (write access requested)
• [64] R bit (read access requested)
For Page Request Group Response Messages:
• [127:112] Destination ID
• [111:108] Response code
• 0000b: Success
• 0001b: Invalid request
• 1110b to 0010b: Unused
• 1111b: Response failure
• [104:96] PRG Index
Stop Marker Messages:
• [71:67] Marker type (expected value 5'b00000)
• [66] L bit (expected value 1'b1)
• [65] W bit
• [64] R bit
Invalidation Request Messages:
• [127:112] Destination ID
Invalidate Completion Messages:
• [127:112] Device ID
• [98:96] CC value
• [95:64] ITAG Vector
For OBFF messages, [123:120] carries the OBFF message code. Other bits are
unused.
For LTR messages:
• [127:120] Snoop latency bits [7:0]
• [119:112] Snoop latency bits [15:8]
• [111:104] No-snoop latency bits [7:0]
• [103:96] No-snoop latency bits [15:8]

0

63:60 Unused 0

59:52 PCIe tag for normal messages
For invalidation request messages:
[56:52] -ITAG

0

51:36 If bit 32 (TPH present) is set to 1, this field has the steering tag.
If bit 32 is cleared this field has the PCIe tag for the vendor-defined messages.

0

35:34 Processing hint 0

www.efinixinc.com 34

Titanium PCIe Controller User Guide

Bits Bit Description Header Stripe

33 1: 16-bit steering tag
0: 8-bit steering tag

0

32 TPH Present 0

31:24 Message Code 0

23:8 Requester ID 0

6:4 Routing 0

3:1 Attributes 0

0 0: Normal vendor defined message 0

Message Interface Signals
The message interface has the following functionality:

• The MSG_VALID strobe signal indicates when MSG has valid data or a valid header.
• The MsgD data always starts at byte 0 of the new cycle (LSB).
• Byte enables (MSG_BYTE_EN) are valid when the interface is outputting message data (the

MSG_DATA strobe signal is asserted).
• MSG_BYTE_EN is driven low when the interface is outputting a message header or vendor

defined header.
• When transferring data, MSG_BYTE_EN does not have any 0s in between 1s. Therefore,

the data will be contiguous without any byte valid low.
• The PCIe Controller may de-assert the MSG_VALID signal during the message transfer (in

between MSG_START and MSG_END).
• The MSG output is only valid when MSG_VALID is 1.
• The MsgD payload size is limited by the PCIe Controller's MAX_PAYLOAD_SIZE value.
• All header bits are in a single stripe.

www.efinixinc.com 35

Titanium PCIe Controller User Guide

Note: Refer to Message Interface for message signals description.

Figure 15: Message Interface Waveforms

AXI_CLK
VMH D D D

0x0 BE BE BE

MSG
MSG_BYTE_EN

MSG_VALID
MSG_START

MSG_END
MSG_DATA
MSG_VDH

Vendor Defined
Message with Data

AXI_CLK
VMH D

0x0 BE

MSG
MSG_BYTE_EN

MSG_VALID
MSG_START

MSG_END
MSG_DATA
MSG_VDH

Message with Data

AXI_CLK
VMH

0x0

MSG
MSG_BYTE_EN

MSG_VALID
MSG_START

MSG_END
MSG_DATA
MSG_VDH

Vendor-Defined
Message without Data

AXI_CLK
MH

0x0

MSG
MSG_BYTE_EN

MSG_VALID
MSG_START

MSG_END
MSG_DATA
MSG_VDH

Message without Data

BE: Byte enable.
D: Data.
MH: Only normal message bits [63:0] are valid.
VMH: Only vendor-defined message header bits [127:0] are valid.

Message Interface FIFO Buffer
The FIFO depth can be selected to anything more than 32 with a programmable threshold
for handling the message overflow (with an interrupt to the local processor when overflow
is detected). You can decide which message types you require. The PCIe Controller's AXI
interface contains logic to decode messages for the assertion and de-assertion of legacy
interrupts.

Figure 16: Message Interface FIFO

Message FIFO

Message FIFO
Control Logic

PCIe
Controller

Message
Interface

These messages are output on the message interface the same as any other message, with the
addition of assertion or deassertion of the relevant INTA_OUT, INTB_OUT, INTC_OUT,
or INTD_OUT signal. The change on the relevant INTx_OUT signal occurs during the same
clock cycle that the message is output on the message interface. The INTx_OUT signal levels

www.efinixinc.com 36

Titanium PCIe Controller User Guide

are not changed if an assert message is received for an interrupt that is already asserted, or if a
deassert message is received for an interrupt that is already deasserted. The message is output
on the message interface as usual. All four interrupts are deasserted when the AXI reset is
asserted and when the LINK_DOWN_RESET signal is asserted. In-bound messages from the
link that are directed to the message interface (intended for the message FIFO) do not appear
in the main AXI master interface.

Message Interface Codes

Table 14: Inbound Message Codes

Message
Code

Routing Type Description Mode Integration Comment Number
of DW

0000_0000 011 Msg Unlock DM - 2

0000_0001 010 MsgD Invalidate
Request
Message

EP The PCIe Controller takes no action
and forwards the message to
the message interface. Endpoint
client logic must invalidate the
corresponding address translation
table entries upon receiving this
message.

4

0000_0010 010 Msg Invalidate
Completion
Message

RP The PCIe Controller takes no action
and forwards the message to
the message interface. Indicates
completion of invalidation operation.

4

0000_0100 000 Msg Page Request
Message

RP The PCIe Controller takes no action
and forwards the message to the
message interface. Client must take
appropriate action.

4

0000_0101 010 Msg PRG Response
Message

EP The PCIe Controller takes no action
and forwards the message to the
message interface. Client must take
appropriate action.

4

0001_0000 100 Msg Latency
Tolerance
Reporting
Message

RP Internally captured by PCIe Controller
and compared with the
L1_pm_substates_control1_reg_LTR_
L1_2_threshold to determine L1.2
substate entry. Client can ignore this
message.

4

0001_0010 100 Msg OBFF EP If OBFF_ENABLE[1:0] == 01 or 10, the
PCIe Controller forwards the OBFF
message to the message interface.
Otherwise it reports it as UR. Client
can optionally process the OBFF
message to determine the CPU
activity.

4

0001_0100 100 Msg PM_Active_
State_Nak

EP Internally processed during ASPM L1
Entry negotiation. Also forwarded to
message interface. Client can ignore
this message.

2

www.efinixinc.com 37

Titanium PCIe Controller User Guide

Message
Code

Routing Type Description Mode Integration Comment Number
of DW

0001_1000 000 Msg PM_PME RP The PCIe Controller takes no action
and forwards the message to the
message interface. Client must
process this message per PCIe power
management specifications.
For example, the root port can issue
a CfgWr to change the requesting
function power state to D0.

2

0001_0001 011 Msg PME_Turn_Off EP If all function power states are in
non-D0 state and if PME Turnoff Ack
Delay > 0x0000, the PCIe Controller
automatically transmits a PME_TO_Ack
message after the PME Turnoff Ack
Delay time. In this case, the client logic
should not send PME_TO_ACK.
Otherwise, the client logic must
respond with the PME_TO_Ack
message.

2

0001_0011 101 Msg PME_To_Ack RP The PCIe Controller takes no action
and forwards the message to the
message interface. Client can choose
to turn off the power after receiving
this message.

2

0010_0000 100 Msg Assert_INTA RP The PCIe Controller asserts INTA_OUT
upon receiving this message. Client
can ignore this message and only use
INTA_OUT.

2

0010_0001 100 Msg Assert_INTB RP The PCIe Controller asserts INTB_OUT
upon receiving this message. Client
can ignore this message and only use
INTB_OUT.

2

0010_0010 100 Msg Assert_INTC RP The PCIe Controller asserts INTC_OUT
upon receiving this message. Client
can ignore this message and only use
INTC_OUT.

2

0010_0011 100 Msg Assert_INTD RP The PCIe Controller asserts INTD_OUT
upon receiving this message. Client
can ignore this message and only use
INTD_OUT.

2

0010_0100 100 Msg Deassert_INTA RP The PCIe Controller de-asserts
INTA_OUT upon receiving this
message. Client can ignore this
message and only use INTA_OUT.

2

0010_0101 100 Msg Deassert_INTB RP The PCIe Controller de-asserts
INTB_OUT upon receiving this
message. Client can ignore this
message and only use INTB_OUT.

2

0010_0110 100 Msg Deassert_INTC RP The PCIe Controller de-asserts
INTC_OUT upon receiving this
message. Client can ignore this
message and only use INTC_OUT.

2

www.efinixinc.com 38

Titanium PCIe Controller User Guide

Message
Code

Routing Type Description Mode Integration Comment Number
of DW

0010_0111 100 Msg Deassert_INTD RP The PCIe Controller de-asserts
INTD_OUT upon receiving this
message. Client can ignore this
message and only use INTD_OUT.

2

0011_0000 000 Msg ERR_CORR RP The PCIe Controller asserts
CORRECTABLE_ERROR_DETECTED
_OUT for one clock cycle when it
receives a ERR_CORR message. Client
can ignore this message and only use
CORRECTABLE_ERROR_DETECTED
_OUT.

2

0011_0001 000 Msg ERR_
NONFATAL

RP The PCIe Controller asserts
NON_FATAL_ERROR_DETECTED_OUT
for one clock cycle when it receives
a ERR_CORR message. Client can
ignore this message and only use
NON_FATAL_ERROR_DETECTED_OUT.

2

0011_0001 000 Msg ERR_FATAL RP The PCIe Controller asserts
FATAL_ERROR_DETECTED_OUT
for one clock cycle when it receives
a ERR_CORR message. Client can
ignore this message and only use
FATAL_ERROR_DETECTED_OUT.

2

0100_0000 100 Msg Ignored NA – 2

0100_0000 100 Msg Ignored NA – –

0100_0001 100 Msg Ignored NA – –

0100_0011 100 Msg Ignored NA – –

0100_0100 100 Msg Ignored NA – –

0100_0101 100 Msg Ignored NA – –

0100_0111 100 Msg Ignored NA – –

0101_0000 100 Msg Set_Slot_
Power_Limit

EP The PCIe Controller stores the data
from the received message in the
Captured Slot Power Limit Scale and
Value fields in Device Capabilities
Register. Client can ignore this
message.

2

0111_1110 000, 010,
011, 100

Msg,
MsgD

VD Msg Type0 DM The PCIe Controller takes no action
and forwards the message to the
message interface. Processing
of Vendor Defined Message is
implementation specific.

4

0111_1111 000, 010,
011, 100

Msg,
MsgD

VD Msg Type1 DM The PCIe Controller takes no action
and forwards the message to the
message interface. Processing
of a vendor-defined message is
implementation specific.

4

Ordering Between AXI Master Write and Read Channels
The PCIe Controller issues posted writes on the AXI master write channel, non-posted writes
on the AXI master write channel, and non-posted reads on the AXI master read channel. The

www.efinixinc.com 39

Titanium PCIe Controller User Guide

PCIe Controller enforces PCIe ordering between posted and non-posted reads and writes on
the AXI master interface. Posted writes are always sent before of non-posted reads or writes.

Before issuing non-posted transactions on the AXI master write or AXI master read channels,
the PCIe Controller ensures that previously issued posted writes have completed on the client
by waiting for all TARGET_AXI_BVALID responses to come back.

On the AXI master interface, the PCIe ordering rules are followed as shown in the following
tables. The columns represent a first issued transaction and the rows represent a subsequently
issued transaction. The table entry indicates the ordering relationship between the two
transactions. The table entries are defined as follows:

• Yes—The second transaction (row) must be allowed to pass the first (column) to avoid
deadlock. When blocking occurs, the second transaction must pass the first transaction.
Fairness must be comprehended to prevent starvation.

• Y/N—There are no requirements. The second transaction may optionally pass the first
transaction or be blocked by it.

• No—The second transaction must not be allowed to pass the transaction to support the
producer–consumer strong ordering model.

Table 15: Inbound Ordering (Endpoint Mode)

Non-Posted RequestRow Pass Column? Posted
Request
(Col 2) Read Request

(Col 3)
With Data

(Col 4)

Completion
(Col 5)

Posted Request (Row A) No Yes Yes (1) Yes

Read Request (Row B) No No Yes YesNon-Posted
Request

NPR with Data (Row C) No Yes No Yes

Completion (Row D) A: No (2)
B: Y/N (3)

Yes Yes No (4)

Table 16: Inbound Ordering (Root Port Mode)

Non-Posted RequestRow Pass Column? Posted
Request
(Col 2) Read Request

(Col 3)
With Data

(Col 4)

Completion
(Col 5)

Posted Request (Row A) No Yes N/A (1) Yes

Read Request (Row B) No No N/A YesNon-Posted
Request

NPR with Data (Row C) N/A N/A N/A N/A

Completion (Row D) A: No (2)
B: Y/N (3)

Yes N/A No (4)

Notes:

1. Posted reads and writes always pass non-posted reads and writes in the transaction
layer. However, a non-posted write can stall on the AXI write channel for a long
time if the client cannot service the non-posted write, which in turn blocks a posted
write coming in later from the link. To address this issue, the client can use the
TARGET_NON_POSTED_REJ input signal to indicate that the PCIe Controller should
not service non-posteds from the transaction layer's non-posted FIFO. This action allows
posted transactions to go through the AXI write channel when the client cannot service
non-posted read and writes.

2. A completion must not pass a posted request unless Row D Column 2 B applies.

www.efinixinc.com 40

Titanium PCIe Controller User Guide

3. An I/O or configuration write completion can pass a posted request. A completion with
a relaxed ordering set can pass a posted request. A completion with an ID-based ordering
set can pass a posted request if the completer ID of the completion is different from the
requester ID of the posted request.

4. Although completions do not pass each other at the transaction layer, completions are
reordered back to the AXI bus because AXI bus reads with same ID have to come in
order. However, there is no relaxed ordering or ID-based ordering effect.

Inbound PCIe to AXI Address Translation (Root Port)
The PCIe Controller performs root port inbound PCIe to AXI address translation on
memory and I/O TLPs. The PCIe Controller chooses which address translation registers to
use for translation based on the BAR match of the incoming TLP. There are two BARs in
root port mode, so the registers are BAR0 and BAR1. Additionally, the PCIe Controller uses
the BAR7 register for cases in which there are no matches. The PCIe Controller sends any
address that does not match the root port BARs as a BAR7 TLP.

Each BAR register has two 32-bit registers, addr0 and addr1. The address translation
logic takes the upper bits from the root port inbound PCIe to AXI address translation
registers and takes the lower bits from the inbound PCIe address to form the AXI address.
The addr0[5:0] + 1 number of lower bits are passed from the inbound PCIe address to
AXI address. That is, the number of bits taken from inbound PCIe address is given by the
addr0[5:0] + 1 value.

Figure 17: Root Port Inbound PCIe to AXI Address Translation

Root Port Inbound
PCIe to AXI Address

Translation Logic

Root Port Inbound
PCIe to AXI Address
Translation Registers

Inbound PCIe 64-bit Address
from the PCIe Controller

Inbound BAR Number
from the PCIe Controller

BAR 0: {addr1, addr0}
BAR 1: {addr1, addr0}
BAR 2: {addr1, addr0}

AXI Address

AXI Logic

Table 17: Root Port Inbound PCIe to AXI Address Translation Registers for 1 BAR
Where BAR is bar0, bar1 or bar7

Register Name Bits Description Default
Value

ib_rp_[BAR]_addr1 31:0 Upper [63:32] bits of the AXI address. 32'd0

31:8 Lower [31:8] bits of the AXI address. 24'd0

7:6 Reserved 2'd0

ib_rp_[BAR]_addr0

5:0 Number of address bits passed from PCIe to AXI. The
PCIe Controller passes the programmed value + 1 bits from
PCIe to AXI. The minimum value to be programmed into this
field is 7 because the lower eight bits of the base address
programmed in these registers (AXI) are replaced by zeros by
the address translation logic.

6'd0

www.efinixinc.com 41

Titanium PCIe Controller User Guide

Inbound PCIe to AXI Address Translation (Endpoint)
The PCIe Controller performs end point inbound PCIe to AXI address translation on
memory and I/O TLPs. The PCIe Controller chooses which address translation registers to
use for translation based on the BAR match of the incoming TLP. There are seven BARs per
function in endpoint mode; therefore, there are seven sets of registers per function with each
BAR having two 32-bit registers (addr0 and addr1). The address translation logic takes the
upper bits from the endpoint inbound PCIe to AXI address translation registers and takes
the lower bits from the inbound PCIe address to form the AXI address. The inbound BAR
aperture determines the number of bits to pass from the inbound PCIe address to AXI.

Figure 18: Endpoint Inbound PCIe to AXI Address Translation

Endpoint Inbound
PCIe to AXI Address

Translation Logic

Endpoint Inbound
PCIe to AXI Address
Translation Registers

Inbound PCIe 64-bit Address
from the PCIe Controller

Inbound Function
Number, BAR Number,

and BAR Aperture
from the PCIe Controller Function 0: BAR 0 to BAR 6

Function 1: BAR 0 to BAR 6
Function n: BAR 0 to BAR 6

AXI Address

AXI Logic

Table 18: Endpoint Inbound PCIe to AXI Address Translation Registers for 1 BAR
Where BAR is bar0, bar1, bar2, … bar7 and PF is pf0, pf1, pf2, ... pf21

Register Name Bits Allocation Default
Value

[PF]_ib_ep_[BAR]_addr1 31:0 Upper [63:32] bits of the AXI address. 32'd0

[PF]_ib_ep_[BAR]_addr0 31:0 Lower [31:8] bits of the AXI address. 32'd0

AXI Slave Interface
The AXI slave interface enables a client endpoint to initiate PCI transactions as a bus master
across the PCIe link to the host memory. For root ports, this interface initiates I/O and
configuration requests. For endpoints, this interface must be connected to client logic only
when the client has bus master capability. Endpoints and root ports can also use the slave
interface to send messages on the PCIe link. The transactions on this bus are similar to
those on the AXI master bus, except that the roles of the PCIe Controller and the client are
reversed.

The client must check the following conditions before making a request on the AXI slave
interface:

• Only root ports can initiate I/O or configuration requests.
• An endpoint can initiate a memory read or write request only when the Bus Master

Enable bit of the PCI Command Register associated with the requesting function is set.
These bits are accessible on the PCIe Controller's FUNCTION_STATUS output (see
Status and Error Indicator Signals on page 115).

www.efinixinc.com 42

Titanium PCIe Controller User Guide

• An endpoint can only send requests when the originating function's power state is D0-
Active. The function power state is available on the FUNCTION_POWER_STATE output
(see Status and Error Indicator Signals on page 115).

• The originating function is not currently processing a function-level reset (FLR).

Note: All AXI slave interface signals have the prefix MASTER_AXI (see AXI Slave Interface Signals on page
109).

Unsupported Request Handling During Enumeration (Rootport)
If an unsupported request (UR) or configuration request retry status (CRS) is received for a
configuration request, the PCIe Controller does not assert the SLVERR if the AXI features
control register's SLVERRCTRL bit is set to 1. The returned data is:
• UR—32'hFFFF_FFFF
• CRS—32'hFFFF_0001

AXI Slave Ordering
If non-posted writes and posted writes are issued to the AXI slave with the same ID, posted
write requests are only sent to the link when the previous non-posted write completions are
received from the link. This process follows the AXI ordering rules for same ID requests.

Completion Error Handling
When the PCIe Controller receives a completion TLP from the link, it matches the TLP
against the outstanding requests in the split completion table to determine the corresponding
request and compares the fields in its header against the expected values to detect any error
conditions. The PCIe Controller then signals the error conditions on MASTER_AXI_RRESP
and sets SLVERR (2'b10) or DECERR(2'b11). The PCIe Controller asserts this signal as well
as the MASTER_AXI_RRESP and MASTER_AXI_RVALID signals. When the client receives
a read response with slave error as the response code, it should discard the data sent by the
PCIe Controller and it should either discard or retry the corresponding request.

The PCIe error conditions that can lead to a slave error are:

• The completion TLP received from the link was poisoned.
• Request terminated by a completion TLP with UR, CA, or CRS status.
• Read request terminated by a completion TLP with incorrect byte count.
• The current completion being delivered has the same tag as an outstanding request, but its

requester ID, TC, or Attr fields did not match the parameters of the outstanding request.
• Error in starting address.
• Request terminated by a completion timeout, or by a function-level reset (FLR) targeting

the function that generated the request.

AXI Slave Read Operation
An AXI read is a split transaction with independent address and data on the corresponding
channels. The client must follow the master protocol for the read address and data channel as

www.efinixinc.com 43

Titanium PCIe Controller User Guide

described in the AXI Specification v1.0. The PCIe Controller follows the slave protocol for
the read address and data channel as described in the AXI specification v1.0.

Figure 19: AXI Slave Read Interface Waveform

Response Code

Transaction ID

Transaction ID

Burst Width

Burst Length

Word 0 Word 1
Word n-1

Word n

TLP Address

AXI_CLK

MASTER_AXI_ARADDR

MASTER_AXI_ARVALID
MASTER_AXI_ARREADY

MASTER_READ_DESCRIPTOR

MASTER_AXI_ARLEN

MASTER_AXI_ARSIZE

MASTER_AXI_RVALID

MASTER_AXI_RDATA

MASTER_AXI_RREADY

MASTER_AXI_RLAST

MASTER_AXI_RID

MASTER_AXI_RRESP

MASTER_AXI_ARID

Response Code

1

1: PCIe TLP parameters.

When MASTER_AXI_ARLEN is not zero, MASTER_AXI_ARSIZE must be the maximum
value (5).

The client starts a memory read operation by placing the read request parameters on the
AXI slave read address channel and asserting the MASTER_AXI_ARVALID signal. The
PCIe Controller responds to the request by asserting the MASTER_AXI_ARREADY signal for
one clock cycle. The PCIe Controller might not be able to accept the request if it does not
have adequate credit to transmit the request TLP on the link or if the split completion table is
full.

When the data for a read request becomes available, the PCIe Controller transfers the data on
the AXI slave read data channel. The PCIe Controller begins the transfer by placing the data
word on the MASTER_AXI_RDATA bus and asserting the MASTER_AXI_RVALID signal.
The completion is delivered as a single burst for each read request. In the first data transfer
cycle, the PCIe Controller returns data on MASTER_AXI_RDATA bus aligned to the request
address. It indicates the last data transfer cycle by asserting the MASTER_AXI_RLAST signal.
The client can pace the data transfer by controlling the MASTER_AXI_RREADY input to the
PCIe Controller. The PCIe Controller keeps each data word on the MASTER_AXI_RDATA
bus until it samples the ready input high on a positive edge of the clock. The PCIe Controller
will not terminate a burst for a read request on the AXI slave interface. It always satisfies the
complete read request as indicated by the MASTER_AXI_ARLEN signal.

In root port, the AXI Slave interface initiates configuration and I/O read requests, which
function in the same way as memory reads. These requests are distinguished from memory
requests by the transaction-type field in the master read descriptor bus. The data returned
in response to these requests is always four bytes long and is delivered aligned to the request
address.

www.efinixinc.com 44

Titanium PCIe Controller User Guide

Tag Management for Non-Posted Transactions

The AXI slave maintains the state of all pending, client-initiated non-posted transactions (e.g.,
memory reads, I/O reads and writes, configuration reads and writes) so that the completions
returned by the targets can be matched to the corresponding requests. The AXI slave has
a split completion table that stores the state of each outstanding transaction; the table has
a capacity of four non-posted transactions. The returning completions are matched with
the pending requests using an 8-bit tag. The PCIe Controller allocates the tag for each non-
posted request initiated from the AXI slave. The PCIe Controller maintains a list of free
tags and assigns one to each request when the client initiates a non-posted transaction. The
PCIe Controller checks whether the split completion table is full, and only accepts an AXI
request from the client if the number of outstanding non-posted requests is less than four.

Error Handling

The PCIe Controller drives the MASTER_AXI_RRESP signal when it sends read data out for
a request with MASTER_AXI_RVALID. It can signal an error response to the client any time
during the data transfer cycles by putting an error response of SLVERR or DECERR on the
MASTER_AXI_RRESP output.

AXI ID Management

Read requests are split transactions; that is, the client may make additional read and
write requests while the completion for a read request is pending. The client can issue
each outstanding read request with the same MASTER_AXI_ARID or unique ones. The
PCIe Controller can receive a maximum of 256 outstanding read requests. It internally maps
the MASTER_AXI_ARID to an internally generated PCIe tag. The PCIe Controller looks up
this mapping to translate an incoming completion to a corresponding MASTER_AXI_RID
value sent with the read data channel.

Note: The read interleaving depth is one; that is, the PCIe Controller transfers complete data for a
particular read request before sending data out for another read request.

Completion Data Ordering

AXI specifications mandate that if there are outstanding read requests with same
MASTER_AXI_ARID, read data should be returned by the AXI slave interface in order.
However, because each of these outstanding read requests are assigned unique tags on the
PCIe side, the PCIe ordering rules permit the read completions to come back in any order.
The PCIe Controller re-orders the out-of-order completions and issues them out on the AXI
slave read data channel in the correct order. If the client issues read requests with unique
MASTER_AXI_ARID, the AXI ordering rules permit the read data to come back out of order
and the PCIe Controller issues the read data in the order it comes back from the PCIe link.

Error and Decode Errors

The following table lists the different status codes and their causes. The decode_err
indicates a usage error and points to incorrect user programming of the AXI outbound
address. This error is fatal; the behavior of the PCIe Controller after this error is not
deterministic.

The user application should:
• Fix the programming error causing the decode error.
• Reset the PCIe Controller to recover from this error.

www.efinixinc.com 45

Titanium PCIe Controller User Guide

Table 19: AXI Slave Error and Decode Error Cases

Cases Indication Register MASTER_AXI_
RUSER_STATUS

Description AXI
Response

Normal completion. N/A 5'b000 The completion
returned by the link
partner has no errors.

OK

The completion TLP
received from the link was
poisoned.

Poisoned TLP status
in AER Uncorrectable
Status Register
Detected parity error
bit in Command Status
Register

5'b001 The completion
received from the link
was poisoned.

SLVERR

Request terminated by a
completion TLP with UR,
CA, or CRS status.

Received target abort
status bit in Command
and Status Register only
for CA

5'b010 Request terminated by a
completion TLP with UR,
CA, or CRS status by the
link partner.

SLVERR

Read request terminated
by a completion TLP with
incorrect byte count.

N/A 5'b011 The returned
completion did not
match the request
stored locally for byte
count.

SLVERR

The current completion
being delivered has
the same tag as an
outstanding request, but
its requester ID, TC, or
Attr fields did not match
the parameters of the
outstanding request.

N/A 5'b100 The returned
completion did not
match the request
stored locally for
requester ID, TC, or Attr
fields.

SLVERR

Error in start address. N/A 5'b101 The completion start
address bits [6:0] did
not match the request
start address.

SLVERR

Request terminated by a
completion timeout, or by
a function-level reset (FLR)
targeting the function that
generated the request.

Completion timeout
status in AER
Uncorrectable Error
Status Register and
Local Error Status
Register
FLR_IN_PROGRESS pin
is asserted to indicate
FLR

5'b111 A completion timeout
or FLR terminated the
request.

SLVERR

Link down reset indication
bit set.

Link down indication bit
in the AXI configuration
registers is set

N/A N/A SLVERR

AXI slave read/write
addresses did not match
any of the AXI base
addresses programmed in
the outbound regions.

N/A 5'b10000 The AXI slave read
or write address did
not match any of the
AXI base addresses
programmed in the
outbound region.

DECERR

www.efinixinc.com 46

Titanium PCIe Controller User Guide

Cases Indication Register MASTER_AXI_
RUSER_STATUS

Description AXI
Response

Internal error in the PCIe
completion path buffers.

Uncorrectable error in
the AXI reorder RAM or
completion RAM

5'b01000 The ECC/parity
decoder flagged an
uncorrectable error
while reading from any
of the completion path
buffers.

SLVERR

AXI Slave Write Operation
An AXI write is a split transaction with independent address, data, and response phases
associated with the corresponding channels. The client must follow the master protocol for
the write address, data, and response channel as described in the AXI specification v1.0. The
PCIe Controller follows the slave protocol for the write address, data, and response channel
as described in the AXI specification v1.0.

Figure 20: AXI Slave Write Interface Waveform

Response Code

Transaction ID

Burst Width

Burst Length

Word 0 Word 1
Word n-1

Word n

TLP Address

AXI_CLK

MASTER_AXI_AWADDR

MASTER_AXI_AWVALID

MASTER_AXI_AWREADY

MASTER_AXI_AWLEN

MASTER_AXI_AWSIZE

MASTER_AXI_AWID

MASTER_AXI_WVALID

MASTER_AXI_WDATA

MASTER_AXI_WREADY

MASTER_AXI_WLAST

MASTER_AXI_BVALID

MASTER_AXI_BID Transaction ID

MASTER_AXI_BRESP

MASTER_AXI_BREADY

Transaction IDMASTER_AXI_WID

When MASTER_AXI_ARLEN is not zero, MASTER_AXI_ARSIZE must be the maximum
value (5).

The client starts a memory write operation by placing the write request parameters
on the AXI slave write address channel and asserting the MASTER_AXI_AWVALID
signal. Additionally, the client must place the write request PCIe TLP attributes on the
master write descriptor. The PCIe Controller responds to the request by asserting the
MASTER_AXI_AWREADY signal for one clock cycle. The PCIe Controller might not be able
to accept the request if it does not have adequate credit to transmit the request TLP on the
link or the split completion table is full (for a non-posted write).

The client begins the data transfer by placing data on the AXI slave write data channel signals
and asserting the MASTER_AXI_WVALID signal. The PCIe Controller can pace the data
transfer by controlling the MASTER_AXI_WREADY output. The client must keep each
data word on the bus until the ready signal is sampled high. The MASTER_AXI_WSTRB

www.efinixinc.com 47

Titanium PCIe Controller User Guide

inputs indicates the valid bytes in the data cycle for the first and the last data transfer.
The transfer may start and finish at any byte position in the data bus, depending on the
starting address alignment of the data block being written to memory. The client should
assert MASTER_AXI_WLAST for the last cycle of data transfer. The client must not
terminate the AXI write burst early; it should issue all write data cycles as indicated by the
MASTER_AXI_AWLEN signal.

The PCIe Controller expects the byte valids to be contiguous, even for writes of a single
DWORD or two DWORDs (with start address aligned to even DWORD boundary).

The PCIe Controller issues a response back to the client on the AXI slave write response
channel by asserting MASTER_AXI_BVALID when a memory write transaction has been
accepted by the PCIe Controller's transaction layer.

Configuration and I/O (non-posted) writes are handled in a similar manner, except that the
data payload is only one DWORD long. The PCIe Controller only issues a response for I/O
and configuration writes when it receives the completion back from the PCIe link.

Error Handling

For configuratrion and I/O (non-posted) writes, the PCIe Controller might receive
a completion with error status from the PCIe link. In this case, the PCIe Controller
issues an error response (i.e., SLVERR) on the AXI slave write response channel's
MASTER_AXI_BRESP output by asserting MASTER_AXI_BVALID.

AXI ID Management

AXI slave write requests are split transactions; that is, the client can make additional read
and write requests while the response for a write request is pending. The client can issue
each outstanding write requests with the same MASTER_AXI_AWID or unique ones. The
PCIe Controller can receive a maximum of 32 outstanding write requests. For non-posted
writes, the PCIe Controller internally maps the MASTER_AXI_AWID to an internally
generated PCIe tag. It looks up this mapping to translate an incoming completion to a
corresponding MASTER_AXI_BID value sent with the write response channel.

Note: The write data interleaving depth is one; that is, client logic must send the complete data for a
particular write request before sending data for another write request.

Zero-length Writes

The AXI slave can initiate a zero-length memory write transaction in the same way as a 1-
byte memory write transaction, except the byte valid bits in MASTER_AXI_WSTRB are all
set to zero during the data cycle. The PCIe Controller sends a memory write request on the
PCIe link with the length field set to one double word, and the byte-enable fields set to all
zeroes.

Write Transaction Ordering

On the outbound direction, the PCIe Controller is in cut-through mode. That is, there are
no store and forward buffers and TLPs flow out to the link strictly in the order they were
received from the AXI slave interface. TLPs go out on the link in the same order they were
accepted on the AXI slave write interface, whether the writes are posted or non-posted or
whether they have the same MASTER_AXI_AWID or different. This process ensures PCIe
ordering rule compliance.

AXI Configuration and Status Registers
The PCIe Controller uses the concept of regions to send different types of outbound TLPs
(memory, message, etc.). This arrangement allows the static information in the TLPs to
be pre-programmed in the AXI configuration region registers. The PCIe Controller uses

www.efinixinc.com 48

Titanium PCIe Controller User Guide

decoding logic to compare the incoming AXI address to the preprogrammed AXI address in
the AXI configuration registers to determine which region it belongs to. You can program
the region registers using the APB interface. When the PCIe Controller access a region
using the corresponding MASTER_AXI_AW or MASTER_AXI_RADDR region, the address is
selected and is used to supply the static pre-programmed TLP information.

Each region has a set of descriptor registers to form the TLP: AXI to PCIe address translation
(PCIe address registers) and AXI region decoding (AXI address registers). AXI configuration
registers also include link down indication bit. Refer to the Titanium PCIe Controller
Registers User Guide for details.

The AXI configuration register set also includes inbound address translation registers. For
endpoints, the function number and the bar number is used to find the correct address
translation register.

PCIe Controller Outbound Accesses
There are two ways to perform an outbound access:

• Static method, which is region based
• Dynamic method, which uses the sideband descriptor

The static method is useful when you only have the TLP type (read or write) and want to
send pre-programmed TLP information through the outbound PCIe interface. You use the
APB interface to change the TLP information stored in regions, and each region must be re-
programmed.

The dynamic method is useful when you already have the TLP information stored outside
of the PCIe Controller and you want to send it through the outbound PCIe interface. This
method bypasses the AXI address translation logic. If you already have the TLP information,
this feature saves re-programming time if you need to change the TLP information.

www.efinixinc.com 49

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG

Titanium PCIe Controller User Guide

Outbound Access Using Regions

A maximum of 32 outbound regions can be active at the same time. Each region has registers
that control its operation.

Figure 21: AXI Outbound Access Block Diagram

Region
Select
Logic

Multiplexer

AXI Address

APB Interface

Outbound
PCIe

Descriptor

Outbound AXI to PCIe
Address Translation Registers

Outbound PCIe
Descriptor Registers

AXI Region
Base Address Registers

Outbound AXI to PCIe
Address Translation

Descriptor
Generation

Logic

Outbound
PCIe

Address

The outbound access is a two-step process:

1. Region Setup—Before accessing the region registers, you program them using the APB
interface.

2. Region Access—You access the region registers through the outbound AXI interface.

Table 20: Outbound Registers for 1 Region

Registers Description

Outbound AXI to PCIe address
translation registers

Performs address translation from the AXI address to the PCIe address.

Outbound PCIe descriptor registers Holds the TLP information to be sent outbound.

AXI region base address registers Holds the AXI region base address and the region size of the
corresponding region. The PCIe Controller uses this register set to
decode the region by matching it to the incoming AXI address.

Outbound AXI-to-PCIe Address Translation Registers

The PCIe Controller uses these registers (ob_addr0 and ob_addr1) to perform outbound
AXI to PCIe address translation for memory and I/O TLPs. For the configuration TLPs, the
bus number, device number, and the function number can be programmed in the outbound
AXI to PCIe address translation registers if the pass bits are programmed to pass fewer than
specific bits.

www.efinixinc.com 50

Titanium PCIe Controller User Guide

Table 21: ob_addr1 Outbound AXI-to-PCIe Address Translation Registers

Bits Memory and I/O TLPs Vendor Defined
Messages

Normal Messages Default
value

31:0 Upper [63:32] bits of the PCIe address. Vendor-defined
message header
[127:96]

Reserved for
normal messages

32'd0

Table 22: ob_addr0 Outbound AXI-to-PCIe Address Translation Registers

Bits Memory and I/O TLPs Vendor Defined
Messages

Normal Messages Default
value

31:28 Lower [31:28] bits of the PCIe address. Vendor-defined
message header [95:92]

Reserved for
normal messages

4'd0

27:20 Lower [27:20] bits of the PCIe address. Vendor-defined
message header [91:84]

Reserved for
normal messages

8'd0

19:15 Lower [19:15] bits of the PCIe address. Vendor-defined
message header [83:79]

Reserved for
normal messages

5'd0

14:12 Lower [14:12] bits of the PCIe address. Vendor-defined
message header [78:76]

Reserved for
normal messages

3'd0

11:8 Lower [11:8] bits of the PCIe address. Vendor-defined
message header [75:72]

Reserved for
normal messages

4'd0

7:6 Reserved. Reserved Reserved 2'd0

5:0 Number of address bits passed from
AXI to PCIe. The PCIe Controller passes
the programmed value + 1 bits from
AXI to PCIe. The minimum value to be
programmed into this field is 7 because
the translation logic replaces the PCIe
address's lower 8 bits with zeros.

Reserved Reserved 6'd0

Some of the AXI slave outbound sddress (MASTER_AXI_AWADDR) bits convey the
MSG_ROUTING and MSG_CODE fields of the message TLPs.

Table 23: MSG_ROUTING and MSG_CODE Fields

MASTER_ AXI_ AWADDR bits Vendor-Defined Message Normal Message

16 0: MSG with data
1: MSG without data

0: MSG with data
1: MSG without data

15 0: MSG_CODE = 0x7E
1: MSG_CODE = 0x7F

MSG_CODE[7]

14:12 MSG_ROUTING MSG_CODE[6:4]

11:8 Reserved MSG_CODE[3:0]

7:5 Reserved MSG_ROUTING

Outbound PCIe Descriptor Registers

These registers hold the static information in the TLP (e.g., function number, requester ID,
etc.).

www.efinixinc.com 51

Titanium PCIe Controller User Guide

Table 24: desc0: Outbound PCIe Descriptor Register for Different TLP Accesses

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal
Message TLP

3:0 Transaction type
0010: Memory I/O
0110: I/O

Transaction type
1010: Type 0 configuration
1011: Type1 configuration

Transaction type
1101: Vendor-
defined message

Transaction type
1100: Normal
message

6:4 PCIe attributes
[6] ID-based ordering
[5] Relaxed ordering
[4] No snoop

Same as Memory I/O TLP Same as Memory
I/O TLP

Same as Memory
I/O TLP

8:7 ATS[1:0] Reserved Bit 8: Carries
bit [64] of the
vendor defined
message header.
Bit 7: Reserved.

Reserved
for normal
messages.
Bit 8: Carries bit
[64] of the PRI
message header.

15:9 Reserved Reserved Carries [71:65]
of the vendor
defined message
header.

Reserved
for normal
messages.

16 If desc0 [8:7] bits are set to 2'b01
(i.e., it is an ATS translation request)
or if it is a memory read request,
this bit is used as no write (NW) flag.
In this case the address must be
aligned (i.e., address bits 11:0 must
be reserved as per the PCIe protocol
specification).

Reserved Reserved Reserved

19:17 PCIe traffic class PCIe traffic class PCIe traffic class PCIe traffic class

20 When the request is a memory
write transaction, setting this bit
causes the PCIe Controller to poison
the memory write TLP being sent.
This bit has no effect for other
transactions.

Reserved Reserved Reserved

21 Force ECRC insertion. Setting this
bit to 1 forces the PCIe Controller
to append a TLP digest containing
ECRC to the TLP, even when ECRC
is not enabled for the function
generating the request.

Same as Memory I/O TLP Same as Memory
I/O TLP

Same as Memory
I/O TLP

22 Reserved Reserved Reserved Reserved

www.efinixinc.com 52

Titanium PCIe Controller User Guide

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal
Message TLP

23 Enables the client to provide the bus
and device numbers to be used in
the requester ID.
0: The PCIe Controller uses the
captured values of the bus and
device numbers to form the
Requester ID.
1: The PCIe Controller uses the
bus and device numbers supplied
by the client on desc1[7:0] and
desc0[31:27] to form the requester
ID.
This bit must always be set while
originating requests in root port
mode, and the corresponding bus
and device numbers must be placed
on desc1[7:0] and desc0[31:27].

1: The PCIe Controller
uses the bus and device
numbers supplied by the
client on addr0[27:20] and
addr0[19:15] to form the
completer ID.
This bit must always be set
while originating requests
in root port mode, and the
corresponding bus and
device numbers must be
placed on addr0[27:20]
and addr0[19:15].

Same as Memory
I/O TLP

Same as Memory
I/O TLP

31:24 PCI function number associated with
the request.
ARI mode: All 8 bits are used to
indicate the requesting function.
Non-ARI mode: Bits [26:24]
represent the function number.
The client must always specify the
function number regardless of the
bit [23] setting.
Bits [31:27] specify the device
number to be used within the
requester ID, when bit [23] is set.

Reserved Same as Memory
I/O TLP

Same as Memory
I/O TLP

Table 25: desc1: Outbound PCIe Descriptor Register for Different TLP Accesses

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal
Message TLP

7:0 When desc0[23] is set, this field
must specify the bus number
to be used for the requester ID.
Otherwise, this field is ignored.

Reserved Same as Memory I/O
TLP

Same as Memory I/O
TLP

31:8 Reserved Reserved Reserved Reserved

Table 26: desc2: Outbound PCIe Descriptor Register for Different TLP Accesses

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal
Message TLP

7:0 If index bit is 0 this value is taken as the
TLP steering tag for the hint.
If index bit is 1, this value [7:0] is used
as a pointer to the table holding the
steering tag values.

Reserved Reserved Reserved

8 Index bit Reserved Reserved Reserved

10:9 Value of PH [1:0] associated with the
hint.

Reserved Reserved Reserved

www.efinixinc.com 53

Titanium PCIe Controller User Guide

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal
Message TLP

11 TPH length Reserved Reserved Reserved

12 Set when the request has a transaction
processing hint associated with it.

Reserved Reserved Reserved

20:13 Reserved Reserved Reserved Reserved

Table 27: desc3: Outbound PCIe Descriptor Register for Different TLP Accesses

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal
Message TLP

0 PASID present bit 1'b0 1'b0 1'b0

20:1 PASID value 20'd0 20'd0 20'd0

21 Privilege mode access requested 1'b0 1'b0 1'b0

22 Execute mode access requested 1'b0 1'b0 1'b0

31:23 Reserved Reserved Reserved Reserved

AXI Region Base Address Registers

The PCIe Controller uses region select logic to match the outbound AXI address and the
pre-programmed AXI address (in the AXI region base address registers for each region) to
determine the region to which it belongs. The matching is done from region 0 to <max
regions> - 1. The comparator selects the first matching region as the region number used to
pick the static TLP information (PCIe descriptor) as well as the PCIe address (for address
translation). The AXI region sizes and region base addresses are programmable.

Note: Overlapping regions are not supported.

Table 28: AXI Region Base Address Registers

Register Bits Allocation Default

axi_addr1 31:0 Upper [63:32] bits of the AXI region base address. 32'd0

31:8 Lower [31:8] bits of the AXI region base address. 24'd0

7:6 Reserved 2'd0

axi_addr0

5:0 The programmed value in this field + 1 gives the region size. The minimum
value to be programmed into this field is 7 because the lower 8 bits of the
AXI region base address are replaced by zeros by the region select logic.
The minimum region size is 256 bytes.

6'd0

All AXI regions has their start address aligned to the region size, which is programmed
through the AXI Region Base Address Register axi_addr0 [5:0]. If the select logic does
not find a match, the PCIe Controller responds with a DEC ERR over the AXI interface.

Outbound Access through the Sideband Descriptor

This topic describes how to send an AXI outbound address packet directly—without doing
any address translation. This method is useful for dynamic address translations; that is, the
client does not have enough time to program one of the 32 region registers.

In this method, the PCIe Controller drives the translated outbound PCIe address (PCIe
descriptor) directly on MASTER_AXI_AWADDR and MASTER_AXI_ARADDR. It does not
perform address translation performed on the AXI address. A sideband access enable bit in

www.efinixinc.com 54

Titanium PCIe Controller User Guide

MASTER_AXI_AWUSER and MASTER_AXI_ARUSER gives the sideband access priority over
the region access.

Table 29: AXI Slave Sideband Signal Description (MASTER_AXI_AWUSER and MASTER_AXI_ARUSER)

Bit Memory or I/O TLP Configuration TLP Message TLP

3:0 Transaction type:
0000: Memory read
0010: Memory write
0110: I/O write
0100: I/O read
All other values are reserved.

Transaction type:
1010: Type 0 configuration write
1000: Type 0 configuration read
1011: Type 1 configuration write
1001: Type 1 configuration read
All other values are reserved

Transaction type:
1100: Normal message
1101: Vendor-defined message
All other values are reserved

6:4 PCIe attributes associated with
the request.
4: No Snoop
5: Relaxed Ordering
6: IDO

Same as Memory or I/O TLP Same as Memory or I/O TLP

7 ATS bit 0 Reserved Reserved

15:8 8: ATS bit 1
15:9: Reserved

Reserved For vendor defined messages,
this field carries bits [71:64]
of the message header. For
all other requests, this field is
reserved.

16 If bits [8:7] are set to 2'b01 (i.e.,
ATS translation request) and
if it is a memory read request,
bit [16] is used as a no write
(NW) flag. In this case the
address must be aligned; that
is, address bits [11:0] must
be reserved as per the PCIe
protocol specification.

Reserved Reserved

19:17 PCIe Traffic Class (TC)
associated with the request.

PCIe Traffic Class (TC)
associated with the request.

PCIe Traffic Class (TC)
associated with the request.

20 When the request is a memory
write transaction, setting this bit
causes the PCIe Controller to
poison the memory write TLP
being sent. This bit has no effect
for other transaction types.

Reserved. Reserved

21 Force ECRC insertion.
Setting this bit to 1 forces the
PCIe Controller to append a
TLP digest containing an ECRC
to the TLP, even when ECRC
is not enabled for the function
generating the request.

Same as Memory or I/O TLP Same as Memory or I/O TLP

www.efinixinc.com 55

Titanium PCIe Controller User Guide

Bit Memory or I/O TLP Configuration TLP Message TLP

22 Enables the client to provide the
bus and device numbers to be
used in the requester ID.
0: The PCIe Controller uses the
captured values of the bus and
device numbers to form the
Requester ID.
1: The PCIe Controller uses
the bus and device numbers
supplied by the client on bits
[39:32] and [31:27] to form the
requester ID.
This bit must always be set while
originating requests in root port
mode, and the corresponding
bus and device numbers must
be placed on bits [39:32].

Same as Memory or I/O TLP Same as Memory or I/O TLP

30:23 PCI function number associated
with the request.
ARI mode: All 8 bits are used to
indicate the requesting function.
Legacy mode: Only bits [26:24]
are used, and bits [31:27] are
used to specify the device
number to be used within the
requester ID, when bit [23] is set.

Same as Memory or I/O TLP Same as Memory or I/O TLP

38:31 When bit [23] is set, this field
must specify the bus number
to be used for the requester ID.
Otherwise, this field is ignored.

Same as Memory or I/O TLP Same as Memory or I/O TLP

46:39 Reserved Reserved MSG CODE, 0x7E or 0x7F for
vendor-defined messages.

49:47 Reserved Reserved MSG routing

57:50 TPH ST TAG [7:0] TPH ST TAG [7:0] TPH ST TAG [7:0]

58 TPH INDEX TPH INDEX TPH INDEX.

60:59 TPH TYPE [1:0] TPH TYPE [1:0] TPH TYPE [1:0]

61 TPH length TPH length TPH length

62 TPH present TPH present TPH present

63 PASID present 1'b0 1'b0

83:64 PASID value 20'd0 20'd0

84 Privilege mode requested 1'b0 1'b0

85 Execute mode requested 1'b0 1'b0

86 Reserved Reserved Zero data message

87 MASTER_AXI_AWUSER Only
Valid bit to validate sideband
access.
1: Descriptor is taken from
[127:0]
0: Descriptor is taken from the
region registers.

Same as Memory or I/O TLP Same as Memory or I/O TLP

www.efinixinc.com 56

Titanium PCIe Controller User Guide

Bit Memory or I/O TLP Configuration TLP Message TLP

MASTER_AXI_ARUSER Only
Valid bit to enable sideband
access.

Valid bit to enable sideband
access.

Valid bit to enable sideband
access.

Table 30: Generating Page Request Messages

Register Bits Field Name Description Default

addr1 31:0 Page Address Page address upper bits. 32'd0

addr0 11:8 [8:5] Page request
group index

Page request group index. 4'd0

31:12 [31:12] Page address Page address. Contains the untranslated page address to
be loaded. For pages larger than 4,096 bytes, the least
significant bits are ignored. For example, for an 8,096
byte page, the least significant bits are ignored.

20'd0

8 R Read access requested.
Set: The requesting function seeks read access to the
associated page.
Clear: The requesting function will not read the
associated page.

1'b0

9 W Write access requested.
Set: The requesting function seeks write access and/or
zero-length read access to the associated page.
Clear: The requesting function will not write to the
associated page.

1'b0

10 L Write access requested.
Set: The requesting function seeks write access and/or
zero-length read access to the associated page.
Clear: The requesting function will not write to the
associated page.

1'b0

desc0

15:11 [4:0] Page request
group index

Page request group index. Contains a function provided
identifier for the associated page request. A function
does not need ot use all available PRG index values. A
host shall never respond with a PRG index that has not
been previously issued by the function and that is not
currently an outstanding request PRG index (except when
issuing a response failure, in which case the host need
not preserve the associated request's PRG index value in
the error response).

5'b0

Table 31: Generating Page Response Messages (addr1 Register)

Bits Field Name Description Default

8:0 PRG index Page request group index. This field contains a function provided
index to which the root port is responding. A given PRG index
will receive exactly one response per instance of PRG (with the
possible exception of a response failure).

9'd0

www.efinixinc.com 57

Titanium PCIe Controller User Guide

Bits Field Name Description Default

15:12 Response code Contains the response type of the associated PRG.
0000b: Success
0001b: Invalid request
1110b: 0010b: Unused
1111b: Response failure
A detailed description of each response code is available in PCIe
Specification.

4'd0

31:16 Destination ID Destination device ID. 16'd0

Table 32: Stop Marker Message (desc0 Register)

Bits Field Name Description Default

8 R Read access requested. Must be 1'b0. 1'b0

9 W Write access requested. Must be 1'b0. 1'b0

10 L Last request in PRG. 1'b1 1'b0

15:11 Marker type 4'b0000 4'd0

Table 33: Invalid Request Messages

Register Bits Field Name Description Default

addr1 31:16 Device ID Destination device ID 32'd0

7:0 Untranslated address [63:56] - -

15:8 Untranslated address [55:48] 1'b0

23:16 Untranslated address [47:40] - -

31:24 Untranslated address [39:32] - -

39:32 Untranslated address [31:24] -

47:40 Untranslated address [23:16] -

55:52 Untranslated address [15:12] -

51 S Indicates if the range being invalidated
is greater than 4,096 bytes. Its meaning
is the same as for the translation
completion.

Data 256,
128, 64
bit bus

56 GI Global invalidate. Indicates that the
invalidation request message affects all
PASID values. The ATC ignores this bit
if the global invalidate supported bit is
clear. This field is reserved if PASID is
not support by configuration.

www.efinixinc.com 58

Titanium PCIe Controller User Guide

Register Bits Field Name Description Default

desc1 28:24 ITAG Constrained to the values 0 to 31. Used
by the TA to uniquely identify requests
it issues. A TA must ensure that once
an ITag is used, it is not reused until
either released by the corresponding
invalidate completions or by a vendor-
specific timeout mechanism.

5'd0

Table 34: Invalidation Completion Message

Register Bits Field Name Description Default

2:0 CC Completion Count. Indicates the number of individual
invalidate completion messages that must be sent for
the associated invalidate request. Setting the CC field
to 0 indicates that eight responses must be sent. The
TA is responsible for collecting all responses associated
with a given tag before considering the corresponding
invalidate request to be complete.

3'd0addr1

31:16 Device ID Set to the TA's requester ID. 16'd0

desc0 15:8 ITAG vector [7:0] Indicate which invalidate request has been completed.
Bit 0 corresponds to the ITag field value of 0.

8'd0

addr0 31:8 ITAG vector [31:8] - 24'd0

MSI Memory Writes

In endpoint mode, the client can request interrupt service by initiating message signaled
interrupts (MSI). MSI uses memory write requests (using the memory write request format)
to represent interrupt messages. The client generates the MSI memory write. The typical
procedure for initiating an MSI request is:

1. Host initializes the MSI capabilities of each function in the endpoint via configuration
writes:

a. Host configures lower 32 address bits in the MSI Message Address Low Register.
b. Host configures upper 32 address bits in the MSI Message Address High Register.
c. Host configures data in MSI Message Data Register.
d. Host configures per-vector mask in MSI Mask Register.
e. Host enables MSI by configuring the MSI Control Register.

2. Check for MSI enable by sampling the MSI_ENABLE output. When a function's
MSI_ENABLE is 1, the function can generate an MSI.

3. Wait for a new outbound MSI request for a function or an MSI_MASK cleared event for a
pending MSI.

a. New MSI request, go to step 4.
b. Pending MSI request (mask has been cleared by the host), go to step 5.

4. New outbound MSI request for a function:

a. Read the MSI address and data registers from the function's MSI Capability registers.
b. Check whether that the MSI vector is not masked by sampling MSI_MASK.
c. If masked, set the corresponding bit in the MSI Pending Bits Register using one of

these methods:

i. Use APB (default)—You can set or clear the MSI Pending Status Register bits by
writing to them through the APB interface.

www.efinixinc.com 59

Titanium PCIe Controller User Guide

ii. Set directly—You can set or clear the MSI Pending Status Register bits directly using
MSI_PENDING_STATUS_IN.

Note: You select the mode by programming bit [9] (MSI Pending Status
In Mode Select) in the Debug Mux Control 2 Register local management
register.

iii. Go to step 2.
d. If not masked:

i. Allocate an MSI region on the AXI interface by programming the AXI region base
address registers.

ii. Program the AXI to PCIe address translation registers for the allocated MSI region
with the MSI address.

iii. Program the PCIe descriptor registers for the allocated MSI region with required
values mentioned in the Memory Write column of the PCIe descriptor registers
table.

iv. Generate an outbound write to the MSI region. The AXI write data is <MSI vector
number> + <MSI data register value>.

v. Go to step 2.
5. MSI mask is cleared for a pending MSI vector for a function:

a. Read the MSI address and data registers from the function's MSI capability registers.
b. Transmit the MSI vector:

i. Allocate an MSI region on the AXI interface by programming the AXI region base
address registers.

ii. Program the AXI to PCIe address translation registers for the allocated MSI region
with the MSI address.

iii. Program the PCIe descriptor registers for the allocated MSI region with required
values mentioned in the Memory Write column of the PCIe descriptor registers
table.

iv. Generate an outbound write to the MSI region. The AXI write data is <MSI vector
number> + <MSI data register value>.

c. Clear the corresponding bit in the MSI Pending Bits Register by writing to it through
the APB local management interface.

d. Go to step 2.

MSI-X Memory Writes

In endpoint mode, the client can request interrupt service by initiating MSI-X. MSI-X uses
memory write requests (using the memory write request format) to represent interrupt
messages. The client generates the the memory write. The typical procedure for initiating an
MSI-X request is:

1. Client sets up the location of the MSI-X table and MSI-X pending bit array in the
endpoint function's memory space:

a. Program the MSI-X table location in the MSI-X Table Offset Register.
b. Program the MSI-X pending bit array in the MSI-X Pending Interrupt Register.

2. Host initializes the function's MSI-X capabilities in the endpoint:

a. Host reads the MSI-X table location from the MSI-X Table Offset Register.
b. Host reads the MSI-X pending bit array location from the MSI-X Pending Interrupt

Register.
c. Host initializes the MSI-X vectors by writing to each of the MSI-X table locations.
d. Host enables MSI-X in each function by configuring the MSI-X Control Register.

3. Check whether MSI-X is enabled by sampling MSIX_ENABLE.

www.efinixinc.com 60

Titanium PCIe Controller User Guide

4. When a function's MSIX_ENABLE is 1, the function can generate an MSI-X with the
following steps:

a. Read the MSI-X table entry for each vector to get the MSI-X address, data, and mask
settings for that MSI-X vector.

b. Check whether the MSI-X vector is not masked.
c. If masked, set the corresponding bit in the MSI-X pending bit array by writing the

corresponding bit in the pending bit array memory location.
d. If not masked:

i. Allocate an MSI-X region on the AXI interface by programming the AXI Region
Base Address Registers.

ii. Program the AXI to PCIe address translation registers for the allocated MSI-X
region with the MSI-X address.

iii. Program the PCIe descriptor registers for the allocated MSI-X region with required
values mentioned in the Memory Write column of the PCIe descriptor registers
table.

iv. Generate an outbound write to the MSI-X region. The AXI write data is the MSI-X
vector data.

Outstanding Non-Posted Requests
The AXI slave read and write interfaces (I/O and configuration requests in root port
mode). can send non-posted requests. The client should ensure that the sum of outstanding
non-posted requests over the two AXI slave interfaces is less than the maximum number
of outstanding non-posted requests that can be handled by the PCIe Controller's split
completion table.

Note: The PCIe Controller back pressures the AXI slave interface in case the number of non-posted
requests exceeds the maximum that it can handle, which affects performance.

Ordering between AXI Slave Write and Read Channels
On the outbound direction, the PCIe Controller is in cut-through mode. The AXI logic
has the store and forward buffers. The PCIe Controller arbitrates outbound (read and write
channels) transactions it receives on the AXI slave interface after the asynchronous FIFO
buffer for the AXI slave write and read channels. If a read and a write request are both placed
on the arbiter in the same cycle, is a programmable priority bit in the local management space
indicates which request should be sent out on the link first.

www.efinixinc.com 61

Titanium PCIe Controller User Guide

Outbound Ordering (Endpoint)

Table 35: Endpoint Outbound Ordering

Non-Posted RequestRow Pass Column? Posted Request (Col 2)

Read
Request
(Col 3)

NPR with
Data

(Col 4)

Completion
(Col 5)

Posted request No Yes N/A Yes

Read request Order presented on AXI(4) No N/A Yes/NoNon-
posted
request NPR with data N/A N/A N/A N/A

Completion Order presented on AXI(5) Yes N/A No

Outbound Ordering (Root Port)

Table 36: Root Port Outbound Ordering

Non-Posted RequestRow Pass Column? Posted Request (Col 2)

Read
Request
(Col 3)

NPR with
Data

(Col 4)

Completion
(Col 5)

Posted request No Yes(6) No(7) Yes

Read request Order presented on AXI(8) No Yes Yes/NoNon-
posted
request NPR with data No Yes/No No Yes/No

Completion Order presented on AXI(9) Yes Yes No

If read and write transactions are serviceable (i.e., ready to be sent to the link) in the same
clock cycle, the Enable AXI Bridge Write Priority bit in Debug Mux Control register dictates
whether the write or the read is serviced.

• A write transaction is deemed serviceable from the asynchronous FIFO when all data has
reached the FIFO.

• A read transaction is deemed serviceable when the read transaction sits in the
asynchronous FIFO.

The completions from the AXI master interface are not ordered with respect to the read and
write transactions on the AXI slave interface. All three transactions constitute TLPs flowing
outbound.

(4) To ensure that non-posted are not cross posted, your application should wait for a posted response before issuing non-
posted requests.

(5) To ensure that completions are not cross posted, your application should wait for a posted response before issuing
completions to the AXI master.

(6) When a non-posted request is blocked, a posted request can pass it.
(7) The posted packets are blocked if non-posted packets are stuck in the pipeline.
(8) If the write is blocked, the read can go ahead of the write. If there is an address overlap between the write and read, your

application can wait for the write response before giving the read.
(9) If the posted request is blocked, the completion can pass the posted request.

www.efinixinc.com 62

Titanium PCIe Controller User Guide

Completion Error Codes

Table 37: Completion Error Codes

Error Code Description

3'b000 Normal termination (all data received).

3'b001 The completion TLP is poisoned.

3'b010 Request terminated by a completion with UR, CA, or CRS status.

3'b011 Request terminated by a completion with incorrect byte count.

3'b100 The current completion being delivered has the same tag as an outstanding request; however,
its requester ID, TC, or Attr fields did not match the parameters of the outstanding request.

3'b101 Starting address error. The low address bits in the completion TLP header did not match the
starting address of the next expected byte for the request.

3'b110 Invalid tag. This completion does not match the tags of any outstanding request.

3'b111 Request terminated by a completion timeout or by an FLR targeted at the function that
generated the request.

Completion Status Codes

Table 38: Completion Status Codes

Status Code Description

00 Good.

01 Unsupported request (UR).

10 Completer abort.

11 Retry status.

www.efinixinc.com 63

Titanium PCIe Controller User Guide

AXI Master and Slave Read/Write Length Limitations
For outbound transfers:

• Reads are limited by minimums (AXI_SLAVE_MAX_RD_TRANSFER_SIZE,
MAX_READ_REQUEST_SIZE). The PCIe Controller AXI bridge cannot handle read
requests if the outbound read request length is greater than MAX_READ_REQUEST_SIZE.

• Writes are limited by AXI_SLAVE_MAX_WR_TRANSFER_SIZE. If
AXI_SLAVE_MAX_WR_TRANSFER_SIZE is greater than MAX_PAYLOAD _SIZE—
and the outbound write request length is greater than MAX_PAYLOAD _SIZE—the write
requests are split at MAX_PAYLOAD_SIZE boundary.

For inbound transfers:

• Writes are limited by MAX_PAYLOAD_SIZE. If
AXI_MASTER_MAX_WR_TRANSFER_SIZE is less than MAX_PAYLOAD_SIZE and
the inbound packet length is greater than AXI_MASTER_MAX_WR_TRANSFER_SIZE,
requests are split into AXI_MASTER_MAX_WR_TRANSFER_SIZE packets. The same
AXI ID is assigned to all split packets.

• Reads are limited by MAX_READ_REQUEST_SIZE. If
AXI_MASTER_MAX_RD_TRANSFER_SIZE is less than
MAX_READ_REQUEST_SIZE and the inbound packet length is greater
than AXI_MASTER_MAX_RD_TRANSFER_SIZE, requests are split into
min(AXI_MASTER_MAX_RD_TRANSFER_SIZE, MAX_PAYLOAD_SIZE) packets.
The same AXI ID is assigned to all split packets. The splits measure a length of
min(AXI_MASTER_MAX_RD_TRANSFER_SIZE, MAX_PAYLOAD_SIZE). The start
address is aligned to an RCB boundary and the next address is calculated by adding
min(AXI_MASTER_MAX_RD_TRANSFER_SIZE, MAX_PAYLOAD_SIZE).

Note: MAX_PAYLOAD_SIZE and MAX_READ_REQUEST_SIZE are host-configured values in the device
control register.
AXI_MASTER_MAX_RD_TRANSFER_SIZE, AXI_MASTER_MAX_WR_TRANSFER_SIZE are the maximum
transfer sizes for the AXI master.
AXI_SLAVE_MAX_RD_TRANSFER_SIZE, AXI_SLAVE_MAX_WR_TRANSFER_SIZE are the maximum transfer
sizes for the AXI slave.

Interrupt Interface
The interrupt interface has a master interface (root port mode) and a target interface
(endpoint mode). The master interrupt interface communicates the interrupt events signaled
by downstream endpoints to a local interrupt controller. The target interrupt interface allows
endpoint clients to signal their interrupt state to a remote root port.

Legacy Interrupt Operation
In legacy mode, the PCIe Controller emulates the four PCI interrupt pins (INTA_IN,
INTB_IN, INTC_IN, and INTD_IN). Multiple functions can share the same interrupt pin.
On the endpoint side, the client signals interrupt conditions to the PCIe Controller using
four distinct interrupt inputs.

www.efinixinc.com 64

Titanium PCIe Controller User Guide

Figure 22: Legacy Endpoint Interrupt Interface

Function

Function

Function

Function

INTA_IN
INTB_IN
INTC_IN
INTD_IN

INT_PENDING_STATUS
INT_ACK

ClientPCIe Controller

One bit per Function

Interrupts

The PCIe Controller communicates the state of each interrupt input by sending
Assert_INTx or Deassert_INTx messages on the PCIe link. It sends an assert message
when the corresponding interrupt input transitions from low to high, and sends a de-assert
message when the input transitions back to low. The high-to-low transition usually occurs
when the interrupt has been serviced.

After signaling each transition, the client must wait for the PCIe Controller to assert
INT_ACK before signaling another transition on the same interrupt pin.

You can modify the default interrupt assignments by writing to the Interrupt Pin register
through the local management bus.

The client must provide the interrupt pending status of each of its functions to the
PCIe Controller through the PCIe Controller's INT_PENDING_STATUS input, so that
the status can be read from the PCIe link through the function's PCI Status Register. The
client must set INT_PENDING_STATUS high when there is an interrupt pending from the
function, and set it low when the interrupt has been serviced.

Note: You cannot use MSI or MSI-X interrupts when using legacy interrupts. The client must also check
the state of the INTx disable bits in the associated function's PCI Command Register before generating
a legacy interrupt. The INTx disable bit states are available in the PCIe Controller's FUNCTION_STATUS
output.

MSI and MSI-X Interrupt Modes
As a root port, the PCIe Controller receives MSI or MSI-X messages from downstream
endpoints. It processes the messages like a normal memory write request received from
the link. The PCIe Controller transfers the address and data associated with the (message)
memory write request over the same target memory write interface used to transfer normal
memory write requests. Software running in the root port is responsible for monitoring the
writes to the MSI-assigned area in memory and servicing the interrupts.

MSI Interrupts
In this mode, the interrupt conditions are communicated from the endpoint to the root
port via messages. When an interrupt condition occurs, the endpoint sends a message with
information that identifies the interrupt's origin. Each message has an address and a data value
to be written. Each PCI function supported by a device can be assigned a separate memory
address, thus providing separate virtual channels for each function that generates interrupts.
Additionally, MSI allows (and the PCIe Controller supports) a maximum of 32 distinct data
patterns in the messages generated by each PCI function, and each pattern can be assigned to
an interrupt condition within the function.

www.efinixinc.com 65

Titanium PCIe Controller User Guide

On the endpoint side, the client signals an interrupt condition via the AXI slave interface.
The client constructs an AXI write transaction with the configured address and data value
in the MSI capability structure. The client should assign the address to a region register that
translates the AXI write transaction into a PCIe memory write TLP. The PCIe Controller
then forwards the memory write TLP to the link. The PCIe Controller also supports 32
mask bits and pending interrupt bits for each function. When an interrupt condition occurs,
the client should check that the corresponding mask bit is not set before sending the AXI
write transaction. The client should read the MSI address data values from the MSI capability
structure after the enumeration to construct MSI write TLPs to be sent on the AXI slave
interface.

On the root port side, the PCIe Controller decodes MSI messages received from the link and
passes them to the client through the AXI master interface as normal write requests.

MSI-X Interrupts
This mode is similar to MSI, except MSI-X allows a much larger number of distinct interrupt
conditions to be communicated—as many as 2,048 per function—and lets you define a distinct
address for each conditions. MSI-X requires the endpoint's memory to store two tables:
• The MSI-X table contains the address and data patterns to be used for each interrupt

condition as well as individual enable/mask bits.
• The pending bit array (PBA) table stores the status of each interrupt condition.

Interrupt conditions are communicated from the endpoint to the root port via messages
(write requests) like MSI mode. The PCIe Controller supports MSI-X interrupts by providing
a dedicated interface to the client on the endpoint side to send MSI-X messages. The MSI-X
table and PBA must be stored in client memory. When an MSI-X message is to be sent, the
client communicates the message's address and data information to the PCIe Controller via
an AXI slave write transaction. The client should assign the address to a region register that
translates the AXI write transaction into a PCIe memory write TLP. The PCIe Controller
then forwards the memory write TLP to the link.

On the root port side, the operation is similar to MSI mode. The PCIe Controller decodes
MSI-X messages received from the link and passes them to the client through the AXI master
interface as normal write requests.

Interrupt Sideband Signals
These signals let you generate custom interrupt signals. You can OR required signals from
this vector to form interrupt signals. These signals are already masked internally using the
corresponding mask bits given in the local management space for each kind of error.

Table 39: Interrupt Sideband Signals

Bit Description

0 DMA inbound SRAM ECC uncorrectable error.

1 DMA outbound SRAM ECC uncorrectable error.

2 AXI slave reorder SRAM ECC uncorrectable error.

3 AXI slave WFIFO SRAM ECC uncorrectable error.

4 AXI master RFIFO SRAM ECC uncorrectable error.

5 Reserved.

6 Replay RAM parity error.

7:8 Reserved.

9 PNP RX FIFO parity error.

www.efinixinc.com 66

Titanium PCIe Controller User Guide

Bit Description

10 Completion RX FIFO parity error.

11:12 Reserved.

13 PNP RX FIFO pverflow.

14 Completion RX FIFO pverflow.

15 Replay timeout.

16 Replay timer rollover.

17 PHY error.

18 Malformed TLP received.

19 Unexpected completion received.

20 Flow control error.

21 Completion timeout.

22 Reserved.

25:23 Reserved.

26 This bit is set when the host toggles the Hardware Autonomous Width Change bit in the Link
Control Register through a configuration write.

27 The PCIe Controller detected an end-to-end parity error.

28 Unmapped TC error.

29 Set when the MSI mask register value in the MSI capability register changes value in any of
the PCIe Controller's functions.

30 Reserved.

31 Set whenever the MSI-X function mask register value in the MSI-X capability register changes
in any of the PCIe Controller's functions.

32 0: Reserved

33 Set whenever any bit in the MSI mask register is cleared in any of the PCIe Controller's
functions.

34 Set whenever any bit in the MSI mask register is set in any of the PCIe Controller's functions.

35 Set whenever the MSI-X function mask register is cleared in any of the PCIe Controller's
functions.

36 Set whenever the MSI-X function mask register is set in any of the PCIe Controller's functions.

37 Set when a NFTS timeout occurs during Rx_L0s exit.

38 0: Reserved.

39 0: Reserved.

40 Uncorrectable error detected in SC table state RAM protect module.

41 Uncorrectable error detected in SC table timer RAM protect module.

42 Uncorrectable error detected in SC table byte count RAM protect module.

43 Link equalization request Interrupt:
Endpoint: Indicates that the PCIe Controller has detected a problem with equalization and
automatically requests for an equalization retry at the end of equalization.
Root port: Reserved.

63:44 0: Reserved.

www.efinixinc.com 67

Titanium PCIe Controller User Guide

Clock Sources
The main PCIe Controller clock is derived directly from the PMA PLL; the clock frequency
is configuration dependent. For example, the PCIe Gen4 configuration requires the
PCIe Controller to run at 500 MHz.

The PCIe Controller clock domain is transparent to the user application.

Table 40: Clock Sources

Clock Direction Frequency (MHz) Descriptions

AXI_CLK Input 125 - 250 AXI interface clock.

USER_APB_CLK Input 20 - 200 APB interface clock.

PM_CLK Output 40 Free-running clock used for low power state transitions.

The AXI_CLK clock can be derived from a PLL output. However, you need to ensure
that the AXI_CLK frequency complies with the PCIe link total bandwidth. For example,
four lanes of Gen4 run at a 64 Gbps link bandwidth. To fully utilize the link bandwidth,
AXI_CLK must operate at 250 MHz in your application.

The USER_APB_CLK clock can also be derived from a PLL output.

The PM_CLK is used for power management. The PCIe Controller outputs PM_CLK so you
can utilize the same clock resource.

All clocks are asynchronous; the PCIe Controller handles the clock synchronization
internally.

www.efinixinc.com 68

Titanium PCIe Controller User Guide

Link Control
The following topics describe the process for link up, link down, and reset.

Link Up
Upon power on reset, the PCIe Controller is ready for link training in 100 ms. After the
PERST# signal is deasserted, the PCIe link goes through training and achieves link active (L0)
state in another 100 ms.

Figure 23: PCIe Controller Link Up Mechanism

CRESET_N

Power Supplies

PERST#

FPGA State

PCIe State

Reset Interface Config. Core Configuration (1) User Mode

Reset Link Training Link up to L0

a

b

c

Parameter
a

b (2)
c

Min.
10

100
-

Typ.
-
-
-

Max.
500

-
100

Description
CRESET_N release time after power supplies are stable.
Minimum PERST# signal active time from the PCIe host.
Maximum time required for the PCIe device to enter the
L0 state after PERST# is released.

Units
µs
ms
ms

Link Down and Reset
When the link goes down or is disabled or upon hot reset, the PCIe Controller internally
generates a link down reset, which clears all of its internal state machines, timers, and control
registers. In the PCIe defined configuration register space, all registers, except those that are
sticky, are also reset upon link down reset.

The PCIe Controller's AXI interface handles the link down reset as follows:

• When the PCIe Controller detects a link down reset, it seets the Link Down Indication
Bit in the AXI register space.

• The AXI interface responds to the client with a SLVERR response while the Link Down
Indication Bit is set.

• All write requests from the application (via the AXI slave interface) are consumed by the
AXI interface and return a SLVERR response.

• All read requests are completed with a generated zero data pattern and return SLVERR
response.

www.efinixinc.com 69

Titanium PCIe Controller User Guide

Additionally, the PCIe Controller aserrts the LINK_DOWN_RESET_OUT output signal upon
a link down event. Your user application can monitor this signal to know when there is a
link down event. For example, the client may have to reset its own FIFO buffers, registers, or
state machines when the link is down. Firmware should clear the Link Down Indication Bit
to restart any valid traffic after the negative edge of LINK_DOWN_RESET_OUT.

The AXI address translation registers are not cleared upon link down reset. These registers
hold their programmed values and you do not need to re-program them.

Note: Refer to "AXI Configuration Registers" in the Titanium PCIe Controller Registers User Guide for the
register descriptions.

Reset Types
There are three reset types: cold reset, warm reset, and hot reset. These resets cause link down
conditions.

For warm and hot reset, the PCIe Controller, except sticky registers, goes into reset. The rest
of the FPGA design remains operational. For a cold reset, the entire FPGA is reset.

Cold Reset
When the FPGA is reset, for example by power cycling, it triggers a cold reset for the
PCIe Controller.

Warm Reset
When PERST_N is asserted, it triggers a warm reset for the PCIe Controller. The
PCIe Controller, except sticky registers, undergoes a reset. The rest of the FPGA remains
operational.

During a warm reset, the PCIe Controller issues a reset request to soft logic and IP cores
connected to it. Your user application must observe the reset handshake, and return a
relevant RESET_ACK to allow the PCIe Controller to complete the warm reset procedure.

Hot Reset
During a hot reset, the PCIe Controller, except sticky registers, undergoes a reset. The rest of
the FPGA remains operational.
• In root port mode, the HOT_RESET_IN input initiates a hot reset sequence on the PCIe

link. The root port application can assert and hold HOT_RESET_IN high until the
LINK_DOWN_RESET_OUT output goes high.

• In endpoint mode, asserting LINK_DOWN_RESET_OUT triggers a hot reset.

When you trigger a hot reset, the PCIe Controller issues a reset request to soft logic and IP
cores connected to it. Your user application must observe the reset handshake, and return a
relevant RESET_ACK to allow the PCIe Controller to complete the hot reset procedure.

Reset Handshake
When a warm or hot reset occurs, the PCIe Controller sends a reset request by driving the
RESET_REQ output high. When RESET_REQ goes high, the user application can delay
the assertion of RESET_ACK, for example, to provide sufficient time to power down the
application. However, the user application must indicate its readiness for reset by asserting
RESET_REQ, which tells the PCIe Controller to proceed with the warm or hot reset.

www.efinixinc.com 70

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG

Titanium PCIe Controller User Guide

Once the reset event is served, the PCIe Controller de-asserts RESET_REQ, at which point
the user application must deassert RESET_ACK.

De-asserting PERST_N triggers the PCIe Controller's internal sequence to exit from reset and
subsequently perform PCIe training and link up.

Figure 24: Reset Handshake

PERST_n

Internal Clock

Internal State

RESET_REQ

RESET_ACK
(user input)

Normal
Operation

Warm
Request

Warm
Reset

Release
Warm
Reset

PCIe
Training and

Link Up

>100 ms

When RESET_REQ is asserted, the reset request is sent to all affected IP cores (including soft
IP) and the core fabric.
• When the soft IP receives the reset request, it should evaluate its readiness and assert

RESET_ACK.
• The user appliication should hold RESET_ACK asserted until the PCIe Controller de-

asserts RESET_REQ.
• When RESET_REQ deasserts, the user application should deassert RESET_ACK.

When all affected soft IP cores assert RESET_ACK, the actual reset event occurs and the
affected reset domains are reset.

Function-Level Reset (FLR)
FLR enables the user application to reset a specific function on the endpoint; the FLR only
affects the targeted function. When a specific VF is reset, only that VF's resources are reset.
When a PF is reset, all of the PF's resources, including those of its associated VFs, are reset.
The link state is not affected by an FLR.

Note: Refer to Function-Level Reset Signals on page 119 for a detaled description of the signals.

The following figure shows the handshake of FLR_DONE and FLR_IN_PROGRESS in PF3,
and is applicable to any PFs/VFs undergoing FLR.

www.efinixinc.com 71

Titanium PCIe Controller User Guide

Figure 25: FLR Handshake

FLR_IN_PROGRESS
(Output to User)

AXI_CLK

FLR_DONE
(Input from User)

Internal FLR State

EP Receive TLP
to FLR at PF3

FLR and Internal
Reprogramming at PF3

Idle

1 3

2

When the host sets the FLR bit in an endpoint function's device control register with a
CfgWr, the PCIe Controller first responds with the completion. Then it initiates the FLR.
The affected function's configuration registers are reset as described in the PCIe specification.

The PCIe Controller asserts the FLR_IN_PROGRESS and VF_FLR_IN_PROGRESS outputs
to the user application, indicating the PFs and VFs that received a FLR.

When the PCIe Controller asserts FLR_IN_PROGRESS[n], the user application must
clear any pending transactions associated with the function (PF/VF) being reset. Then,
the user application must assert FLR_DONE[n] and hold FLR_DONE[n] high until the de-
assertion of FLR_IN_PROGRESS[n]. At the same time, the associated PF/VF undergoes an
internal re-programming and retrieves the original user configurations. Upon the assertion
of FLR_DONE[n] from both ends (user and internal reprogramming), the PCIe Controller
de-asserts FLR_IN_PROGRESS[n], at which time the user application must de-assert
FLR_DONE[n].

Note: The client must complete the FLR within 100 ms, as required by the PCIe specification.

While the FLR_IN_PROGRESS and VF_FLR_IN_PROGRESS outputs are high, any
configuration or memory or I/O requests the function receives are silently discarded as
permitted by the PCIe specification.

Each function's Bus Master Enable bit in the Command Register is also reset upon FLR. The
client can only restart outbound traffic after the host sets the Bus Master Enable bit through a
CfgWr.

In the event of an FLR, requests on the AXI interface are handled as follows:

• In progress write requests complete normally. The client should not initiate any
additional write requests from the function under FLR.

• Read requests from the affected function return SLVERR on RRESP.
• The AXI address translation registers are not affected by FLR for any function.

Concurrent FLR Request in Multiple PFs/VFs
If an FLR is triggered concurrently in multiple PFs/VFs, the PCIe Controller asserts the
associated FLR_IN_PROGRESS[n].

For example, if an FLR is triggered concurrently in PF1 and PF3:

1. The PCIe Controller asserts FLR_IN_PROGRESS[1] and FLR_IN_PROGRESS[1].

www.efinixinc.com 72

Titanium PCIe Controller User Guide

2. The user application must clear pending transactions associated with PF1 and PF3.
3. The user application must assert FLR_DONE[1] and FLR_DONE[3], and hold them

high until FLR_IN_PROGRESS[1] and FLR_IN_PROGRESS[3] de-assert, respectively.

Reset During an FLR
If a warm or hot reset occurs during an FLR, the reset takes precedence and all PFs
undergo reset. In this event, the user application must monitor for the de-assertion of
FLR_IN_PROGRESS[n], and de-assert FLR_DONE[n].

Power Management
The PCIe Controller supports several power management techniques, as described in the
following topics. Refer to the PCIe specification mandated features and their usage in a PCI
system.

Function Power States
The PCIe Controller supports the PCI function power states D0 (uninitialized and active),
D1, and D3hot.

By default, the PCIe Controller sets the Power Management Control Register's No Soft
Reset bit for all enabled functions to 1. This setting means that the function's state is not lost
when it is in the D3hot power state, and its registers do not need to be re-configured when
the function is goes back to D0. The PCIe specifications recommend setting this bit for all
functions.

When a root port changes an endpoint's power state form D0 to a non-D0 state, the
PCIe Controller asserts POWER_STATE_CHANGE_INTERRUPT. Before asserting
POWER_STATE_CHANGE_ACK, the client must ensure that no new request are issued to
the PCIe link after the acknowledge is asserted. This functionality is required per the PCIe
Specification.

Figure 26: Asserting POWER_STATE_CHANGE_INTERRUPT
Root Port

(CDN DUT)
Endpoint

(CDN DUT)
Client
Logic

CfgWr changes
from D0 to D3

Cpl on PCIe Link

POWER_STATE_CHANGE_INTERRUPT
Is Set

POWER_STATE_CHANGE_ACK
Is Set

Wait or abort new operations;
this function should not issue
any new requests to the PCIe
link after ACK.

L0s Power State
L0s entry and exit is an autonomous process, and has very low exit latency compared to
the other link power states. In this state, the PCIe Controller automatically initiates entry

www.efinixinc.com 73

Titanium PCIe Controller User Guide

into ASPM L0s if the TX is idle (i.e., no TLPs and no DLLPs to be transmitted) for a
programmable time period. For the transition to occur:

• Endpoints—ASPM L0s must be enabled in the Link Control Register of the configuration
spaces of all enabled functions.

• Root port—ASPM L0s must be enabled in the Link Control Register of the
PCIe Controller root port register set.

Note: You can enable L0s in the Interface Designer (PCI Express block > Pins tab > Power Management
sub-tab > Enable Power Management).
During operation, you can update the setting using the APB interface. Enable or disable active-state
power management (ASPM) L0s by setting the Active State Power Management Control (bit [0]) in the Link
Control and Status Register.

Important: You cannot enable active state power management (ASPM) if SRIS is enabled.

You can program the L0s entry timeout using the L0s Timeout Limit Register local
management register. The transition from L0 to L0s happens after a time period programmed
in the L0s Timeout Limit Register elapses with no TLP or DLLP being transmitted. Setting
the L0s Timeout Limit Register to 0 disables the transition to L0s state.

L1 Power State
The L1 link power state savess more power at the expense of more latency compared to the
L0s state.

Entering L1 via ASPM
ASPM L1 is an autonomous process; entry and exit happens without any user handshaking.
You can enable or disable ASPM L1 by setting the Active State Power Management Control
(bit [1]) in the Link Control and Status Register. The PCIe Controller automatically initiates
entry into ASPM L1 if the TX side is idle (i.e., no TLPs from the client and no replay TLPs
pending) for a programmable time period. SPM L1 entry operates as follows:

1. When the link TX is idle, the endpoint PCIe Controller begins incrementing the
ASPM L1 entry timer internally. If the client requests to transmit a TLP, the timer is
immediately cleared.

2. When the ASPM L1 entry timer reaches the programmed value in the ASPM L1 Entry
Timeout Delay Register, the PCIe Controller checks whether sufficient credits are
accumulated.

3. The PCIe Controller blocks new TLPs and initiates ASPM L1 entry by sending
PM_Active_State_Request_L1 DLLPs to its transmit lanes.

4. The PCIe Controller continuously transmits the PM_Active_State_Request_L1 DLLP
until it receives a response from the upstream device.

5. The upstream device must immediately respond to the request with an acceptance
(PM_Request_Ack) or rejection (PM_Active_State_Nak).

6. If the upstream device rejects with a 'PM_Active_State_Nak message, the PCIe Controller
aborts the ASPM L1 entry and continues to send TLPs normally.

7. If the upstream device accepts with a PM_Request_Ack message, the PCIe Controller puts
its TX into electrical idle and enters ASPM L1.

8. The upstream device detects the electrical idle and puts its TX into electrical idle as well.

For the transition to ASPM L1 to occur:
• Endpoints—You must enable ASPM L1 in the Link Control Register of all the enabled

functions.

www.efinixinc.com 74

Titanium PCIe Controller User Guide

• Endpoints—You must enable the L1 power state in the Link Control Register of the
PCIe Controller's root port register set.

ASPM L1 entry timeout is programmable through the ASPM L1 Entry Timeout Delay
Register local management register. The L1 Timeout[19:0] field contains the timeout value
(in 16 ns units) for transitioning to the ASPM L1 power state. Setting it to 0 disables the
transition to the ASPM L1 power state.

Entering L1 via PCI-PM
When the PCIe Controller is configured as an endpoint, the PCI power management
operation is as follows:

1. The PCIe Controller operates normally with all functions in the D0 active state.
2. The remote root port writes to the Power Management Control Register for all enabled

functions, which transitions the function(s) to the non-D0 power state.
3. When all functions are in the non-D0 state, the PCIe Controller initiates a link power

state transition to L1 by transmitting PM_Enter_L1 DLLPs.
4. After the data link layer handshake, the link transitions to the L1 state.

While the link is in L1 state and the PCIe Controller's functions are in D1 or D3hot, the
link partner can transition the link from L1 to L0 at any time. The PCIe Controller can then
optionally initiate a re-entry back to L1 if the link has been idle for a set interval and the
PCIe Controllers functions are still in D3hot. The re-entry to L1 is controlled by the delay
programmed in the L1 State Re-entry Delay Register in the local management space. Setting
this register to a non-zero value causes the PCIe Controller to initiate entry back to L1 when
a delay equal to the number of clock cycles programmed in this register has elapsed with no
link activity. Setting this register to 0 prevents re-entry to L1. The initial transition to L1
(step 3 above) is not affected by this register setting.

L1 Exit Triggers
The following events trigger an L1 exit:

• Electrical idle exit detection.
• New requests at the AXI interface.
• Assertion of side-band signal CLIENT_REQ_EXIT_L1.
• The root port initiates the retraining request using the link control register).

ASPM Exit
Any L1 exit triggers an L1 exit process and there is no handshake required from the client.

PCI-PM Exit
Any L1 exit triggers change the link power state to L0. However, an additional root port to
endpoint handshake is required for normal operation after reaching L0.

For a root port initiated PM L1 exit:

1. Root port initiates a configuration write to change the endpoint function's power state to
D0.

2. This configuration write triggers an L1 exit on the link.
3. The endpoint device also exits from L1 and responds with CPL.
4. Normal data transfer can happen on the PCIe link.

For an endpoint initiated PM L1 exit:

1. The endpoint initiates a PM_PME message to the root port to request a power state
change.

2. The message triggers an L1 exit on the link.

www.efinixinc.com 75

Titanium PCIe Controller User Guide

3. After receiving this message, the root port initiates a configuration write to change the
endpoint function's power state to D0.

4. The endpoint device responds with CPL.
5. Normal data transfer can happen on the PCIe link.

L1 Register Programming
The following registers contain information about the L1 state:

• Entering L1—The Low Power Debug and Control Register 0's L1 Entry Mode field in
the local management space gives information about the last L1 entry mode. You can
determine whether PM or ASPM was used to enter L1. This field is reset before each L1
entry operation.

• Exit trigger for L1 (or L1 substate)—The Low Power Debug and Control Register 0's L1,
L1.x Exit Reason field in the local management space gives information about the last L1
or L1 substate exit triggers. This field is reset before each L1 entry operation.

Blocking L1 Explicit Client Exit or Endpoint Entry
The client can trigger an explicit L1 exit by asserting CLIENT_REQ_EXIT_L1. This signal
triggers an exit to L0 from L1 or L1-substates. A new request at the AXI interface also
triggers an L1 exit event internally.

You can also use this signal to block L1 entry in when the PCIe Controller is in endpoint
mode. Blocking L1 entry is useful when a client wants to disable L1 entry to reduce latency
for its outstanding operations.

Refer to L1 Interface Signals on page 125 for the signal description.

Figure 27: Exiting from L1 with CLIENT_REQ_L1_EXIT

AXI_CLK

Recovery L0L1 IdleLTSSM

CLIENT_REQ_EXIT_L1

Recovery

Figure 28: Blocking L1 Entry with CLIENT_REQ_L1_EXIT

Reference Clock

L1 Entry L1 IdleL0LTSSM

CLIENT_REQ_EXIT_L1

L1 Entry
Handshake

Client Process
with Less Latency

L1 Power Substates
The PCI-SIG L1 Power Management Substates ECN defines an optional mechanism to
reduce idle power in the L1 link state by defining L1 substates to facilitate removing power
from the PHY, and clocks to the PCIe Controller. The L1 PM substates are enabled when the
link enters L1 due to PCI power management or ASPM.

There are two L1 substates:

www.efinixinc.com 76

Titanium PCIe Controller User Guide

• The L1.1 substate allows you to turn off clocks and most of the PHY power, but it
requires the PHY to maintain common-mode voltages on the TX side.

• The L1.2 substate enables further reduction in idle power by not requiring common-mode
voltages to be maintained.

Both L1.1 and L1.2 states allow you to turn off the PHY's electrical idle detection circuitry.

The L1 PM substates use the CLKREQ# sideband signal to control the clocks. The CLKREQ#
signal is an open-drain, active-low signal shared by the upstream and downstream ports, and
either side can assert it by driving it low. This signal enables the clock generator. The core
clock is turned off when both sides de-assert their CLKREQ# outputs.

The PCIe Controller has the CLKREQ_IN_N input and a CLKREQ_OUT_N output to
implement the tri-state CLKREQ# pin. The CLKREQ_OUT_N output, when low, enables the
tri-state driver driving the CLKREQ# pin, causing assertion of the shared signal. The port on
the other side can also assert CLKREQ# by driving it low. The PCIe Controller monitors
the state of this shared signal through the CLKREQ_IN_N input, as shown in the following
figure.

Figure 29: L1 PM Substates Block Diagram

L1 PM
Substates
Machine

PHY_ENT_L1_X
PHY_ACK_L1_X

PHY_RX_ELEC_IDLE_DET_EN
PHY_TX_CMN_MODE_EN

PM_CLK
PCIe Controller

LTSSM

PHY

Peer
Component

CLKREQ#

CLKREQ_IN_N
CLKREQ_OUT_N

PIPE Interface

PCIe Link

L1_PM_
SUBSTATE_OUT

Because the core clock is turned off in the L1.1 and L1.2 substates, a separate power
management clock (PM_CLK) drives the L1 PM substates state machine. This clock must
always be active, regardless of the link's power state. There is no requirement on the relative
phase of this clock with respect to the other PCIe Controller clocks.

The L1 PM substates state machine also provides the handshake signals PHY_ENT_L1_X and
PHY_ACK_L1_X to prepare the local PHY for the removal of the reference clock. The state
machine asserts the PHY_ENT_L1_X output in the L1.0 substate when it has determined that
the conditions for transition to the L1.1 or L1.2 substates are met. It then waits for the PHY
to assert PHY_ACK_L1_X before de-asserting CLKREQ_OUT_N and entering L1.1 or L1.2
substates. During L1.1 or L1.2 exit, the PCIe Controller de-asserts PHY_ENT_L1_X to the
PHY and waits for the corresponding de-assertion of PHY_ACK_L1_X before transitioning to
the L1.0 state. This step is required to ensure that the PHY is fully operational and the clocks
are stable before entering L1.0. For the case of L1.2, the PHY handshake is performed while
in the L1.2 exit substate.

Note: De-asserting PHY_ENT_L1_X changes the PHY state from the L1 substate to L1.0. Make sure that
the PHY has a stable reference clock during the exit process.

www.efinixinc.com 77

Titanium PCIe Controller User Guide

The L1 PM substates state machine provides an output signal
PHY_RX_ELEC_IDLE_DET_EN to inform the PHY when to enable its electrical idle
detection circuits on the RX side. The PCIe Controller asserts this output in all states except
when the L1 PM substates state machine is in the L1.1, L1.2.Entry, and L1.2.Idle substates.

The L1 PM substates state machine also provides an output signal PHY_TX_CMN_MODE_EN
to enable common mode on the PHY TX. The PCIe Controller de-asserts this output when
the L1 PM substates state machine is in the L2.Idle substate, and asserts it at all other times.

Entering L1 Substate
L1 substate entry is initiated when the link is in L1 and CLKREQ# from the upstream and
downstream components are de-asserted. The PCIe Controller enters L1.1 or L1.2 depending
on which substate is enabled in the L1 PM Substate Control registers.

CLKREQ_OUT_N is de-asserted in both L1 substates. When the remote device also de-asserts
CLKREQ#, the core clock is turned off by the clock controller in the user domain.

Exiting L1 Substate
Either side can initiate a transition out of the L1 substate. The remote side initiates an L1 PM
substate exit by asserting its CLKREQ# output. This assertion turns on the core clock and
asserts the PCIe Controller's CLKREQ_IN_N input, causing its L1 PM substate to change to
L1.0 and enabling the transition of the LTSSM from L1 into recovery. The client can also
initiate the L1 exit.

The following events trigger an L1 substate exit:

• Remote device initiated exit triggers:
— Assert CLKREQ#.
— Detect an electrical idle exit (only during entry into L1.1 or L1.2 substates before

PHY_RX_ELEC_IDLE_DET_EN is deasserted).
• Locally initiated exit triggers:

— New requests at the AXI interface.
— New register access requests.
— Assertion of sideband signals CLIENT_REQ_EXIT_L1_SUBSTATE or

CLIENT_REQ_EXIT_L1.

The L1 substate exit triggers change the link from L1.1 or L1.2 state to L1.0 and then to L0.

L1.1 Operation
The PCIe Controller enters L1.1 when L1.1 entry conditions are true and L1.2 entry
conditions are false. The following diagram illustrates L1.1 entry and locally initiated exit
process. CLIENT_REQ_EXIT_L1 represents all local exit triggers.

www.efinixinc.com 78

Titanium PCIe Controller User Guide

Download: You can enable L1.1 in the Interface Designer (PCI Express block > Pins tab > Power
Management sub-tab > PM L1.1 Substate Enable).
It is possible to enable/disable L1.1 with the APB interface, however, you must follow the rules described
in L1 Substate Register Programming on page 83 for the power transitions to work correctly.

Figure 30: L1.1 Entry and Locally Initiated Exit

L1 L1 L1 L1 Recovery

L1.0 L1.0 L1.1 L1.1 L1.1 L1.0

LTSSM_STATE

PM_CLK

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

When the conditions for entering the L1.1 substate are met, the L1 PM substates state
machine first performs a handshake with the PHY using the PHY_ENT_L1_X and
PHY_ACK_L1_X signals to prepare the PHY for the removal of the reference clock. Once
the PHY has asserted PHY_ACK_L1_X, the PCIe Controller de-asserts CLKREQ_OUT_N. If
the link partner also de-asserts its CLKREQ# output, the core clock becomes inactive and the
PCIe Controller's CLKREQ_IN_N input is de-asserted. The L1 PM substates state machine
transitions to L1.1 when CLKREQ_IN_N goes high.

Any local L1 substate exit triggers bring the PCIe Controller back to the L1.0 state. During
exit, the PCIe Controller asserts CLKREQ_OUT_N to turn on the core clock, thereby
asserting CLKREQ_IN_N. When CLKREQ_IN_N goes low, the L1 PM substates state
machine performs another handshake with the PHY by de-asserting PHY_ENT_L1_X
and waiting for the PHY to respond by de-asserting PHY_ACK_L1_X. This handshake

www.efinixinc.com 79

Titanium PCIe Controller User Guide

is necessary to prepare the PHY for the re-activation of the reference clock. Once this
handshake has been completed, the PHY transitions back to the L1.0 substate.

Figure 31: L1.1 Entry and Exit Initiated by Link Partner

L1 L1 L1 L1 Recovery

L1.0 L1.0 L1.1 L1.1 L1.1 L1.0

LTSSM_STATE

PM_CLK

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

The previous figure illustrates the operation when the link partner initiates the exit from
L1. The PCIe Controller enters L1.1 from L1.0 when the entry conditions for L1.2
are not satisfied and the entry conditions for L1.1 are satisfied. After completing the
PHY_ENT_L1_X/ PHY_ACK_L1_X handshake with the PHY, the PCIe Controller de-
asserts CLKREQ_OUT_N. If the link partner also de-asserts its CLKREQ# output, the core
clock becomes inactive and the PCIe Controller's CLKREQ_IN_N input is de-asserted,
causing the L1 PM substates state machine to enter the L1.1 state.

The link partner initiates the transition of the link from the L1 state by asserting its
CLKREQ# outputt, resulting in the assertion the PCIe Controller's CLKREQ_IN_N input.
When CLKREQ_IN_N goes low, the L1 PM substates state machine prepares the PHY
for exit from L1.1 by de-asserting PHY_ENT_L1_X and waiting for the PHY to de-assert
PHY_ACK_L1_X. When this handshake is completed, the L1 PM substates state machine
transitions to the L1.0 substate. Meanwhile, the assertion of CLKREQ# results in the core
clock becoming active, which enables the LTSSM to move out of L1 into recovery.

L1.2 Operation
The following figure illustrates the sequence for the L1 PM substates state machine to enter
the L1.2 substate.

www.efinixinc.com 80

Titanium PCIe Controller User Guide

Download: You can enable L1.1 in the Interface Designer (PCI Express block > Pins tab > Power
Management sub-tab > PM L1.2 Substate Enable).
It is possible to enable/disable L1.2 with the APB interface, however, you must follow the rules described
in L1 Substate Register Programming on page 83 for the power transitions to work correctly.

Figure 32: L1.2 Substate Entry

L1 L1 L1

L1.0 L1.0 L1.2 Entry L1.2 Entry

LTSSM_STATE

pm_clk

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

L1.2 Idle

TPOWER_OFF

If the entry conditions for L1.2 are satisfied, it first performs the handshake with the PHY
using the PHY_ENT_L1_X and PHY_ACK_L1_X signals to prepare the PHY for the removal
of the reference clock. Once the PHY has asserted PHY_ACK_L1_X, the PCIe Controller
de-asserts CLKREQ_OUT_N. If the link partner also de-asserts its CLKREQ# output, the core
clock becomes inactive and the PCIe Controller's CLKREQ_IN_N input is de-asserted. The
L1 PM substates state machine transitions to L1.2.Entry when the CLKREQ_IN_N input goes
high. While the L1 PM substates state machine is in the L1.2.Entry substate, it monitors the
CLKREQ_IN_N input and transitions back to L1.0 if it is asserted. If CLKREQ_IN_N remains
de-asserted, the state machine stays in the L1.2.Entry substate for an interval TPOWER_OFF (2
ms) and then transitions to L1.2.Idle.

When the L1 PM substates state machine is in L1.2.Idle, the client or the link partner
can initiate a transition of the link out of the L1-substate. The following figure shows

www.efinixinc.com 81

Titanium PCIe Controller User Guide

the operation of the L1.2 substates when there is an exit trigger from the client.
CLIENT_REQ_EXIT_L1 represents all local exit triggers.

Figure 33: L1.2 Substate Locally Initiated Exit

L1 L1 L1

L1.2 Idle L1.2 Idle L1.2 Exit L1.2 Exit

LTSSM_STATE

PM_CLK

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

L1.0L1.2 Entry

TPOWER_ONMinimum TL12

Any one of the local exit triggers initiates the L1.2 exit process. The PCIe Controller first
asserts CLKREQ_OUT_N to turn on the core clock, resulting in CLKREQ_IN_N becoming
asserted. When CLKREQ_IN_N goes low, the L1 PM substates state machine transitions to
L1.2.Exit.

While in L1.2.Exit, the L1 PM substates state machine performs the PHY_ENT_L1_X/
PHY_ACK_L1_X handshake with the PHY to prepare the PHY for the re-introduction of
the clocks, and subsequently transitions back to L1.0. The L1 PM substates state machine
must stay in L1.2.Exit for a minimum interval of TPOWER_ON. The duration of this interval
is determined by the setting of the TPOWER_ON value and scale parameters in the L1 PM
Substates Control 2 Register. The interval can vary from 0 to 3,100 ms.

Figure 34: L1.2 Substate Exit Initiated by Link Partner

L1 L1 L1

L1.2 Idle L1.2 Idle L1.2 Exit L1.2 Exit

LTSSM_STATE

PM_CLK

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

L1.0L1.2 Entry

TPOWER_ONMinimum TL12

Recovery

www.efinixinc.com 82

Titanium PCIe Controller User Guide

The previous figure illustrates the operation when the link partner initiates the exit from L1.
When in L1.2.Idle, the link partner initiates the transition of the link from L1 by asserting its
CLKREQ# output, resulting in the assertion of the PCIe Controller's CLKREQ_IN_N input.
When CLKREQ_IN_N goes low, the L1 PM substates state machine transitions to L1.2.Exit
(after satisfying the minimum 4 μs stay in L1.2.Idle). After completing the handshake with
the PHY for re-enabling its clocks and staying in L1.2.Exit for a minimum interval of
TPOWER_ON, the L1 PM substates state machine then transitions to L1.0.

L1 Substate Register Programming
The following table provides guidance to program specification-defined registers. Refer to
the Titanium PCIe Registers User Guide for the full list of registers. Registers with prefix
Port and capability registers are read-only when accessed from the PCIe link. These registers
are writable through the local management interface. You need to initialize these registers
to match PHY and system electrical characteristics. These registers are used by the standard
system initialization software to program RW control registers in the endpoint and root port
L1 substate capability space.

Table 41: Root Port Inbound PCIe to AXI Address Translation Registers for 1 BAR

Register
Name

Guide to Select the Value Who Updates Issues with Wrong Values

Port
T_POWER_ON
Value and
Scale

Port's PHY T_POWER_ON value. For example,
TP1.2_to_P1 value in the PHY.

Client's
controller
and PHY
initialization
firmware

PCIe system initialization
software uses this value to
program the T_power_on
register.

T_POWER_ON
Value and
Scale

Maximum of (endpoint Port_T_power_on, root
port Port_T_power_on).

Host's PCIe
system
initialization
software

If the value is lower than
required, one device drives
into an unpowered remote
device, which can result in a
link down event. The LTSSM
moves to detect the state.

Port Common
Mode Restore
Time

Time required for the port's PHY to
establish common mode actively during the
transmission of TS1s. For example, in the PHY
this value is t_common_mode.

Local client's
controller
and PHY
initialization
firmware.

Initialization software uses this
value to program the Common
Mode Restore Time register.

Common
Mode restore
Time

Maximum of (root port port common mode
restore time, endpoint port common mode
restore time).

PCIe system
initialization
software

If the value is lower than
required, one device drives
into an unpowered remote
device, which can result in a
link down event. The LTSSM
moves to detect the state.

www.efinixinc.com 83

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG

Titanium PCIe Controller User Guide

Register
Name

Guide to Select the Value Who Updates Issues with Wrong Values

LTR_L1_2
_threshold
Value and
Scale

This register is used if LTR and ASPM L1.2 are
enabled. It is the worst-case latency a request
would face to get completed in the presence
of L1.2. Refer the LTR section of the PCIe
specification for the LTR usage.
An example calculation is:
LTR_L1_2_threshold = <service request
latency>
+ 2 * (TL1.2 + TL1O_REFCLK_ON
+ TP1_to_P0 + TCOMMONMODE + 2 μs)
Where:
<service request latency> is the worst case
delay for the root port to respond to a read
request or to accept a WR request;
TL1.2 is the minimum time to stay in L1.2 (4 μs)
TL1O_REFCLK_ON is the CLKREQ# assertion to
reference clock valid when exiting L1.2. This is
TPOWER_ON + any additional time the system
needs to enable the reference clock.
TP1_to_P0 is the time the PHY needs to change
the power state from P1 to P0.
TCOMMONMODE is the same as the Port
Common Mode Restore Time Register.
The accountable margin for latency in the
PCIe Controllerand handshake is 2 μs.
The equation multiplies by two to account for
the L1.2 exit that a request and/or completion
might require.

PCIe system
initialization
software

ASPM L1.2 entry happens
only when the endpoint's
LTR requirement is larger
than this threshold. Incorrect
programming of the threshold
can cause unexpected latency
for the endpoint requests.

Delayed Entry
You can delay entry to L1 substates with the Low Power Debug and Control Register 0/ L1
Substate Entry Delay field in the local management space. The PCIe Controller responds to
an L1 exit event while waiting for this delay to expire.

Wait for Outstanding Completions before Entry
The PCIe Controller can wait for outstanding completions by using the Low Power Debug
and Control Register 1/ Enable Outstanding CPL Check field in the local management
space. The PCIe Controller waits for outstanding packets from the client and PCIe link.
The PCIe Controller can respond to normal L1 exit triggers while waiting for outstanding
completions. This field is normally not required unless you wants to fine tune latency for
completions.

Wait for Empty Receive Buffers before Entry
The PCIe Controller can wait for receive buffers to be empty before entering an L1 substate.
You use the Low Power Debug and Control Register 1/ Enable RX Path Check field in the
local management space. The PCIe Controller can respond to normal L1 exit triggers while
waiting for receive buffers. This field is normally not required unless you wants to fine tune
latency for incoming packets from the PCIe link. You do not have to set this field because
packets resume draining from receive buffers once the clocks resume during an L1 substsate
exit.

www.efinixinc.com 84

Titanium PCIe Controller User Guide

Prevent Exit During Register Access
The core clock turns off during L1 substates. The register interface needs the core clock to
respond to register access requests. Therefore, an L1- substate exit is triggered by default while
accessing registers. You can change this behavior with the Low Power Debug and Control
Register 1/ Disable Autonomous L1.x Exit upon Reg Access field in the local management
space. This field is mostly helpful for debugging.

Explicit Client Exit or Entry Block
The client can trigger an explicit L1 substate exit by asserting
CLIENT_REQ_EXIT_L1_SUBSTATE. This signal triggers an exit from L1 substates to L0
if the PCIe Controller is already in an L1 substate. The PCIe Controller waits in L1 for this
signal to become de-asserted before entering an L1 substate. The PCIe Controller responds to
normal L1 exit triggers while it waits for de-assertion .

You need to use this signal if the L1 substate shuts off clocks that drive new requests to the
AXI interface. Efinix highly recommends that you implement client hardware logic to assert
this signal before initiating a new TLP or register access from the client. Hardware logic
reduces overhead on firmware or software drivers. This signal is also useful if you want to
block L1 substate entry to reduce latency for any pending outstanding operations.

Refer to Table 74: L1 Substrate Interface on page 125 for the signal description.

The following figures explain the use of this signal. L1.x means L1.1 or L1.2.

Figure 35: L1.2 Using CLIENT_REQ_L1_EXIT_SUBSTATE to exit from L1.x

L1 Idle L0

L1.0L1.x InactiveL1.x ExitL1 Substate

CLIENT_REQ_EXIT_L1_SUBSTATE

LTSSM

Reference Clock

L1 Exit
Process

L1.x Exit
Process

Figure 36: Using CLIENT_REQ_L1_EXIT_SUBSTATE to block L1.x entry

L0 L1 Idle

Inactive L1.x EntryL1.0L1 Substate

CLIENT_REQ_EXIT_L1_SUBSTATE

LTSSM

Reference Clock

Client Process
Blocking L1.x

L1 Entry
Process

L1 Entry

Integration Details
You can turn off the core clock in an L1 substate. To operate, the L1 substate requires
PM_CLK. Client firmware needs to program PM_CLK. Use the Frequency Register/PM_CLK

www.efinixinc.com 85

Titanium PCIe Controller User Guide

Frequency Select field in the local management register to change the PM_CLK frequency.
You can only change PM_CLK frequency when LTSSM is not in L1.

By default, if there is a register access when the PCIe Controller is in the L1 substate, the
PCIe Controller exits the L1 substate and responds to the register access request. The
PCIe Controller moves to L0 and after servicing the register access request it goes back into
the L1 substate. If the user firmware is performing polling and does not want this behavior,
you can disable this feature by using the Low Power Debug and Control Register 1/ Disable
Autonomous L1.x Exit upon Reg Access field in the local management space. If this field is
set, the PCIe Controller gives an APB error response upon register access when it is in an L1
substate. The only reason for an error response for valid addresses at the APB interface is if a
clock is not available. An error response is only available with the APB interface.

L2 Power State
For the PCIe Controller, L2 is a power saving state. It is a pseudo-L2 state because you
cannot completely remove power from the PCIe Controller. You can suppress transition to
the L2 state by holding REQ_PM_TRANSITION_L23_READY low.

Entering L2
Entering L2 from a non-D0 state is cleaner and the PCIe Controller can automate the
handshake process with the host. The PCIe specification has provisions to enter L2 from D0.
D0 is a normal operating state. L2 entry while a function's power state is D0 requires the
client to respond to the host.

The following steps illustrates L2 entry from all allowed function power states.

1. The remote root port sends a PME_Turn_Off message to the PCIe Controller.
2. The PCIe Controller delivers the PME_Turn_Off message to the client through the

AXI message interface (for AXI configurations) or target-request interface (for non-AXI
configurations).

3. When ready, the client transmits the PME_TO_Ack message to the root port via the
client master interface with the following steps:

a. Wait for the client target request interface to receive a PME_Turn_Off message.
b. Read the function's power state from the Power Management Control/Status Register

configuration register.
c. Check the programmed value of PME Turnoff Ack Delay[15:0] in the local

management register space.
d. If the Function Power State == 'D0' or if the PME Turnoff Ack Delay == 0x0000,

the PCIe Controller does not transmit the PME_TO_Ack message (see following
note).
• Client firmware should ensure that there are no PCIe transfers active in the PCIe

subsystem.
• Client sends a PME_TO_ACK message over the client master request interface.

e. If the condition in step (d) is not true, the PCIe Controller automatically transmits a
PME_TO_Ack message after the PME Turnoff Ack Delay time. The client must not
send PME_TO_ACK.

4. Optionally, the client can now change the PCIe Controller's power state to
L23_Ready by asserting REQ_PM_TRANSITION_L23_READY. This assertion
causes the PCIe Controller's LTSSM to transition to L2 and enables the client
to power down the PCIe Controller completely. The client has to assert
REQ_PM_TRANSITION_L23_READY until the LTSSM moves into L2.

www.efinixinc.com 86

Titanium PCIe Controller User Guide

Note: If any enabled PF is in the D0 power state, there may be PCIe transfers outstanding in the system
for that PF. In this case, the PCIe Controller does not automatically transmit PME_TO_Ack.

Wake Up or Exiting L2
The PCIe Controller supports systems that use a wake-up mechanism. The client shall
capture the PCIe Controller's PME context before sending the PME_TurnOff Acknowledge
message to the root port. The client must store the PCIe Controllers bus number and
device number from local management before acknowledging PME_TurnOff. The client
must specify the Requester ID of the PME message sent when power is re-applied to the
PCIe Controller and the link reaches L0. The following sequence describes the process of
supporting WAKE#.

1. Assume the PCIe Controller is in L2. The client is maintaining the PME context and
requester ID using a client that is powered by VAUX or full power.

2. The client can decide to wake up the PCIe Controller. The client drives the WAKE# out-
of-band signal to tell the power management controller that the PCIe Controller requires
power to be re-applied.

Note: The WAKE#signal is external to the PCIe Controller and is not used by it.

3. Assert PERST_N to bring the PCIe Controller into warm reset. Then, de-assert PERST_N
to reapply the internal power in the PCIe Controller. Follow the reset sequence shown in
Figure 24 on page 71.

4. The client restores any PME context to the PCIe Controller registers via the local
management interface.

5. Prevent the PCIe Controller from transmitting the PM_PME message automatically by
programming bit [20] (Disable PME Message on PM Status) to 1 in the Local Management
Register PME Service Timeout Delay Register.

Note: Set the Disable PME Message on PM Status bit to 1 before setting the PME
Status bit to 1.

6. The client sends a PM_PME message over the client interface using the requester ID that
was captured before entering L2.

7. The root complex can perform a configuration write to the PCIe Controller to move the
device from the D3hot state.

Configuring Registers with the APB Interface
The PCIe Controller has a 32-bit APB bus, which is accessible by the user application. The
protocol is per the APB v1.0 specifications.

You configure the PCIe Controller's interfaces and features with the Efinity Interface
Designer, which sets the corresponding bits in the configuration registers. The
PCIe Controller uses these settings during power up or cold reset. If you want to change the
setting during operation, you can set the register bits through the APB interface.

www.efinixinc.com 87

Titanium PCIe Controller User Guide

You enable the APB interface in the Interface Designer (PCI Express block > Pins tab >
APB sub-tab > Enable Advanced Peripheral Bus).

Figure 37: Configuration and Management Registers

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Register Set 0

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Register Set 1

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Register Set 2

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Register Set 3

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Root Complex Register Set

A
P

B
 In

te
rfa

ce

Local Management Registers

AXI Address Translation Registers

Configuration
Requests from Link

Completions
to Link

APB
Bus

Table 42: Global Address Map for Local Management Bus (apb_paddr)

[23] [22] [21] [20] [19:12] [11:0]

0 0 0 0 0 PCIe Physical Function 0 Registers

0 0 0 0 1 PCIe Physical Function 1 Registers

0 0 0 0 2 PCIe Physical Function 2 Registers

0 0 0 0 3 PCIe Physical Function 3 Registers

0 0 0 0 4 67 PCIe Virtual Function 0-63 Registers

0 0 0 0 68 255 Reserved

0 0 0 1 0 PCIe Local Management Registers

0 1 0 0 x PCIe AXI Configuration Registers

1 0 0 0 0 PCIe Root Port Registers

1 0 1 0 0 PCIe Root Port Registers. In this mode, certain RO fields
in the configuration space can be written. Please see
documentation of the RC mode registers below for
more information.

These register addresses are DWORD addresses. In write operations, individual bytes can
be addressed with byte-enable bits. Any addresses not defined are reserved. A configuration

www.efinixinc.com 88

Titanium PCIe Controller User Guide

access from the link to a reserved address causes the PCIe Controller to return a completion
packet with a UR (unsupported request) completion code. A read from the local management
bus to a reserved address returns all zeros, and a write to a reserved address does not modify
any of the registers. All registers (with the exception of reserved or hardwired fields) are
writable from the local management bus.

Note: Refer to the Titanium PCIe Controller Registers User Guide for a detailed description of the
registers.

Configuration Snoop Interface
The PCIe Controller has configuration space registers for each function as defined in the
PCIe specifications. It supports PCI-compatible configuration space as well as PCIe extended
space registers. The PCIe Controller automatically builds a linked list of capability structures,
depending on the features you choose when configuring the PCI Express block in the Efinity
Interface Designer.

Learn more: Refer to the Titanium Interfaces User Guide for detail on configuring the PCI Express block
in the Interface Designer.

During the enumeration process, the host can traverse through the PCIe Controller's linked
list of structures to find out which features are supported. Root port software uses the same
capability structures for control and status information. The PCIe configuration read/write
TLPs are used for this purpose. The PCIe Controller maps an incoming configuration read/
write TLP to a read/write access to the internal configuration space registers. The control
fields of various capability structures route to different PCIe Controller layers so that the
logic can use the control information as expected.

The PCIe Controller also has an optional configuration snoop interface that lets you
implement your own register set in the PCIe configuration space. The interface snoops
incoming configuration read/write TLPs received from the link and places them on a simple
configuration snoop read/write interface. You can enable the configuration snoop interface in
the Interface Designer.

Note: You obtain the actual configuration register address by multiplying the CONFIG_REG_NUM value by
4. For example, a configuration space address of 0xa00 equates to a value on CONFIG_REG_NUM of 0x280.

For a configuration write transaction, the interface places the address and data on the
configuration snoop interface and asserts the CONFIG_WRITE_RECEIVED signal for one

www.efinixinc.com 89

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF

Titanium PCIe Controller User Guide

clock cycle. If the PCIe Controller implements the register being accessed, the write data is
updated internally.

Figure 38: Configuration Snoop Interface Write Waveform

REG_NUM

FUNCTION_NUM

WRITE_DATA

WRITE_BYTE_ENABLE

CONFIG_REG_NUM[9:0]

core clk

CONFIG_FUNCTION_NUM[7:0]

CONFIG_WRITE_RECEIVED

CONFIG_WRITE_DATA[31:0]

CONFIG_WRITE_BYTE_ENABLE[3:0]

For configuration read transactions, the interface places the address on the configuration
snoop interface and asserts the CONFIG_READ_RECEIVED signal for one clock cycle.
If you want to provide the read data externally for this address, your user application
must place the data on the CONFIG_READ_DATA[31:0] read data bus and assert
CONFIG_READ_DATA_VALID on the first clock cycle after CONFIG_READ_RECEIVED
is sampled high. The externally-provided data is sent back in the completion TLP.
If the CONFIG_READ_RECEIVED input is not asserted by the user application, the
PCIe Controller returns the data from its registers.

Figure 39: Configuration Snoop Interface Read Waveform

REG_NUM

FUNCTION
_NUM

READ_DATA

CONFIG_REG_NUM[9:0]

core clk

CONFIG_FUNCTION_NUM[7:0]

CONFIG_READ_RECEIVED

CONFIG_READ_DATA[31:0]

CONFIG_READ_DATA_VALID

0 1

If you need more clock cycles for the configuration snoop read, you set a local management
register bit. Set the Enable Extended Config Snoop Read bit in the Debug Mux Control
2 Register to 1 to change the read interface timing as shown in the following figure.
If you want to provide the read data externally for this address, the user application
must place the data on the CONFIG_READ_DATA[31:0] read data bus and assert
CONFIG_READ_DATA_VALID within the specified number of clock cycles after
CONFIG_READ_RECEIVED is sampled. If CONFIG_READ_DATA_VALID is not asserted

www.efinixinc.com 90

Titanium PCIe Controller User Guide

within the window, the PCIe Controller sends the data placed in the internal registers to the
completion TLP.

Figure 40: Extended Configuration Snoop Interface Read Waveform

REG_
NUM

FUNCTION
_NUM

CONFIG_REG_NUM[9:0]

AXI_CLK (1)

CONFIG_FUNCTION_NUM[7:0]

CONFIG_READ_RECEIVED

CONFIG_READ_DATA[31:0]

CONFIG_READ_DATA_VALID

0 1

n Cycles (1)

AXI_CLK
(MHz)
125
160
200
250

Clock
Cycles
0 - 2
0 - 5
0 - 7

0 - 10

Note: This mechanism is not intended to completely replace a capability structure. A capability structure
has many control fields that the PCIe Controller uses throughout its layers for specification-mandated
operation.

The control fields are routed from the internally implemented registers to the various parts
of the PCIe Controller. Therefore, replacing a capability structure entirely outside the
PCIe Controller is not possible.

Vendor-Specific Extended Capability (VSEC)
The PCIe specification strongly recommends that PCIe devices do not place in the
configuration space any registers other than those that are architected by the PCIe
specification.

Device-specific registers that need to be placed in configuration space (e.g., they need to be
accessible before memory space is allocated) can be placed in the Vendor-Specific Extended
Capability (VSEC) structure in PCIe extended configuration space. This structure lets you use
the extended capability mechanism to expose vendor-specific registers; for example, vendor-
specific features that are used in a series of components from that vendor. A VSEC structure
can tell vendor-specific software which features a particular component supports, including
components developed after the software was released.

The PCIe Controller implements the VSEC register structure with 8 bytes of vendor-specific
registers. Additionally, it provides a custom interface to help you access the vendor-specific
registers directly, including:
• PCI Express Extendeed Capability Register
• Vendor-Specific Header
• Vendor-Specific Registers

www.efinixinc.com 91

Titanium PCIe Controller User Guide

Per the PCIe specification, the vendor-specific register structure and definition is determined
by the vendor, indicated by the vendor ID field located at byte offset 00h in the PCI-
compatible configuration space. The number of bytes of vendor-specific registers are
advertised in the VSEC Length field.

The PCIe Controller implemetns 8 bytes of vendor-specific registers in:

• i_vendor_specific_control_reg, address @0x408
• i_vendor_specific_data_reg0, address @0x40c

Table 43: i_vendor_specific_control_reg Fields

Bits Attributes Descriptions

7:0 RO These bits are read only for the host. The client can control these bits with the
F0_VSEC_CONTROL_IN[7:0] input. The host's vendor-specific software can access
these bits with a configuration read.

8 RW These bits are read/write for the host. The host's vendor-specific software
can access these bits with a configuration read or write. Bit 8 drives the
PCIe Controller's F0_VSEC_INTERRUPT_OUT output.

31:9 RW These bits are read/write for the host. The host's vendor-specific software
can access these bits with a configuration read or write. Bits [31:9] drive the
PCIe Controller' F0_VSEC_CONTROL_OUT[22:0] output.

Table 44: i_vendor_specific_data_reg0 Fields

Bits Attributes Descriptions

31:0 RW These bits are read/write for the host. The host's vendor-specific software can
access these bits with a configuration read or write.

• F0_VSEC_CONTROL_IN—This input drives bits [7:0] of the vendor-specific registers.
The value to be driven on this input and its applications are specific to the user
application.

• F0_VSEC_INTERRUPT_OUT—This output is driven by bit [8] of the vendor-specific
registers in the PF0 vendor-specific capability structure. The signal is available for the user
application; for example, the host can use it to signal a software-driven interrupt to the
client application outside the PCIe Controller.

• F0_VSEC_CONTROL_OUT—This output is driven by bits [31:9] of the vendor-specific
registers in the PF0 vendor-specific capability structure. The signal is available for the user
application; for example, the host can ujse this signal to indicate vendor specific control
data to the client application outside the PCIe Controller.

www.efinixinc.com 92

Titanium PCIe Controller User Guide

Configuration Guide
The following topics provide example of how to access the memory space.

AXI Outbound Access Example
The following figure shows the outbound AXI memory map with three region partitions and
their corresponding base address and region size.

Figure 41: Outbound AXI Address Map for TLP Accesses

64’H0000_0000_0000_0000

64’H0000_0000_0000_0FFF

64’H0000_0000_0010_0000

64’H0000_0000_001F_FFFF

64’H0000_0000_0020_0000

64’H0000_0000_002F_FFFF

Region 0
Configuration TLP Region
4 Kbytes, 12 bits

Region 1
Memory TLP Region
1 Mbytes, 20 bits

Region 2
Message TLP Region
1 Mbytes, 20 bits

Base Address

Base Address

Base Address

The actual region type is assigned after you program the Outbound PCIe Descriptor
Registers with correct values for each TLP type as described in Table 24: desc0: Outbound
PCIe Descriptor Register for Different TLP Accesses on page 52. You program the base
address and region size into the Table 28: AXI Region Base Address Registers on page 54
for the corresponding region number.

For this example, the values to program in the AXI Region Base Address Registers are shown
in the following table.

Table 45: AXI Region Base Address Register Values

Region Number TLP Type desc0[3:0] AXI_ADDR0[5:0] AXI_ADDR0[31:8] AXI_ADDR1[31:0]

0 (Configuration TLP) b'1010 6'd11 24'h00_0000 32'h0000_0000

1 (Memory or I/O TLP) b'10 6'd19 24'h00_1000 32'h0000_0000

2 (Message TLP) b'1100 6'd19 24'h00_2000 32'h0000_0000

Accessing the Configuration TLP
There are two methods to convey the BDF (completer ID) information for a configuration
TLP. Configuration TLPs are always routed to the endpoint's PCIe configuration space.

www.efinixinc.com 93

Titanium PCIe Controller User Guide

Method 1
This method uses the bus number, device number, and function number and the registers
described in Outbound AXI to PCIe Address Translation Registers. You can drive the
configuration register address on the MASTER_AXI_AW/RADDR[11:0] bits. Program
the pass bits or addr0 [5:0] of the Table 21: ob_addr1 Outbound AXI-to-PCIe
Address Translation Registers on page 51 as 6'd11 so that the lower 12 bits are taken
from MASTER_AXI_AW/RADDR. In this case, the BDF information is programmed in the
corresponding region's (region 0 in this example).

Table 46: BDF Value Programming for Configuration TLPs through Outbound AXI to PCIe Address
Translation Register
BDF values to be programmed in the addr0 register for legacy and ARI mode.

Legacy Mode ARI Mode

addr0 bits Value addr0 bits Value

27:20 Bus number 27:20 Bus number

19:15 Device number 19:12 Function number

14:12 Function number

Note: With this method, the AXI region size should be at least 4K bytes. Program addr0[31:28] and
addr1[31:0] to zero.

Method 2
This method uses the bus number, device number, and function number from the
MASTER_AXI_AW/RADDR. Program addr0[5:0] of the Table 21: ob_addr1 Outbound
AXI-to-PCIe Address Translation Registers on page 51 to 6'd27 so that the lower 28 bits
of the AXI address are passed to the PCIe Controller directly. These bits include the BDF
values as indicated in the following table.

Table 47: BDF Values Programming for Configuration TLPs through the MASTER_AXI_AW/RADDR

Legacy Mode ARI Mode

MASTER_AXI_AW/
RADDR bits

Value MASTER_AXI_AW/
RADDR bits

Value

27:20 Bus number 27:20 Bus number

19:15 Device number 19:12 Function number

14:12 Function number

Note: With this method, the AXI region size should be at least 256 Mbytes (28 bits) because the BDF
information is passed through the bits [27:12] of the MASTER_AXI_AW/RADDR or AXI address. Program
addr0[31:28] and addr1[31:0] to zero.

Programming the Outbound PCIe Descriptor
Register
When you program the outbound PCIe Descriptor Register, you assign a specific TLP type
to the region number. For this example, follow the values to be programmed in the region 0

www.efinixinc.com 94

Titanium PCIe Controller User Guide

desc0, desc1, desc2, and desc3 registers given in the Table 24: desc0: Outbound PCIe
Descriptor Register for Different TLP Accesses on page 52 Configuration TLPs column.

Address Translation
Consider a different example where the AXI configuration TLP address map does not start at
64'h0000_0000_0000_0000. Use the PCIe Controller's address translation feature to translate
the addresses to the requester id and configuration register number.

Table 48: PCIe Configuration Write and I/O Write Requests

Signal Example 1 Example 2

MASTER_AXI_ADDR 0x4 0x0

MASTER_AXI_WSTRB 0xF0 0x0F

Example 1
In this method the AXI region has a region size of 4K bytes (lower 12 bits of AXI address).
The BDF information is captured from the region registers. This method is best for smaller
BDFs; that is, the PCIe configuration space is enough to handle it.

Figure 42: Outbound AXI to PCIe Configuration Space Address Translation for
Configuration TLPs

64’H0000_0000_0000_0000

64’H0000_0000_00FF_FFFF

64’H0000_0000_0010_0000

64’H0000_0000_0010_0FFF

AXI Address Map

BDF=16’h0, CFG REG NUM=12’h000

BDF=16’hFFFF, CFG REG NUM=12’hFFF

PCIe Configuration Space

Visible to Root Port

Region 1
Configuration TLP Region

4 Kbytes, 12 bits

www.efinixinc.com 95

Titanium PCIe Controller User Guide

Example 2

Figure 43: Outbound AXI to PCIe Configuration Space Address Translation for
Configuration TLPs

64’H0000_0000_0000_0000

64’H0000_0000_00FF_FFFF

64’H0000_0000_1000_0000

64’H0000_0000_1FFF_FFFF

AXI Address Map

BDF=16’h0, CFG REG NUM=12’h000

BDF=16’hFFFF, CFG REG NUM=12’hFFF

PCIe Configuration Space

Visible to Root Port

Region 1
Configuration TLP Region

256 Mbytes, 28 bits

The PCIe configuration write and I/O write requests have a payload size of one DWORD.
The AXI address should be aligned to the first data byte enable that is provided. The data/
byte enable starts from the first address location given. One DWORD of data starting from
the above address is used for the configuration and I/O write payload.

Memory or I/O TLP Access
For this example, assume that the one of the PCIe Controller's memory regions has an AXI
region base address of 64'h0000_0000_0010_0000 (region 1 as shown in the following figure)
with a region size of 1 Mbytes. Assume you want to write to the 64'h0000_0000_3000_0000
base address.

When you program the Outbound PCIe Descriptor Register you assign a specific TLP type
to the region number. Follow the values to be programmed in the desc0, desc1, desc2,

www.efinixinc.com 96

Titanium PCIe Controller User Guide

and desc3 registers given in Outbound PCIe Descriptor Registers on page 51 Memory or
I/O TLPs column.

Figure 44: Outbound AXI to PCIe Address Translation Register Programming

64’H0000_0000_0000_0000

64’H0000_0000_00FF_FFFF

64’H0000_0000_0010_0000

64’H0000_0000_001F_FFFF

AXI Address Map PCIe Address Map

Translated PCIe Address Range
1 Mbytes, 20 bits

Region 1
Memory or I/O TLP Region

1 Mbytes, 20 bits

64’H0000_0000_0000_0000

64’H0000_0000_00FF_FFFF

64’H0000_0000_3000_0000

64’H0000_0000_300F_FFFF

Table 49: AXI Region Base Address Register and Outbound AXI to PCIe Address Translation Register
Values

Register Value Register Value

AXI_ADDR0[5:0] 6'd19 AXI_ADDR0[5:0] 6'd19

AXI_ADDR0[31:8] 24'h00_1000 AXI_ADDR0[31:8] 24'h30_0000

AXI_ADDR1[31:0] 32'h0000_0000 AXI_ADDR1[31:0] 32'h0000_0000

Message TLP Access
When an outbound message access is made to an AXI region, the PCIe header fields are
driven from the region register values. Only message code and message routing fields are
driven through the AXI address (MASTER_AXI_AWADDR).

This example uses region two as a message region. The messages region is decoded after
an access is made with an AXI address that falls between 64’h0000_0000_0020_0000 and
64'h0000_0000_002F_FFFF. The Outbound PCIe Descriptor Registers for region two must
be programmed with values for message TLPs.

Note: Messages should have a minimum region size of 128 Kbytes. A bit for the message code,
message routing, and message with/without data is driven through the AXI address (refer to Table 23:
MSG_ROUTING and MSG_CODE Fields on page 51).

For vendor-defined messages, the vendor defined message header bits [127:72] is driven
through the Outbound AXI to PCIe Address Translation Registers as explained in Table 21:
ob_addr1 Outbound AXI-to-PCIe Address Translation Registers on page 51.

www.efinixinc.com 97

Titanium PCIe Controller User Guide

Endpoint Autonomous Link Bandwidth
Management
The PCIe Controller performs link bandwidth management by enabling the endpoint
to change the link speed autonomously (which is permitted by the PCIe specification).
However, the PCIe specification does not define the mechanism to initiate the autonomous
change. In the PCIe Controller, firmware can initiate the autonomous link speed change.

Upon reset de-assertion, the link initially trains up to Gen4 speed if supported by both
link devices. Otherwise, the link initially trains up to Gen1 speed. The endpoint can
autonomously initiate a link speed change with the following process:

1. Check the current negotiated link speed by reading the Negotiated Link Speed field of the
Link Control and Status Configuration Register (bits [19:16]).

2. Check the host's upper link speed limit by reading the Target Link Speed field in the Link
Control 2 Configuration Register.

3. If the endpoint needs to change the link speed within the limit constrained by the host:

a. Program the required speed in the endpoint's Target Link Speed field of the Local
Management Register - Link Width Control Register (bits [25:24]) .

b. Trigger link retraining by writing a 1 to the endpoint's Link Speed Change Retrain
Link bit of the Local Management Register - Linkwidth Control Register.

c. Wait for the endpoint Link Speed Change Retrain Link bit to clear. The
PCIe Controller clears this bit when link retraining is complete.

4. To check if the speed change was successful, read the Negotiated Link Speed field of the
Link Control and Status Configuration Register (bits [19:16]).

The host can disable autonomous link speed changes on the endpoint by setting the
Hardware Autonomous Speed Disable bit in the Link Control and Status Register 2. If the
host sets this bit, any endpoint request to change the link speed will not be successful. The
PCIe Controller enters recovery but does not initiate a speed change.

The firmware should always wait for a link retraining request to complete before initiating
another retraining request.

After initiating a link retrain request, do not write to the Linkwidth Control Register utill
the retraining request is completed.

Programming the SR-IOV Registers
The following topics describe how the VF numbers are allocated and how to set up the VF
BARs.

VF Function Number Allocation
The VF numbers begin immediately after the PF numbers; there are no gaps in the function
number allocation between PFs and VFs. The VF stride is fixed at 0x1. Therefore, all VFs
that belong to the same PF are allocated successive function numbers.

Table 50: VF Function Number allocation

Routing ID Description

0 PF0

1 PF1

www.efinixinc.com 98

Titanium PCIe Controller User Guide

Routing ID Description

2 PF2

3 PF3

4 to 19 PF0_VF1 to PF0_VF16

20 to 35 PF1_VF1 to PF1_VF16

36 to 51 PF2_VF1 to PF2_VF16

52 to 67 PF3_VF1 to PF3_VF16

If you configure the PCIe Controller to have multiple PFs, you can change the total number
of VFs allocated to each PF by programming bits [15:0] in the Total VF Count Register
in the PFs' SR-IOV extended capabilities. When you modify the field, the VF function
number allocation changes and ensures that all VFs are allocated successive function numbers.
Firmware should re-program the First VF Offset field to reflect the new VF function number
allocation as described below.

• PF0 First VF Offset[15:0] = Total Number of PFs
• PF1 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) - 1
• PF2 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1

Total VF Count[15:0]) - 2
• PF3 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1

Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) - 3
• PF4 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1

Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) + (PF3 Total VF Count[15:0]) - 4
• PF5 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1

Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) + (PF3 Total VF Count[15:0]) +
(PF4 Total VF Count[15:0]) - 5

• PF6 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1
Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) + (PF3 Total VF Count[15:0]) +
(PF4 Total VF Count[15:0]) + (PF5 Total VF Count[15:0]) - 6

• PF7 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1
Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) + (PF3 Total VF Count[15:0]) +
(PF4 Total VF Count[15:0]) + (PF5 Total VF Count[15:0]) + (PF6 Total VF Count[15:0])
– 7

Setting up the VF BAR Registers
The PCIe Controller provides the following registers in the local management space to allow
user control of the VF BAR registers:

• Virtual Function BAR Configuration Register 0
• Virtual Function BAR Configuration Register 1

You can setup the following BAR parameters with these registers:

• VF BAR size—32-bit or 64-bit BAR
• VF BAR type—Prefetchable or non-prefetchable
• VF BAR aperture

Download: You set up the VF BAR registers in the Interface Designer (PCI Express block > Function tab >
Physical Function n sub-tab where n is 0 - 3).
Efinix does not recommend changing these settings via the APB interface.

The VF BAR aperture is also affected by the System Page Size register in the SR-IOV
extended capability. Each VF BARn or VF BARn pair should be aligned on a system page

www.efinixinc.com 99

Titanium PCIe Controller User Guide

size boundary. Additionally, each VF BARn or VF BARn pair defining a non-zero address
space should be sized to consume an integer multiple of system page size bytes.

If the VF BAR aperture is not aligned to the system page size, the PCIe Controller internally
overrides the user settings to align the aperture to the system page size. For example:
• VF BAR aperture is not aligned to system page size—If the VF BAR 0 aperture is 4 KB in

Virtual Function BAR Configuration Register 0 and if the host-programmed System Page
Size Register is 4 MB in the SR-IOV extended capability, the PCIe Controller internally
requests 4 MB in the VF BAR0 register, aligned to the system page size.

• VF BAR Aperture is aligned to System Page Size—If the VF BAR 0 aperture is 8 KB in
Virtual Function BAR Configuration Register 0 and if the host-programmed System Page
Size Register is 4 KB in the SR-IOV extended capability, the PCIe Controller internally
requests 8 KB in the VF BAR0 register (as requested by the user).

Managing Outbound NP Outstanding
Requests and Completion Responses
(Endpoint)

As per the PCIe specification, an endpoint must advertise infinite credits for completion
packets. Therefore, the endpoint must be ready to accept all completions it receives for
all non-posted requests it initiates. The endpoint can receive responses for NP requests in
multiple split completion packets.

The PCIe Controller has two buffers to store the received completion packets:
• Stage 1 buffer—Completion FIFO RAM
• Stage 2 buffer—AXI re-ordering FIFO RAM

The stage 1 buffer performs posted vs. completion ordering checks. The PCIe Controller
stores completion packets in this FIFO until the posted vs. completion ordering checks are
cleared. The stage 2 buffer reorders the received split completion packets and merges them to
form a single completion response for each request. This process is needed because the AXI
interface cannot accept split completions.

Table 51: Outbound NP Request Parameters

Parameter Value

Maximum number of outstanding NP requests. 128

Maximum size of each NP request (MRRS). 4096B

Maximum number of split completion packets received per NP request
assuming each NP request is of MRRS, 64B RCB boundary and addresses
are non-64B aligned.

65

Maximum number of split completion packets that can be received. 8320

Maximum number of split completion packets that can be stored in the
stage 1 buffer.

256

Although the stage 2 buffer can store the full size of the completion data, the stage 1 buffer
is smaller and the maximum possible Completion data exceeds the stage 1 buffer storage
capacity. The stage 1 buffer is temporary storage for completion packets and can only store a
limited number of them. The stage 1 buffer is is not designed to store the maximum possible
completion data. Therefore, the posted data must not block the completion data. The client

www.efinixinc.com 100

Titanium PCIe Controller User Guide

must drain the posted data at PCIe link rate; otherwise, a completion FIFO RAM overflow
can occur.

The following sections describe how the client can prevent completion FIFO overflows.

Drain Received Inbound Completion Packets at PCIe Link Rate
With this method, the client guarantees that the write data received on the PCIe Controller's
AXI interface is drained at the PCIe link rate. This method ensures that the posted packets do
not block the completion packets, which avoids a completion FIFO overflow.

Disable Independent Posted vs. Completion Ordering Checks
You can only use this option if the received inbound completion and posted data streams
are completely independent. In this case, the client programs the local management register
Disable Ordering Checks bit [30] in the i_debug_mux_control_reg register. This setting
disables posted vs. completion ordering checks and decouples the two inbound data streams,
and the posted packets no longer block the completion packets, which avoids a completion
FIFO overflow.

Limit Outstanding NP Read Requests to Ensure FIFO Never Overflows
The client limits the total number of outstanding NP requests thereby ensuring that the
completion FIFO does not overflow. Limit the number by setting the Maximum NP
Outstanding Request Limit[7:0] field in the local management Debug Mux Control 2
Register. Program it based on maximum size of the NP requests and NP request address
alignment as shown in the following table.

Table 52: Controlling Maximum NP Outstanding Requests

Maximum NP Request Size (MRRS) All NP 64B Rquest
Addresses Aligned?

Programmed Value in Maximum NP
Outstanding Request Limit Register

64 B Yes 128

64 B No 128

128 B Yes 128

128 B No 85

256 B Yes 64

256 B No 51

512 B Yes 32

512 B No 28

1024 B Yes 16

1024 B No 15

2048 B Yes 8

2048 B No 7

4096 B Yes 4

4096 B No 3

www.efinixinc.com 101

Titanium PCIe Controller User Guide

Interface Signals
The following topics describe the PCIe Controller signal interface. Refer to Figure 2 on page
5 for the block diagram.

Clock Signals
Table 53: Clock Ports

Signal Direction Width Description

AXI_CLK Input 1 AXI interface clock.

PM_CLK Output 1 Free-running clock used for low power state transitions
and clock control generation.

USER_APB_CLK Input 1 APB interface clock.

Reset Interface Signals
Table 54: Reset Interface

Signal Direction Width Clock
Domain

Description

HOT_RESET_IN Input 1 AXI_CLK When this input is asserted in root port
mode, the PCIe Controller initiates a hot reset
sequence on the PCIe link. The PCIe Controller
keeps the PCIe link in hot reset as long as this
signal remains asserted.
When de-asserted, the PCIe Controller brings
the PCIe link out of hot reset and initiates link
training.

HOT_RESET_OUT Output 1 AXI_CLK The PCIe Controller asserts this output when a
hot reset is received from the link in endpoint
mode. This signal is an active-high output driven
synchronous to AXI_CLK.

LINK_DOWN_RESET_OUT Output 1 AXI_CLK The PCIe Controller asserts this output when the
LTSSM detects a link-down event (i.e., when the
LINK_UP state variable goes to 0). This signal
is an active-high output driven synchronous to
AXI_CLK. It is asserted high for eight AXI_CLK
clock cycles during a link down event.

PERST_N Input 1 Async Triggers a warm reset from the I/O pad.

RESET_REQ Output 1 Async When this signal is asserted, the PCIe Controller
requests to trigger a warm or hot reset. Refer to
Reset Handshake.

RESET_ACK Input 1 Async Assert this signal to indicate readiness and
permission for a warm or hot reset. Refer to
Reset Handshake.

www.efinixinc.com 102

Titanium PCIe Controller User Guide

AXI Master Interface Signals
Table 55: AXI Master Write Address Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_AWREADY Input 1 AXI_CLK Ready signals from the client to the PCIe Controller
indicating that the application is ready to sample
the address and associated parameters from the
target write interface. The address and associated
parameters are transferred across the interface when
TARGET_AXI_AWVALID and TARGET_AXI_AWREADY
are both high in a clock cycle.

TARGET_AXI_AWADDR Output 64 AXI_CLK The PCIe Controller places the address of the first
byte in a burst when initiating a write transaction on
the target write interface. The address is valid when
TARGET_AXI_AWVALID is asserted. The AXI address is
the starting byte-level address of the memory block or
I/O location to be read or written. When the transaction
is a 32-bit read/write, bits [63:32] are set to zeroes.

TARGET_AXI_AWID Output 8 AXI_CLK This output contains an 8-bit tag to identify
the write transaction. This output is valid when
TARGET_AXI_AWVALID is asserted.

TARGET_AXI_AWLEN Output 8 AXI_CLK Indicates the number of beats (data transfer cycles)
associated with the current burst (0000 = 1 beat, 0001
= 2 beats, ..., 1111 = 16 beats). This information is valid
when TARGET_AXI_AWVALID is asserted. The valid
bytes within each beat are identified by the write strobe
signal TARGET_AXI_WSTRB[7:0].

TARGET_AXI_AWSIZE Output 3 AXI_CLK Indicates the size of the AXI transfer.

Sideband status information for inbound AXI write
transfer.
[2:0] Transaction type:
010: Memory write
011: I/O write
All other values are reserved.

[5:3] PCIe attributes associated with the request.

[21:6]: PCI Requester ID associated with the request.
With the legacy interpretation of RIDs, these 16 bits are
divided into:
• [31:24] an 8-bit bus number
• [23:19] 5-bit device number
• [18:16] 3-bit function number
When ARI is enabled, bits [31:24] carry the 8-bit bus
number and [23:16] provide the function number.

[29:22] Request's PCI tag.

TARGET_AXI_AWUSER Out 88 AXI_CLK

[32:30] Request's PCIe transaction class (TC).

www.efinixinc.com 103

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

[35:33] For memory and I/O requests, these bits
identify the matching BAR for the memory or I/O
address.
For 64-bit transactions, the BAR number is given as the
lower address of the matching pair of BARs (i.e., 0, 2 or
4).(10)

000: BAR 0
001: BAR 1
010: BAR 2
011: BAR 3
100: BAR 4
101: BAR 5
110: Expansion ROM access.
For message requests, these bits provide the 3-bit
Routing field r[2:0] from the message header.

[43:36] Request's target function determined by the
BAR check. When ARI is in use, all 8 bits of this field are
valid. Otherwise, only bits [50:48] are valid. This field is
valid only for memory and I/O requests and is set to 0
for message requests.(11)

[51:44] For message requests, these bits provide the
message code from the message TLP header. These
bits are reserved for all other request types.

[59:52] 8-bit steering tag for the hint.

[61:60] Value of PH[1:0] associated with the hint.

[62] Set when the request has a transaction processing
hint associated with it.

[64:63] PCIe AT bits:
00: Untranslated
01: Translation request
10: Translated
11: Reserved

[65] PASID present.

[85:66] PASID value, 20 bits maximum. The size
depends on the Max PASID Width field in the PASID
Capability Register.

[86] Privilege mode access.

[87] Execute mode access.

TARGET_AXI_AWVALID Output 1 AXI_CLK Valid signal for the address and control information on
the AXI slave write interface. The PCIe Controller keeps
this valid signal asserted until the client sets the ready
input to the PCIe Controller (TARGET_AXI_AWREADY)
in response.

(10) This description is also applicable for root ports. If RC BAR check is enabled, 000 = RC BAR0 and 001 = RC BAR2 for the
two RC 64-bit BARs.

(11) This signal is applicable to endpoints only. For root ports, these bits are 0.

www.efinixinc.com 104

Titanium PCIe Controller User Guide

Table 56: AXI Master Write Data Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_WREADY Input 1 AXI_CLK Ready for write data from the client to the
PCIe Controller. The client must assert this signal
when it is ready to receive the next beat from the
PCIe Controller.

TARGET_AXI_WDATA Output 256 AXI_CLK Data associated with a memory write operation
delivered from the PCIe Controller. Data is
transferred in little-endian order. For writes, data
is transferred aligned. The data on this bus is
valid when TARGET_AXI_WVALID is high.

TARGET_AXI_WDATA_PAR Output 32 AXI_CLK Contains the end-to-end parity for
TARGET_AXI_WDATA. Odd parity is computed
for every byte of the data and propagated
through the PCIe Controller for end-to-end
parity protection.

TARGET_AXI_WLAST Output 1 AXI_CLK Asserted in the last beat of the burst to indicate
the end of the write transaction.

TARGET_AXI_WSTRB Output 32 AXI_CLK Indicates valid bytes in the first and last beat
of the data block being transferred. Data is
transferred aligned.
Indicates valid bytes of the data block being
transferred. The AXI interface supports
noncontiguous byte enables on any data block.
The AXI logic splits the write packets based on
the write strobes, followimg the PCIe first/last
byte enable as described in the specification.

TARGET_AXI_WSTRB_PAR Output 4 AXI_CLK Contains the end-to-end parity for
TARGET_AXI_WSTRB.

TARGET_AXI_WVALID Output 1 AXI_CLK The PCIe Controller maintains data on
the bus until the client has asserted
TARGET_AXI_WREADY.

Table 57: AXI Master Write Response Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_BID Input 8 AXI_CLK This output contains an 8-bit tag to identify
the response phase of a write transaction. This
output is valid when TARGET_AXI_BVALID is
asserted.

TARGET_AXI_BID_PAR Input 1 AXI_CLK Contains the end-to-end parity for
TARGET_AXI_BID.

TARGET_AXI_BRESP Input 2 AXI_CLK Indicates the response to the transaction when
TARGET_AXI_BVALID is asserted.

TARGET_AXI_BRESP_PAR Input 1 AXI_CLK Contains the end-to-end parity for
TARGET_AXI_BRESP.

TARGET_AXI_BVALID Input 1 AXI_CLK Valid for write response from client to
PCIe Controller.

TARGET_AXI_BREADY Output 1 AXI_CLK Ready for write response from PCIe Controller to
client. Client should hold the response signals
and valid until this signal is asserted.

www.efinixinc.com 105

Titanium PCIe Controller User Guide

Table 58: AXI Master Read Address Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_ARREADY Input 1 AXI_CLK Ready signals from the client to the
PCIe Controller indicating that the application
is ready to sample the address and
associated parameters from the target
read interface. The address and associated
parameters are transferred across the
interface when TARGET_AXI_ARVALID and
TARGET_AXI_READ_ARREADY are both high in
a clock cycle.

TARGET_AXI_ARADDR Output 64 AXI_CLK Address of the first byte in the read request. The
address is valid when TARGET_AXI_ARVALID
is asserted. The AXI address is the starting
byte-level address of the memory block or I/
O location to be read or written. When the
transaction is a 32-bit read/write, bits [63:32] are
set to zeroes.

TARGET_AXI_ARID Output 8 AXI_CLK Read ID tag associated with the target memory
read transaction. The client must store this
tag and return it on TARGET_AXI_RID while
transferring the data associated with the read
request.
This output is valid when TARGET_AXI_ARVALID
is asserted.

TARGET_AXI_ARLEN Output 8 AXI_CLK Indicates the number of beats (data transfer
cycles) associated with the read burst.

TARGET_AXI_ARSIZE Output 3 AXI_CLK Indicates size of the AXI transfer.

Sideband status information for inbound AXI
read transfer.
For 64-bit transactions, the BAR number is given
as the lower address of the matching pair of
BARs (that is, 0, 2 or 4).
[2:0] Transaction type:
000: memory read
001: I/O read
All other values are reserved.

[5:3] Request's PCIe attributes associated.

[21:6] PCI Requester ID associated with the
request. With the legacy interpretation of RIDs,
these 16 bits are divided into:
• [21:14] 8-bit bus number
• [13:9] 5-bit device number
• [8:6] 3-bit function number
When ARI is enabled, bits [21:14] carry the 8-bit
bus number and bits [13:6] provide the function
number.

[29:22] PCI Tag associated with the request.

TARGET_AXI_ARUSER Output 88 AXI_CLK

[32:30] Request's PCIe transaction class (TC).

www.efinixinc.com 106

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

[35:33] For memory and I/O requests, these bits
identify the matching BAR for the memory or I/O
address.(12)

000: BAR 0
001: BAR 1
010: BAR 2
011: BAR 3
100: BAR 4
101: BAR 5
110: Expansion ROM access

[43:36] Request's target function number as
determined by the BAR check. When ARI is in
use, all 8 bits of this field are valid. Otherwise,
only bits [50:48] are valid. This field is valid only
for memory and I/O requests, and is set to 0 for
message requests.(13)

[51:42] These bits are reserved for all read
request types.

[59:52] 8-bit steering tag for the hint.

[61:60] Value of PH[1:0] associated with the hint.

[62] Set when the request has a transaction
processing hint associated with it.

[64:63] PCIe AT bits:
00: Untranslated
01: Translation request
10: Translated
11: Reserved

[65] PASID present.

[85:66] PASID value, 20 bits maximum. The size
depends on the Max PASID Width field in the
PASID Capability Register.

[86] Privilege mode access.

[87] Execute mode access.

TARGET_AXI_ARVALID Output 1 AXI_CLK Valid signal for the address and control
information on the AXI slave read interface. The
PCIe Controller keeps this valid signal asserted
until the client application sets the ready input
to the PCIe Controller TARGET_AXI_ARREADY in
response.

(12) This description is also applicable to root ports. The BAR check is enabled, 000 = root port BAR0, 001 = root port BAR2
for the 2 root port 64-bit BARs.

(13) This signal is applicable to endpoints only. For root ports, these bits are 0.

www.efinixinc.com 107

Titanium PCIe Controller User Guide

Table 59: AXI Master Read Data Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_RDATA Input 256 AXI_CLK Data associated with a memory read operation
delivered by the client to the PCIe Controller.
Data is transferred in little-endian order.
For memory reads, data is transferred in aligned
fashion. The data on this bus is valid when
TARGET_AXI_RVALID is high.

TARGET_AXI_RDATA_PAR Input 32 AXI_CLK Contains the end-to-end parity for
TARGET_AXI_RDATA.

TARGET_AXI_RID Input 6 AXI_CLK When transferring data in response to a
read request, the client must place the 6-
bit read ID tag associated with the request
on this bus. This tag must be valid when
TARGET_AXI_READ_RVALID is high.

TARGET_AXI_RID_PAR Input 1 AXI_CLK Contains the end-to-end parity for
TARGET_AXI_RID.

TARGET_AXI_RLAST Input 1 AXI_CLK The client must assert this signal in the last beat
of the burst to indicate the end of the read burst.

TARGET_AXI_RRESP Input 2 AXI_CLK Read status from client. Allowed status encoding
are:
00: Good completion
10: Slave error
Others: Not supported
The PCIe Controller responds to the slave error
by sending a completion on the link with the
completer abort status, instead of a normal
completion.
The read response status must be valid when
TARGET_AXI_RVALID is high.

TARGET_AXI_RRESP_PAR Input 1 AXI_CLK Contains the end-to-end parity for
TARGET_AXI_RRESP.

TARGET_AXI_RVALID Input 1 AXI_CLK Indicates valid data on the TARGET_AXI_RDATA
bus. The client must maintain data on the
bus until the PCIe Controller has asserted
TARGET_AXI_RREADY.

TARGET_AXI_RREADY Output 1 AXI_CLK Ready for read data from the PCIe Controller to
the client. The PCIe Controller asserts this signal
when it is ready to receive the next beat from the
client.

www.efinixinc.com 108

Titanium PCIe Controller User Guide

Table 60: AXI Master Sideband Signals

Signal Direction Width Clock
Domain

Description

TARGET_NON_POSTED_REJ Input 1 AXI_CLK Asserted by client when it cannot service a non-
posted request. The PCIe Controller does not
present any non-posted requests that it receives
from the PCIe link. Instead, it will holds them
in the PNP FIFO RAM until the signal is de-
asserted.
If a non-posted TLP has already been queued
from the PNP FIFO and this signal is asserted,
the PCIe Controller places it on the AXI bridge.
The client must accept the non-posted TLP. The
in-flight non-posted TLPs in the PCIe Controller
from the PNP FIFO cannot be stopped.
However, non-posted TLPs that are in the PNP
FIFO RAM when this signal is asserted or that
come in after the signal is asserted are not
forwarded to the AXI interface.
The client must assert this signal when it still
can process two or three non-posted TLPs. This
requirement allows posted TLPs to go past non-
posted TLPs at the AXI master write interface
due to client not being able to service non-
posted TLPs.

AXI Slave Interface Signals
Table 61: AXI Slave Interface Write Address Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_AWADDR Input 64 AXI_CLK Address for the master-side write transaction
from the client. The address is valid when
MASTER_AXI_AWVALID is asserted. The AXI address
is the starting byte-level address of the memory block,
config or I/O location to be read or written. When the
transaction is a 32-bit read/write, bits [63:32] must be
set to zeroes.

MASTER_AXI_AWID Input 8 AXI_CLK The client must place a 8-bit identifier for the write
transaction on this input. This tag is used to match the
write completion status returned by the PCIe Controller
with the associated request. This input must be valid
when MASTER_AXI_AWVALID is asserted.

MASTER_AXI_AWLEN Input 8 AXI_CLK Indicates the number of beats (data transfer cycles)
associated with the current burst. This information is
valid when MASTER_AXI_AWVALID is asserted. The
valid bytes within each beat are identified by the write
strobe signal MASTER_AXI_WSTRB.

MASTER_AXI_AWSIZE Input 3 AXI_CLK Burst size. This signal indicates the size of each transfer
in the burst. Byte lane strobes indicate exactly which
byte lanes to update.

MASTER_AXI_AWUSER Input 88 AXI_CLK Sideband descriptor. Refer to AXI Outbound Access
through Sideband Descriptor for detailed description.

www.efinixinc.com 109

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

MASTER_AXI_AWVALID Input 1 AXI_CLK Valid signal for the address and other parameters
associated with the request on the AXI master write
interface. The client must keep this valid signal
asserted until the PCIe Controller sets the ready output
(MASTER_AXI_AWREADY) in response.

MASTER_AXI_AWREADY Output 1 AXI_CLK Ready signal from the PCIe Controller to the client,
indicating that the PCIe Controller is ready to sample
the address and associated parameters from the
master write interface. The address and associated
parameters are transferred across the interface when
MASTER_AXI_AWVALID and MASTER_AXI_AWREADY
are both high in a clock cycle.

Table 62: AXI Slave Interface Write Data Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_WDATA Input 256 AXI_CLK Data associated with a memory write operation
delivered from the client to the PCIe Controller. Data is
transferred in little-endian order.
For memory writes, data is transferred in aligned
fashion. The data on this bus is valid when
MASTER_AXI_WVALID is high.

MASTER_AXI_WDATA_PAR Input 32 AXI_CLK Contains the end-to-end parity for
MASTER_AXI_WDATA.

MASTER_AXI_WLAST Input 1 AXI_CLK Asserted in the last beat of the burst to indicate the end
of the write transaction.

MASTER_AXI_WSTRB Input 32 AXI_CLK Indicates valid bytes in the first and last beat of the data
block being transferred. Data is transferred in aligned
fashion.
For write transactions with a payload size of 8 bytes
or less, the byte strobes may be non-contiguous, as
described in the PCIe specification.

MASTER_AXI_WSTRB_PAR Input 4 AXI_CLK Indicates valid bytes in the first and last beat of the data
block being transferred. Data is transferred aligned. For
write transactions with a payload size of 8 bytes or less,
the byte strobes may be non-contiguous, as described
in the PCIe Specifications.

MASTER_AXI_WVALID Input 1 AXI_CLK Indicates valid data on the MASTER_AXI_WDATA bus.
The client must maintain data on the bus until the
PCIe Controller has asserted MASTER_AXI_WREADY in
return.

MASTER_AXI_WREADY Output 1 AXI_CLK Ready for write data from the PCIe Controller to the
client. The core asserts this signal when it is ready to
receive the next beat from the client.

www.efinixinc.com 110

Titanium PCIe Controller User Guide

Table 63: AXI Slave Interface Write Response Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_BREADY Input 1 AXI_CLK Ready for write response from the PCIe Controller to
the client. The client asserts this signal when it is ready
to accept the next write response from the client

MASTER_AXI_BID Output 8 AXI_CLK For each write transaction received on the AXI
master write interface, the PCIe Controller returns
the completion status of the transaction by placing
the 8-bit identifier of this transaction and asserting
MASTER_AXI_BVALID.

MASTER_AXI_BID_PAR Output 1 AXI_CLK Contains the end-to-end parity for MASTER_AXI_BID.
Odd parity is computed for every byte of the data and
propagated through the PCIe Controller for end-to-end
parity protection.

MASTER_AXI_BRESP Output 2 AXI_CLK Write completion status from client. Valid status
encoding are:
2'b00: Good completion
2'b10: Slave error, Completion error for Non-Posted
Writes
2'b11: Decode error

MASTER_AXI_BRESP_PAR Output 1 AXI_CLK Contains the end-to-end parity for
MASTER_AXI_BRESP. Odd parity is computed for
every byte of the data and propagated through the
PCIe Controller for end-to-end parity protection.

MASTER_AXI_BUSER Output 5 AXI_CLK [2:0] Completion error code.
[4:3] Completion status code.
Other fields are reserved.
See Appendix B: Error Handling on page 130.

MASTER_AXI_BUSER_PAR Output 1 AXI_CLK Contains the end-to-end parity for
MASTER_AXI_BUSER. Odd parity is computed for
every byte of the data and propagated through the
PCIe Controller for end-to-end parity protection.

MASTER_AXI_BVALID Output 1 AXI_CLK The PCIe Controller asserts this output
when it has placed the completion
status of a master write transaction on
MASTER_WRITE_COMPLETION_STATUS. It keeps
the output asserted until the client has asserted
MASTER_AXI_BREADY.

Table 64: AXI Slave Interface Read Address Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_ARADDR Input 64 AXI_CLK Address for the client's master-side read transaction.
The client must places the address of the first byte of
the burst on this bus when initiating a read transaction
on the master read interface. The address is valid when
MASTER_AXI_ARVALID is asserted.

www.efinixinc.com 111

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

MASTER_AXI_ARID Input 8 AXI_CLK Read ID tag associated with the master memory
read transaction. This tag is used to match the read
completion status returned by the PCIe Controller with
the associated request.
This output must be valid when MASTER_AXI_ARVALID
is asserted.

MASTER_AXI_ARLEN Input 8 AXI_CLK Indicates the number of beats (data transfer cycles)
associated with the read burst. This information is valid
when MASTER_AXI_ARVALID is asserted.

MASTER_AXI_ARSIZE Input 3 AXI_CLK Burst size. This signal indicates the size of each transfer
in the burst. All bytes in the current transfer size are
read.

MASTER_AXI_ARUSER Input 88 AXI_CLK Sideband descriptor. AXI Outbound Access through
Sideband Descriptor” for detailed description.

MASTER_AXI_ARVALID Input 1 AXI_CLK Valid signal for the address and associated parameters
on the AXI master read interface. The client must keep
this valid signal asserted until the PCIe Controller sets
the ready input (MASTER_AXI_ARREADY).

MASTER_AXI_ARREADY Output 1 AXI_CLK Ready signal from the PCIe Controller to the client,
indicating that the PCIe Controller is ready to sample
the address and associated parameters from the
master read interface. The address and associated
parameters are transferred across the interface when
MASTER_AXI_ARVALID and MASTER_AXI_ARREADY
are both high in a clock cycle.

Table 65: AXI Slave Interface Read Data Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_RREADY Input 1 AXI_CLK Ready for read response status from the client. The
client must assert this signal when it ready to accept
the read response status from the PCIe Controller.
PCIe Controller core keeps MASTER_AXI_RVALID
asserted until it samples this ready signal high on a
positive edge of the clock.

MASTER_AXI_RDATA Output 256 AXI_CLK Data associated with a memory read operation
delivered by the PCIe Controller to the client. Data is
transferred in little-endian order. Data is transferred
in aligned fashion. The data on this bus is valid when
MASTER_AXI_RVALID is high.

MASTER_AXI_RDATA_PAR Output 32 AXI_CLK Contains the end-to-end parity for
MASTER_AXI_RDATA. Odd parity is computed for
every byte of the data and propagated through the
PCIe Controller for end-to-end parity protection.

MASTER_AXI_RID Output 8 AXI_CLK The PCIe Controller places the 4-bit read ID tag
associated with the read request when returning data/
completion status to the client. The ID on this bus is
valid when MASTER_READ_REPONSE_VALID is high.

MASTER_AXI_RID_PAR Output 1 AXI_CLK Contains the end-to-end parity for MASTER_AXI_RID.
Odd parity is computed for every byte of the data and
propagated through the PCIe Controller for end-to-end
parity protection.

www.efinixinc.com 112

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

MASTER_AXI_RLAST Output 1 AXI_CLK The PCIe Controller asserts this signal in the last beat of
the burst to indicate the end of the read burst.

MASTER_AXI_RRESP Output 2 AXI_CLK Read completion status from client. Valid status
encoding are:
2'b00: Good completion
2'b10: Slave error, completion error
2'b11: Decode error

MASTER_AXI_RRESP_PAR Output 1 AXI_CLK Contains the end-to-end parity for
MASTER_AXI_RRESP.. Odd parity is computed for
every byte of the data and propagated through the
PCIe Controller for end-to-end parity protection.

MASTER_AXI_RUSER Output 7 AXI_CLK [2:0] Completion error code.
[4:3] Completion status code.
[5] If 1, uncorrectable error in the AXI reorder RAM or
completion RAM.
[6] If 1, AXI slave read/write addresses may not match
any of the AXI base address programmed in the
outbound region.
See Appendix B: Error Handling on page 130.

MASTER_AXI_RUSER_PAR Output 1 AXI_CLK Contains the end-to-end parity for
MASTER_AXI_RUSER. Odd parity is computed for
every byte of the data and propagated through the
PCIe Controller for end-to-end parity protection.

MASTER_AXI_RVALID Output 1 AXI_CLK Valid for read response status from the PCIe Controller
to the client. The assertion of this signal indicates that
the PCIe Controller is ready to transfer data in response
to a read request it received from the client.

Interrupt Interface Signals
Table 66: Interrupt interface

Signal Direction Width Clock
Domain

Description

LOCAL_INTERRUPT Output 1 AXI_CLK Active-high local error and status register
interrupt. Asserted until software clears the Local
Error and Status Register.

INTERRUPT_SIDEBAND_
SIGNALS

Output 28 AXI_CLK Signal that causes local interrupt as sideband. See
Interrupt Sideband Signals.

INTA_IN Input 1 When the PCIe Controller is configured as an
endpoint, the client uses this input to signal
an interrupt from any of its PCI functions to the
root port using legacy PCIs interrupts. This input
corresponds to the PCI bus INTA. Asserting this
signal causes the PCIe Controller to send an
Assert_INTx message; de-asserting it causes
the PCIe Controller to transmit a Deassert_INTx
message.

www.efinixinc.com 113

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

INTB_IN Input 1 AXI_CLK When the PCIe Controller is configured as an
endpoint, the client uses this input to signal an
interrupt from any of its PCI functions to the root
port using Legacy PCI Express Interrupt Delivery.
This input corresponds to the PCI bus INTB.
Asserting this signal causes the PCIe Controller
to send an Assert_INTx message; de-asserting
it causes the PCIe Controller to transmit a
Deassert_INTx message.

INTC_IN Input 1 AXI_CLK When the PCIe Controller is configured as an
endpoint, the client uses this inputs to signal an
interrupt from any of its PCI functions to the root
port using Legacy PCI Express Interrupt Delivery.
This input corresponds to Ithe PCI bus INT.
Asserting this signal causes the PCIe Controller
to send an Assert_INTx message; de-asserting
it causes the PCIe Controller to transmit a
Deassert_INTx message.

INTD_IN Input 1 AXI_CLK When the PCIe Controller is configured as an
endpoint, the client uses this inputs to signal
an interrupt from any of its PCI functions to the
root port using Legacy PCI Express Interrupt
Delivery. This input corresponds to the PCI
bus INTD. Asserting this signals causes the
PCIe Controller to send an Assert_INTx message;
de-asserting it causes the PCIe Controller to
transmit a Deassert_INTx message.

INT_PENDING_STATUS Input 4 AXI_CLK When using legacy interrupts, this input indicates
the PF interrupt pending status. The i input must
be set when an interrupt is pending in function i.

MSI_PENDING_STATUS_IN Input 128 AXI_CLK These inputs provide the status of the MSI
pending interrupts for the PFs from the client to
the PCIe Controller. If the MSI Pending Status
In Mode Select field is set to 1 in the Debug
Mux Control 2 Register in local management
space, these pin settings determine the value
read from the MSI Pending Bits Register of the
corresponding PF. Bits [31:0] belong to PF0 , bits
[63:32] to PF1, and so on.

INT_ACK Output 1 AXI_CLK A pulse on this output indicates that the
PCIe Controller has sent an Assert_INTx or
Deassert_INTx message in response to a change
in the state of one of the INTx inputs.

INTA_OUT Output 1 AXI_CLK When the PCIe Controller is configured as a root
port, this output emulates the PCI legacy interrupt
INTA. The PCIe Controller asserts an interrupt
output when it has received an Assert_INTx
message from the link, and deasserts it when it
receives a Deassert_INTx message.

INTB_OUT Output 1 AXI_CLK When the PCIe Controller is configured as a root
port, this output emulates the PCI legacy interrupt
INTB. The PCIe Controller asserts an interrupt
output when it has received an Assert_INTx
message from the link, and deasserts it when it
receives a Deassert_INTx message.

www.efinixinc.com 114

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

INTC_OUT Output 1 AXI_CLK When the PCIe Controller is configured as a root
port, this output emulates the PCI legacy interrupt
INTC. The PCIe Controller asserts an interrupt
output when it has received an Assert_INTx
message from the link, and deasserts it when it
receives a Deassert_INTx message.

INTD_OUT Output 1 AXI_CLK When the PCIe Controller is configured as a root
port, this output emulates the PCI legacy interrupt
INTD. The PCIe Controller asserts an interrupt
output when it has received an Assert_INTx
message from the link, and deasserts it when it
receives a Deassert_INTx message.

Message Interface Signals
Table 67: Message interface

Signal Name Direction Width Clock
Domain

Descriptions

MSG Output 256 AXI_CLK Inbound message interface data bus.

MSG_BYTE_EN Output 32 AXI_CLK Indicates which bytes of MSG are valid.

MSG_DATA Output 1 AXI_CLK Indicates that MSG contains message data.

MSG_END Output 1 AXI_CLK Indicates that MSG contains the last stripe of a
message.

MSG_PASID Output 22 AXI_CLK PASID value.

MSG_PASID_PRESENT Output 1 AXI_CLK When asserted with MSG_START, indicates the
presence of PASID.

MSG_START Output 1 AXI_CLK Indicates that MSG contains the start of a
message i.e., a message header.

MSG_VALID Output 1 AXI_CLK Indicates that MSG_<name> signals are valid.

MSG_VDH Output 1 AXI_CLK Indicates that MSG contains a vendor-defined
message header.

Status and Error Indicator Signals
Table 68: Status and Error Indicator

Signal Name Direction Width Clock Domain Descriptions

LTSSM_STATE Output 6 AXI_CLK LTSSM state.

REG_ACCESS_CLK_
SHUTOFF

Output 1 USER_APB_CLK Pulse indicating an APB access when the
internal core clock was not running.

CORE_CLK_SHUTOFF Output 1 USER_APB_CLK Level signal indicating that the core
clock is not running.

www.efinixinc.com 115

Titanium PCIe Controller User Guide

Signal Name Direction Width Clock Domain Descriptions

LINK_STATUS Output 2 AXI_CLK Status of the PCIe link.
00: No receivers detected.
01: Link training in progress.
10: Link up, DL initialization in progress.
11: Link up, DL initialization completed.

FUNCTION_STATUS Output 16 AXI_CLK These outputs indicate the states of
each function's command register bits
in the PCI configuration space. Used to
enable requests and completions from
the host.
[0] Function 0 I/O space enable
[1] Function 0 memory space enable
[2] Function 0 bus master enable
[3] Function 0 INTx disable
[4] Function 1 I/O space enable
[5] Function 1 memory space enable
[6] Function 1 bus master enable
[7] Function 1 INTx disable
and so on.

PCIE_MAX_READ_REQ_SIZE Output 3 AXI_CLK The maximum request size field
programmed in the PCI Express Device
Control Register. When using multiple
functions, this output provides the
minimum of the maximum read-
request field in the PFs' Device Control
Registers. The client must limit the size
of outgoing read requests to this value.
The 3-bit codes are the same as those
defined in the PCIe specifications:
000: 128 bytes
001: 256 bytes
010: 512 bytes
011: 1,024 bytes
100: 2,048 bytes
101: 4,096 bytes

PCIE_MAX_PAYLOAD_SIZE Output 3 AXI_CLK The maximum payload size field
programmed in the PCI Express Device
Control Register. When using multiple
fuctions, this output provides the
minimum of the maximum payload-
size field in the PFs' Device Control
Registers. The client must limit the size
of outputgoing completion payloads
to this value. The 3-bit codes are the
same as those defined in the PCIe
specifications:
000: 128 bytes
001: 256 bytes
010: 512 bytes
011: 1024 bytes
100: 2048 bytes
101: 4096 bytes

www.efinixinc.com 116

Titanium PCIe Controller User Guide

Signal Name Direction Width Clock Domain Descriptions

ATS_PR_CONTROL_REG_
RESET

Output 4 AXI_CLK Reset per PF. When the enable field is
clear (or is being cleared during the
same register update that sets this
field) writing a 1b to this field clears the
associated implementation dependent
page request credit counter and
pending request state for the associated
page request interface. If this field is
written with 0b or if it is written with any
value while the enable field is set, no
action is taken. Reads of this field return
0b.

ATS_PR_CONTROL_REG_
ENABLE

Output 4 AXI_CLK Indicates that the page request interface
can to make page requests. If this field
is clear, the page request interface is
not allowed to issue page requests. If
this field and the stopped field are both
clear, the page request interface does
not issue new page requests. Instead,
it has outstanding page requests that
have been transmitted or are queued for
transmission.
When the page request interface
is transitioned from not-enabled to
enabled, its status flags (stopped,
response failure, and unexpected
response flags) are cleared. Enabling
a page request interface that has not
successfully stopped has indeterminate
results.
Default value is 0b.

Q0_PMA_CMN_READY Output 1 Async Common ready.

Q0_PIPE_P00_RATE Output 2 Static PIPE link signaling rate. Selects the data
rate.
2'b00: PCIe Gen1
2'b01: PCIe Gen2
2'b10: PCIe Gen3
2'b11: PCIe Gen4

CORRECTABLE_ERROR_IN Input 1 AXI_CLK The client can activate this input for
one clock cycle to indicate that the
client detected a correctable error that
needs to be reported as an internal
error through using PCIe advanced
error reporting. In response, the
PCIe Controller sets the Corrected
Internal Error Status bit in the enabled
function(s)' AER Correctable Error Status
Register. In endpoint mode it also sends
an error message if enabled to do so.
This error is not function specific.

www.efinixinc.com 117

Titanium PCIe Controller User Guide

Signal Name Direction Width Clock Domain Descriptions

UNCORRECTABLE_
ERROR_IN

Input 1 AXI_CLK The client can activate this input for
one clock cycle to indicate that the
client detected an uncorrectable
error that needs to be reported as
an internal error through using PCIe
advanced error reporting. In response,
the PCIe Controller sets the Uncorrected
Internal Error Status bit in the enabled
function(s)' AER Correctable Error Status
Register. In endpoint mode it also sends
an error message if enabled to do so.
This error is not function specific.

FATAL_ERROR_OUT Output 1 AXI_CLK This output is a single clock cycle for
endpoints.
Endpoints: The PCIe Controller activates
this output for one clock cycle when it
detects a fatal error and its reporting
is not masked. When using multiple
functions, it is the logical OR of the fatal
error status bits in the function(s)' Device
Status Registers.

NON_FATAL_ERROR_OUT Output 1 AXI_CLK This output is a single clock cycle for
endpoints.
Endpoints: The PCIe Controller activates
this output for one clock cycle when
it detects a non-fatal error and its
reporting is not masked. When using
multiple functions, it is the logical OR
of the non-fatal error status bits in the
function(s)' Device Status Registers.

CORRECTABLE_
ERROR_OUT

Output 1 AXI_CLK This output is a single clock cycle for
endpoints.
Endpoints: The PCIe Controller activates
this output for one cycle when it detects
a correctable error and its reporting
is not masked. When using multiple
functions, it is the logical OR of the
correctable error status bits in the
function(s)' Device Status Registers.

www.efinixinc.com 118

Titanium PCIe Controller User Guide

Signal Name Direction Width Clock Domain Descriptions

PHY_INTERRUPT_OUT Output 1 AXI_CLK Active-high, level-interrupt output. The
PCIe Controller asserts this output in the
root port mode to signal a link training-
related event:
Local change: The link bandwidth
changed because the link width or
operating speed changed, and the
change was initiated locally (not by
the link partner) without the link going
down. This interrupt is enabled by the
Link Bandwidth Management Interrupt
Enable bit in the Link Control Register.
You can read the this interrupt's status in
the Link Bandwidth Management Status
bit of the Link Status Register.
Automomous change: The link
bandwidth changed autonomously
because the link width or operating
speed changed and the change
was initiated by the remote node.
This interrupt is enabled by the Link
Autonomous Bandwidth Interrupt
Enable bit in the Link Control Register.
You can read this interrupt's status from
the Link Autonomous Bandwidth Status
bit of the Link Status Register.
This signal is not active when the
PCIe Controller is configured as an
endpoint.

Function-Level Reset Signals
These signals are only used in endpoint mode.

Table 69: Function Level Reset

Signal Name Direction Width Clock
Domain

Descriptions

FLR_DONE Input 4 AXI_CLK The client must assert bit [4] for one AXI_CLK clock period
when it has completed the reset operation of all enabled
functions. This assertion causes the PCIe Controller to de-
assert FLR_IN_PROGRESS for function 4 and re-enable
configuration accesses to the function.

VF_FLR_DONE Input 64 AXI_CLK The client must assert bit [4] for one AXI_CLK clock
period when it has completed the reset operation of
VF 64. This assertion causes the PCIe Controller to de-
assert FLR_IN_PROGRESS for all VFs and to re-enable
configuration accesses to the VF.

FLR_IN_PROGRESS Output 4 AXI_CLK The PCIe Controller asserts bit [4] when the host initiates
a reset of all enabled functions through its FLR bit in the
configuration space. The PCIe Controller keeps the output
high until the client sets the FLR_DONE input for the
corresponding function to indicate reset is complete.

www.efinixinc.com 119

Titanium PCIe Controller User Guide

Signal Name Direction Width Clock
Domain

Descriptions

VF_FLR_IN_
PROGRESS

Output 64 AXI_CLK The PCIe Controller asserts bit [4] when the host initiates
a reset of all VFs through its FLR bit in the configuration
space. The PCIe Controller keeps the output high until the
client sets the FLR_DONE input for the corresponding VF to
indicate reset is complete.

Configuration Snoop Interface Signals
Table 70: Configuration Snoop Interface

Signal Direction Width Clock
Domain

Description

CONFIG_READ_DATA Input 32 AXI_CLK The client can provide data from an
externally implemented configuration
register to the PCIe Controller
using this bus. If the client has set
CONFIG_READ_DATA_VALID, the
PCIe Controller samples this data on
the next positive clock edge after it sets
CONFIG_READ_RECEIVED high.

CONFIG_READ_DATA_PAR Input 4 AXI_CLK Contains the end-to-end parity for
CONFIG_READ_DATA.

CONFIG_READ_DATA_VALID Input 1 AXI_CLK The client asserts this input to the
PCIe Controller to supply data from an
externally implemented configuration
register. The PCIe Controller samples this
input data on the next positive clock edge
after it sets CONFIG_READ_RECEIVED
high.
If the PCIe Controller detects this input
is asserted, it uses the data supplied on
the CONFIG_READ_DATA bus as the
completion payload for the received
configuration read request.
You can extend the timing of this signal
by programming the Debug Mux Control
2 Register. See Configuration Snoop
Interface on page 89 for timing diagrams.

CONFIG_READ_RECEIVED Output 1 AXI_CLK The PCIe Controller generates a one clock
cycle pulse on this output when receives a
configuration read request from the link.

CONFIG_REG_NUM Output 10 AXI_CLK The 10-bit address of the configuration
register being read or written. The data is
valid when CONFIG_READ_RECEIVED or
CONFIG_WRITE_RECEIVED is high.

CONFIG_WRITE_BYTE_ENABLE Output 4 AXI_CLK Byte enables for a configuration write
transaction.

CONFIG_WRITE_BYTE_
ENABLE_PAR

Output 1 AXI_CLK Contains the end-to-end parity for
CONFIG_WRITE_BYTE_ENABLE.

www.efinixinc.com 120

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

CONFIG_WRITE_DATA Output 32 AXI_CLK Data being written to a configuration
register. This output is valid when
CONFIG_WRITE_RECEIVED is high.

CONFIG_WRITE_DATA_PAR Output 4 AXI_CLK Contains the end-to-end parity for
CONFIG_WRITE_DATA.

CONFIG_WRITE_RECEIVED Output 1 AXI_CLK The PCIe Controller generates a one clock
cycle pulse on this output when it has
received configuration write request from
the link.

CONFIG_FUNCTION_NUM Output 8 AXI_CLK Function number.

Vendor Specific (VSEC) Interface Signals
Table 71: Vendor Specific (VSEC) Interface

Signal Direction Width Clock
Domain

Description

F0_VSEC_CONTROL_IN Input 8 AXI_CLK Read the input state from Vendor-Specific
Control Register bits [7:0] in the PF0
Vendor-Specific Capability Structure. The
setting does not affect the operation of the
PCIe Controller.

F1_VSEC_CONTROL_IN Input 8 AXI_CLK Read the input state from Vendor-Specific
Control Register bits [7:0] in the PF1
Vendor-Specific Capability Structure. The
setting does not affect the operation of the
PCIe Controller.

F2_VSEC_CONTROL_IN Input 8 AXI_CLK Read the input state from Vendor-Specific
Control Register bits [7:0] in the PF2
Vendor-Specific Capability Structure. The
setting does not affect the operation of the
PCIe Controller.

F3_VSEC_CONTROL_IN Input 8 AXI_CLK Read the input state from Vendor-Specific
Control Register bits [7:0] in the PF3
Vendor-Specific Capability Structure. The
setting does not affect the operation of the
PCIe Controller.

F0_VSEC_INTERRUPT_OUT Output 1 AXI_CLK Driven by Vendor-Specific Control Register
bit [8] in the PF0 Vendor-Specific Capability
Structure. The host can use it to signal a
software-driven interrupt to the application
logic outside the PCIe Controller.

F1_VSEC_INTERRUPT_OUT Output 1 AXI_CLK Driven by Vendor-Specific Control Register
bit [8] in the PF1 Vendor-Specific Capability
Structure. The host can use it to signal a
software-driven interrupt to the application
logic outside the PCIe Controller.

www.efinixinc.com 121

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

F2_VSEC_INTERRUPT_OUT Output 1 AXI_CLK Driven by Vendor-Specific Control Register
bit [8] in the PF2 Vendor-Specific Capability
Structure. The host can use it to signal a
software-driven interrupt to the application
logic outside the PCIe Controller.

F3_VSEC_INTERRUPT_OUT Output 1 AXI_CLK Driven by Vendor-Specific Control Register
bit [8] in the PF3 Vendor-Specific Capability
Structure. The host can use it to signal a
software-driven interrupt to the application
logic outside the PCIe Controller.

Power Management Interface Signals
Refer to Power Management on page 73 for a description of the PCIe Controller's power
management capabilities.

Table 72: Power Management interface

Signal Direction Width Clock
Domain

Description

CLIENT_REQ_EXIT_L1 Input 1 Asynchronous This signal triggers an exit to L0 from L1
or from L1-substates. This signal can also
block L1 entry in endpoint mode. The
client can trigger an explicit L1 exit by
asserting this signal.
You can drive this signal from the
PM_CLK, core clock, or AXI_CLK domains,
depending on hyour configuration.
It is synchronized inside the
PCIe Controller before use.

CLIENT_REQ_EXIT_L2 Input 1 AXI_CLK The client can only assert this input in the
short interval of time after the link enters
L2 and before the system is powered off.
While the power and clocks are on, the
client can assert this input to initiate an exit
from L2.Idle detect.

www.efinixinc.com 122

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

REQ_PM_TRANSITION_
L23_READY

Input 1 AXI_CLK In the PCIe Controller is in endpoint
mode, the client can assert this input to
transition the PCIe Controller's power
management state to L23_READY (see
PCIe specifications chapter 5 for a detailed
description of power management).
This transition happens after the
PCIe Controller's functions are in
the D3 state and after the client has
acknowledged the PME_Turn_Off message
from the root rort. Asserting this input
causes the link to transition to the L2 state
and requires a power-on reset to resume
operation.
You can hardwire this signal to 0 if the link
does not need to transition to L2.
This input is not used in the root port
mode.

POWER_STATE_CHANGE_ACK Input 1 AXI_CLK When it is ready to transition to the
low-power state requested by the
configuration write request, the client
must assert this input for one clock
cycle in response to the assertion of
POWER_STATE_CHANGE_INTERRUPT.
The client can keep this input high if it
does not need to delay the return of the
completions for the configuration write
transactions causing power-state changes.

FUNCTION_POWER_STATE Output 12 AXI_CLK These outputs provide the current power
state of the PFs. Bits [2:0] capture the
power state of function 0, bits [5:3] capture
that of function 1, and so on. The possible
power states are:
000: D0_uninitialized
001: D0_active
010: D1
100: D3hot

PCIE_LINK_POWER_STATE Output 4 AXI_CLK Current power state of the PCIe link.
0001: L0
0010: L0s
0100: L1
1000: L2

www.efinixinc.com 123

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

POWER_STATE_CHANGE_
INTERRUPT

Output 1 AXI_CLK The PCIe Controller asserts this output
when the power state of a PF or VF is
changing to the D1 or D3 states by a
write into its Power Management Control
Register. The PCIe Controller keeps this
output high until the client asserts the
POWER_STATE_CHANGE_ACK input.
While this signal is high, the the
PCIe Controller will not return completions
for any pending configuration read or write
transactions it receives. The intent is to
delay the completion for the configuration
write transaction that caused the state
change until the client is ready to transition
to the low power state.
When this signal is high, the function
number associated with the configuration
write transaction is provided on the
POWER_STATE_CHANGE_FUNCTION_
NUM[7:0] output. When the client
asserts POWER_STATE_CHANGE_ACK,
the new state of the function that
underwent the state change is
reflected on the PCIe Controller's
FUNCTION_POWER_STATE (for PFs) or the
VF_POWER_STATE (for VFs) outputs.

POWER_STATE_CHANGE_
FUNCTION_NUM

Output 8 AXI_CLK Number of the function for which a power
state change occurred.

DPA_INTERRUPT Output 4 AXI_CLK The PCIe Controller generates a one clock
cycle pulse on one of these outputs when
a configuration write transaction writes
into the Dynamic Power Allocation Control
Register to modify the device's DPA power
state.
[0] A pulse indicates a DPA event for PF0.
[1] A pulse indicates a DPA event for PF1
and so on.
The endpoitnt's software running must
read the corresponding function's DPA
control register to determine the DPA
substate requested by the host and set the
device's power state of the device.
These outputs are not active in root port
mode.

www.efinixinc.com 124

Titanium PCIe Controller User Guide

L1 Interface Signals
Table 73: L1 Interface

Signal Direction Width Clock
Domain

Description

CLIENT_REQ_EXIT_L1 Input 1 Async Client logic can trigger an explicit L1 exit by asserting
this signal. This signal triggers an exit to L0 from L1 or
from L1 substates. This signal can also be used to block
L1 entry in endpoint mode.
You can drive this signal from the PM_CLK, core clock,
or AXI_CLK domain depending on your configuration.
It is synchronized inside the PCIe Controller before use.

L1 Substate Interface Signals
Refer to L1 Power Substates on page 76 for a description of the L1 substate interface

Table 74: L1 Substrate Interface

Signal Direction Width Clock
Domain

Description

CLKREQ_IN_N Input 1 Async This asynchronous input must be
connected to the shared CLKREQ# bus, so
that its state reflects the combined effect of
the upstream and downstream interfaces'
CLKREQ# outputs. The PCIe Controller
samples this input on the positive edge of
PM_CLK.

CLIENT_REQ_EXIT_L1_SUBSTATE Input 1 PM_CLK Client logic can trigger an explicit L1
substate exit by asserting this signal. This
signal triggers an exit from L1 substates to
L0 if the PCIe Controller is already in an L1
substate.
The PCIe Controller waits in L1 state
for this signal to be de-asserted before
entering an L1 substate.
The PCIe Controller responds to normal L1
exit triggers while it waits for this signal to
de-assert.

www.efinixinc.com 125

Titanium PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

L1_PM_SUBSTATE_OUT Output 3 PM_CLK This output provides the current state of
the L1 PM substates state machine. This
output is in the PM_CLK clock domain. Its
encodings are:
000: L1-substate machine not active
001: L1.0 substate. Shown after the delay
programmed in the L1 substate entry delay
field in the Low Power Debug Control
Register 0
010: L1.1 substate
011: Reserved
100: L1.2.Entry substate
101: L1.2.Idle substate
110: L1.2.Exit substate
111: Reserved

CLKREQ_OUT_N Output 1 PM_CLK The PCIe Controller asserts this output
in the L1 substates when the core clock
can be turned off. You drive this output
from the PM_CLK clock domain. You can
use it to enable the tri-state driver for the
device's CLKREQ# output.

APB Interface Signals
Table 75: APB interface

Signal Direction Width Clock Domain Description

USER_APB_PADDR Input 24 USER_APB_CLK APB address bus. The address is the byte
address of the PCIe configuration space
or local management space registers.

USER_APB_PSEL Input 1 USER_APB_CLK Select. It indicates that the slave device
is selected and that a data transfer is
required. Each slave has a PSELx signal.

USER_APB_PENABLE Input 1 USER_APB_CLK Enable. This signal indicates the second
and subsequent cycles of an APB transfer.

USER_APB_PWRITE Input 1 USER_APB_CLK Read or writee access.
High: APB write access.
Low: APB read access.

USER_APB_PWDATA Input 32 USER_APB_CLK Write data. Only used when
USER_APB_PWRITE is high.

USER_APB_PWDATA_PAR Input 4 USER_APB_CLK Contains the end-to-end parity for
USER_APB_PWDATA.

USER_APB_PSTRB Input 4 USER_APB_CLK Write the strobe signal to enable sparse
data transfer on the write data bus.

USER_APB_PSTRB_PAR Input 1 USER_APB_CLK Contains the end-to-end parity for
USER_APB_PSTRB.

USER_APB_PRDATA Output 32 USER_APB_CLK Read data. Only applies when
USER_APB_PWRITE is low.

www.efinixinc.com 126

Titanium PCIe Controller User Guide

Signal Direction Width Clock Domain Description

USER_APB_PRDATA_PAR Output 4 USER_APB_CLK Contains the end-to-end parity for
USER_APB_PRDATA. Odd parity is
computed for every byte of the data and
propagated through the PCIe Controller
for end-to-end parity protection.

USER_APB_PREADY Output 1 USER_APB_CLK Ready. The slave uses this signal to
extend an APB transfer.

www.efinixinc.com 127

Titanium PCIe Controller User Guide

Appendix A: Acronyms and Abbreviations
Table 76: Acronyms and Abbreviations

Term Definition

AER Advanced Error Reporting

ARI Alternative Routing-ID Interpretation

ASPM Active-state power management

AXI Advanced eXtensible Interface

EP Endpoint

PCIe Peripheral Component Interface Express

PNP Posted/Non-Posted

SOP Start Of Packet

EOP End Of Packet

CRC Cyclic Redundancy Check

LCRC Link Cyclic Redundancy Check

DLLP Data Link Layer Packet

LTSSM Link Training and Status State Machine

TLP Transaction Layer Packet

AER Advanced Error Reporting

FLR Function-Level Reset

PBA Pending Bit Array

MSI Message-Signaled Interrupt

OS Ordered Set

ASPM Active State Power Management

UR Unsupported request

LTR Latency Tolerance Reporting

PTM Precision Time Measurement

RP Root Port

OBFF Optimized Buffer Flush/Fill

IDO ID-based Ordering

VC Virtual Channel

Register notation

R Read Only for Software Root Complex.

RW The software can read or write. Write access to configuration registers through the local
management interface.

WOCLR Software has to write a 1 to clear. The PCIe Controller sets the bit and software clears the
bit.

R/WOCLR The software can read or write. The software has to write a 1 to clear. The PCIe Controller
sets the bit and software clears the bit.

www.efinixinc.com 128

Titanium PCIe Controller User Guide

Term Definition

W Write Only Register Field. A read will return 00s.

www.efinixinc.com 129

Titanium PCIe Controller User Guide

Appendix B: Error Handling
The PCIe Controller has the following registers to report error status:

Table 77: Error Status Registers

Register Location Per Function?

Status Register PCI-Compatible
Configuration Space

Yes

Device Status Register PCI Express
Capability Structure

Yes

AER Uncorrectable
Error Status Register

PCIe Configuration Space Yes

AER Correctable
Error Status Register

PCIe Configuration Space Yes

Local Error Status Register Local Management Space N.A.
Reports errors that are

not covered in PCIe
configuration space.

The PCIe Controller implements the following to report error conditions:
• NON_FATAL_ERROR_OUT—This pulse output is asserted if the PCIe Controller

detects an unmasked AER uncorrectable error with non-fatal severity.
• FATAL_ERROR_OUT—This pulse output is asserted if the PCIe Controller detects an

unmasked AER uncorrectable error with fatal severity.
• CORRECTABLE_ERROR_OUT—This pulse output is asserted if the PCIe Controller

detects an unmasked AER correctable error.
• LOCAL_INTERRUPT—This is level-output is asserted if the PCIe Controller detects an

unmasked error in the Local Error Status Register.

In endpoint mode, the PCIe Controller transmits the appropriate ERR_COR,
ERR_NON_FATAL, or ERR_FATAL error messages when it detects an unmasked AER error.

Non-Fatal Errors
In some cases the agent that detects a non-fatal error is not the most appropriate one to
determine whether the error is recoverable or not, or if it even needs a recovery action. The
PCIe Controller handles the following errors as advisory non-fatal as recommended by the
PCIe specification:

• Unsupported Non-Posted Request Received
• Unexpected Completion Received
• Poisoned Completion TLP Received
• Poisoned Vendor Defined Msg with Data TLP Received
• Poisoned MWr, IOWr, or MsgD Request TLP received. Per PCIe specification section

2.7.2.2, if these requests target a control register or control structure, they must be
handled as uncorrectable and not as advisory non-fatal. The PCIe Controller cannot
determine if these requests target a control or a data structure in the system., Therefore,
it uses the Poisoned TLP Received Advisory Non-Fatal bit in the Debug Mux Control 2
Register as follows:

www.efinixinc.com 130

Titanium PCIe Controller User Guide

— When 0 (default), the PCIe Controller reports poisoned MWr, IOWr, MsgD as
uncorrectable.

— When 1, the PCIe Controller reports poisoned MWr, IOWr, MsgD as advisory non-
fatal.

• Completion Timeout (with Completion Timeout Advisory Non-Fatal bit set to 1 in the
Debug Mux Control 2 Register). A completion timeout should always be reported as
advisory non-fatal as recommended by the PCIe specification. The Completion Timeout
Advisory Non-Fatal bit in the Debug Mux Control 2 Register is provided only for
debugging purposes. You should not change this bit from its default value.

Table 78: Error Handling: Advisory Non-Fatal Errors
Except as noted, these errors result in an ERROR_OUT of FATAL/ CORRECTABLE_ERROR_OUT, based on the
severity and mask.

Error Case AXI Interface Response Error Status
Registers and Bits

Client Action Local
Interrupt

Unsupported Non-
Posted Request
Received

Not delivered to the
PCIe Controller's
AXI interface. The
PCIe Controller detects
this error internally
and responds with UR
status.

Unsupported Request
Error Status bit in AER
Uncorrectable Error
Status Register.

None required. No

Poisoned Completion
TLP Received

Reports SLVERR
to the AXI slave
MASTER_AXI_RRESP.

Poisoned TLP Status bit
in AER Uncorrectable
Status Register.
Detected parity Error
bit in Command Status
Register.

Client should ignore
the completion data
because it is poisoned.
Client can retry the
read request after the
read data is completely
received.

No

Poisoned MWr, MsgD
Request TLP Received
(Poisoned TLP
Received Advisory
Non-Fatal bit set to 1 in
Debug Mux Control 2
Register)

Not delivered to the
PCIe Controller's AXI
interface. The request
is discarded internally.

Poisoned TLP Status bit
in AER Uncorrectable
Status Register.
Detected parity Error
bit in Command Status
Register.

None required. No

Poisoned IOWr
Request TLP Received
(Poisoned TLP
Received Advisory
Non-Fatal bit set to 1 in
Debug Mux Control 2
Register)

Not delivered to the
PCIe Controller's
AXI interface. The
PCIe Controller
responds internally
with UR status.

Poisoned TLP Status bit
in AER Uncorrectable
Status Register.
Detected parity Error
bit in Command Status
Register.

None required. No

Poisoned Vendor
Defined Msg with Data
TLP Received

Not delivered to the
PCIe Controller's AXI
interface. The request
is discarded internally.

Poisoned TLP Status bit
in AER Uncorrectable
Status Register.
Detected parity Error
bit in Command Status
Register.

None required. No

Completion Timeout
(Completion Timeout
Advisory Non-Fatal bit
set to 1 in Debug Mux
Control 2 Register)

Reports SLVERR
to the AXI slave
MASTER_AXI_RRESP.

Completion Timeout
Status bit in AER
Uncorrectable Error
Status Register and
Local Error Status
Register.

Client can retry the
request.

Yes

www.efinixinc.com 131

Titanium PCIe Controller User Guide

Error Case AXI Interface Response Error Status
Registers and Bits

Client Action Local
Interrupt

Unexpected
Completion Received

Not delivered to the
PCIe Controller's AXI
interface.

Unexpected
Completion Received
Status bit in AER
Uncorrectable Error
Status Register and
Local Error Status
Register.

None required. Yes

Requester Received
Completion with CA
status
Error out: NIL

Reports SLVERR
to the AXI slave
MASTER_AXI_RRESP.

Received Target Abort
Status bit in Command
and Status Register.

Client should ignore
the read data.

No

Table 79: Error Handling: Uncorrectable Errors
These errors result in an ERROR_OUT of FATAL/NON_FATAL_ERROR_OUT, based on the severity and mask.

Error Case AXI Interface Response Error Status
Registers and Bits

Client Action Local
Interrupt?

Unsupported Posted
Request Received

Not delivered to the
PCIe Controller's
AXI interface. The
PCIe Controller detects
this error internally and
responds with UR status.

Unsupported Request
Error Status bit in AER
Uncorrectable Error Status
Register.

None
required.

No

Poisoned CfgWr Request
TLP Received

Not delivered to the
PCIe Controller's
AXI interface. The
PCIe Controller detects
this error internally and
responds with UR status.

Poisoned TLP Status bit in
AER Uncorrectable Status
Register.
Detected Parity Error bit in
Command Status Register.

None
required.

No

Poisoned IOWr Request TLP
Received
(Poisoned TLP Received
Advisory Non-Fatal bit set
to 0 in Debug Mux Control
2 Register)

Not delivered to the
PCIe Controller's
AXI interface. The
PCIe Controller detects
this error internally and
responds with UR status.

Poisoned TLP Status bit in
AER Uncorrectable Status
Register.
Detected Parity Error bit in
Command Status Register.

None
required.

No

Poisoned MWr, MsgD
Request TLP Received
(Poisoned TLP Received
Advisory Non-Fatal bit set
to 0 in Debug Mux Control
2 Register)

Not delivered to the
PCIe Controller's AXI
interface. Request is
discarded internally.

Poisoned TLP Status bit in
AER Uncorrectable Status
Register.
Detected Parity Error bit in
Command Status Register.

None
required.

No

Uncorrectable RAM ECC
Errors

RAM ECC Errors in the RX
path result in SLVERR on the
AXI interface. On TX path,
the AXI response can be
SLVERR or OK.

Uncorrectable Internal Error
bit in AER Uncorrectable
Error Status Register and
bits in Local Error Status
Register.

Reset upon
interrupt.

Yes

Request with Unmapped
TC Received

Not delivered to the
PCIe Controller's AXI
interface. Internally handled
as a malformed TLP
request.

Malformed TLP Received
Status bit in AER
Uncorrectable Error Status
Register.

None
required.

Yes

www.efinixinc.com 132

Titanium PCIe Controller User Guide

Error Case AXI Interface Response Error Status
Registers and Bits

Client Action Local
Interrupt?

PNP RX FIFO Overflow The AXI interface does not
receive the packet that
caused the overflow.

PNP RX FIFO Overflow
bits in Local Error Status
Register.
Receiver Overflow Status
bit in AER Uncorrectable
Error Status register.

Reset Yes

Completion RX FIFO
Overflow

The AXI interface drops the
completion that caused the
overflow.

Receiver Overflow Status
bit in AER Uncorrectable
Error Status Register.
Receiver Overflow Status
bit in AER Uncorrectable
Error Status register.

Reset Yes

End to End Parity Error on
Transmit Path

If an outbound TLP has an
end-to-end parity error, the
TLP is dropped internally or
nullified. The AXI interface
does not respond with
SLVERR for the same TLP at
the AXI slave.

Uncorrectable Internal Error
bit in AER Uncorrectable
Error Status Register.
End to End Parity Error in
Local Error Status Register.

Reset upon
interrupt.

Yes

End to End Parity Error on
Receive Path

If an inbound TLP has a
end-to-end parity error, the
PCIe Controller forwards
the TLP to the AXI master
with errored parity.

Uncorrectable Internal Error
bit in AER Uncorrectable
Error Status Register.
End to End Parity Error in
Local Error Status Register.

Reset upon
interrupt.

Yes

ECRC Error Not delivered to the
PCIe Controller's AXI
interface. Request is
discarded internally.

ECRC Error Status bit in
AER Uncorrectable Error
Status Register.

None
required.

No

Flow Control Error No effect. Flow Control Error bit in
AER Uncorrectable Error
Status Register and in Local
Error Status Register.

None
required.

Yes

Malformed TLP Received Not delivered to the
PCIe Controller's AXI
interface. Request is
discarded internally.

Malformed TLP Received
Status bit in AER
Uncorrectable Error Status
Register.

None
required.

Yes

Data Link Protocol Error
Status

No effect. Data Link Protocol
Error Status bit in AER
Uncorrectable Error Status
Register.

None
required.

No

Table 80: Error Handling: Correctable Errors
These errors result in an ERROR_OUT of CORRECTABLE_ERROR_OUT, based on the severity and mask.

Error Case AXI Interface
Response

Error Status Registers and Bits Client Action Local
Interrupt?

Header Log
Overflow

No effect. Header Log Overflow Status bit in AER
Correctable Error Status Register.

Client needs to
read the header
log and clear the
AER error status
registers.

No

www.efinixinc.com 133

Titanium PCIe Controller User Guide

Error Case AXI Interface
Response

Error Status Registers and Bits Client Action Local
Interrupt?

Correctable ECC
error

No effect. Corrected Internal Error Status in AER
Correctable Error Status Register.

None required. No

Replay Timeout No effect. Replay Timeout bit in AER Correctable
Error Status Register and Local Error
Status Register.

None required. Yes

Replay Num
Rollover

No effect. Replay Num Rollover bit in AER
Correctable Error Status Register and
Local Error Status Register.

None required. Yes

PHY Layer Errors No effect. PHY Error Detected bit in AER
Correctable Error Status Register and
Local Error Status Register.

None required. Yes

TLP LCRC Errors No effect. Bad TLP Status bit in AER Correctable
Error Status Register.

None required. No

DLLP LCRC Error No effect. Bad DLLP Status bit in AER
Correctable Error Status Register.

None required. No

Table 81: Error Handling: Other Errors
These errors result in an ERROR_OUT of NIL.

Error Case AXI Interface Response Error Status
Registers and Bits

Client Action Local
Interrupt?

Client sends SLVERR
with TARGET_
AXI_RRESP

SLVERR sent from
TARGET_AXI_RRESP

Signaled Target Abort
bit in Command and
Status Register.

Client sends abort by
sending SLVERR on
TARGET_ AXI_RRESP.

No

Outbound MemWr TLP
Poisoned

The AXI interface
returns OK (2'd0)
response. TLP is be
transmitted on the link
with the endpoint bit
set.

Master Data Parity
Error bit in Command
and Status Register.

None required. No

Function-Level Reset
from Host

The PCIe Controller
asserts
FLR_IN_PROGRESS for
the affected function's
VF_FLR_IN_PROGRESS
for the VFs.

Function-Level Reset
bit in PCI Express
Device Control and
Status Register.

Client must assert
FLR_DONE.

No

Link Down Reset Asserts the
LINK_DOWN_RESET_
OUT signal for eight
clock cycles.

Link Down Indication
bit in AXI Configuration
Registers.

Client must reset the
link down indication
bit after clearing all
outstanding requests.

No

Multiple Errors
When multiple errors are detected in a single TLP, the PCIe specification recommends that
a single error be reported. The precedence of errors the PCIe Controller reports is (from
highest to lowest):

1. Uncorrectable Internal Error
2. Receiver Overflow
3. Flow Control Protocol Error

www.efinixinc.com 134

Titanium PCIe Controller User Guide

4. Malformed TLP
5. ECRC Check Failed
6. Unsupported Request (UR), Completer Abort (CA), or Unexpected Completion
7. Poisoned TLP Received

Multiple-Error Scenarios
A multiple-error scenarios has a mix of uncorrectable and advisory non-fatal errors in a single
TLP. The error precedence determines which error is reported when the PCIe Controller
detects multiple errors. However, if the higher precedence error is advisory and the lower
precedence error is not, the reported error should not actually be advisory.

Per PCIe specification section 2.7.2.2, the PCIe Controller these error combinations:

• AtomicOp request that is poisoned as well as unsupported—The PCIe Controller reports it as an unsupported
request received error because of the higher precedence. However, because it is also poisoned, the
PCIe Controller reports it as an uncorrectable error and not as advisory non-fatal.CfgWr

• For a request that is poisoned as well as unsupported—The PCIe Controller reports it as an unsupported request
received error because of the higher precedence. However, because it is also poisoned, it is reported as an
uncorrectable error and not as advisory non-fatal.

• For a MWr, IOWr, or MsgD request that is poisoned as well as unsupported—The PCIe Controller reports it as an
unsupported request received error because of the higher precedence. If the Poisoned TLP Received Advisory
Non Fatal bit is set to 0 in the Debug Mux Control 2 Register, it is reported as an uncorrectable error and not
as advisory non-fatal.

www.efinixinc.com 135

Titanium PCIe Controller User Guide

Appendix C: LTSSM State Encoding
The following table provides the LTSSM state encoding for the PCIe Controller's
LTSSM_STATE output signal as well the state read from the Physical Layer Configuration
Register 0.

Table 82: LTSSM State Encoding

LTSSM State Name Register Value (Hex)

Detect.Quiet 00

Detect.Active 01

Polling.Active 02

Polling.Compliance 03

Polling.Configuration 04

Configuration.Linkwidth.Start 05

Configuration.Linkwidth.Accept 06

Configuration.Lanenum.Accept 07

Configuration.Lanenum.Wait 08

Configuration.Complete 09

Configuration.Idle 0A

Recovery.RcvrLock 0B

Recovery.Speed 0C

Recovery.RcvrCfg 0D

Recovery.Idle 0E

L0 10

Rx_L0s.Entry 11

Rx_L0s.Idle 12

Rx_L0s.FTS 13

Tx_L0s.Entry 14

Tx_L0s.Idle 15

Tx_L0s.FTS 16

L1.Entry 17

L1.Idle 18

L2.Idle 19

L2.TransmitWake 1A

Disabled 20

Loopback.Entry (Master) 21

Loopback.Active (Master) 22

Loopback.Exit (Master) 23

Loopback.Entry (Slave) 24

www.efinixinc.com 136

Titanium PCIe Controller User Guide

LTSSM State Name Register Value (Hex)

Loopback.Active (Slave) 25

Loopback.Exit (Slave) 26

Hot Reset 27

Recovery.Equalization, Phase 0 28

Recovery.Equalization, Phase 1 29

Recovery.Equalization, Phase 2 2A

Recovery.Equalization, Phase 3 2B

www.efinixinc.com 137

Titanium PCIe Controller User Guide

Appendix D: PCIe Configuration Capabilities
Linked List

The following figure shows the PCIe Controller Capabilities Linked List implementation.
Note that:

• Each bubble shows the address offset for each capability structure.
• The address offsets are all 12 bits.

Figure 45: Configuration Capabilities

PCI PM
0x080

MSI
0x090

MSIX
0x0B0

PCIE CAP
0x0C0

AER
0x100

ARI
0x140

DEVICE SERIAL
NUMBER CAP

0x150

POWER
BUDGETING
CAP 0x160

RESIZABLE BAR
CAP

0x180
LTR CAP

0x1B8

DPA CAP
0x1C0

SRIOV
0x200

TPH REQ CAP
0x274

PCIE SECONDAR Y
EXTENDED CAP

0x300

PASID
0x440

MPCIE CAP
0x480

ATS CAP
0x5C0

L1 PM SUBSTAT E
CAP

0x900

DL_FEATUR E
CAP

0x910

ARI_ENABLE
= = 0

SR_IOV_ENABLE
= = 0

RX MARGINING
CAP

0x920

PTM
CAP

0xA20

PC
IE

_G
EN

ER
A

TI
O

N
_S

EL
 <

 3

PL_16GTS
CAP

0x9C0

LAST PTR
0x000

NPEM
CAP

0xA30

VPD
0x088

PL_32GT S
CA P

0xA40

PC
IE

_G
EN

ER
A

TI
O

N
_S

EL
 <

 4

PCI Compatible
Configuration

Space Capabilities

PCIe Extended
Configuration

Space Capabilities

VENDOR
SPECIFIC CAP

0X400

VIRTUAL
CHANNEL CAP

0X4C0

ATS PAGE
REQUEST CAP

0X640

resizable_bar_cap_enable == 0

Dual Mode

Root Complex

Endpoint

Some capability structures may not be selected in this configuration. In that case, the next
capability pointer of the previous selected capability structure points to the next selected
capability structure. For example, if DPA, SR-IOV, or TPH_REQ capabilities are not
selected, the LTR_NEXT_CAPABILITY_POINTER points to the PCIe Secondary Extended
Capability Structure.

Additionally, some capability structures are only visible to the host configuration software if
the corresponding strap input is enabled.

• ARI capability is visible only if the ARI_ENABLE strap input is 1.
• SR-IOV Capability is visible only if the SR_IOV_ENABLE strap input is 1.

If these strap inputs are not enabled, the capability linked list is automatically modified to
link the previous capability with the next capability. These strap inputs must be stable before
deasserting RESET_N, MGMT_RESET_N, or MGMT_STICKY_RESET_N.

www.efinixinc.com 138

Titanium PCIe Controller User Guide

Configuration-Specific Capabilities
The following tables show the PF and VF PCIe capabilities.

Table 83: Endpoint PF0 PCIe Capabilities List

PCIe Capability Offset (Hex) Notes

PCI PM Capability 0x80 –

MSI Capability 0x90 –

MSI-X Capability 0x0B0 –

PCI Express Capability 0x0C0 –

AER Capability 0x100 –

ARI Capability 0x140 –

Device Serial Number Capability 0x150 –

Power Budgeting Capability 0x160 –

Resizable BAR Capability 0x180 LM Register, Resizable BAR Capability Enable
bit:
1: Capability Present
0: Capability Bypassed

LTR Capability 0x1B8 –

DPA Capability 0x1C0 –

SR-IOV Capability 0x200 –

TPH Requester Capability 0x274 –

Secondary PCI Express Extended Capability 0x300 –

Vendor-Specific Capability 0x400 –

PASID Capability 0x440 –

ATS Capability 0x5C0 –

ATS PR Extended Capability 0x640 –

L1 PM Substates Extended Capability 0x900 –

Data Link Feature Extended Capability 0x910 –

Lane Margining Extended Capability 0x920 –

Physical Layer 16.0G Extended Capability 0x9C0 –

Table 84: Endpoint PCIe Capabilities List for PFn (n>0)

PCIe Capability Offset (Hex) Notes

PCI PM Capability 0x80 –

MSI Capability 0x090 –

MSIX Capability 0x0B0 –

PCI Express Capability 0x0C0 –

AER Capability 0x100 –

ARI Capability 0x140 –

www.efinixinc.com 139

Titanium PCIe Controller User Guide

PCIe Capability Offset (Hex) Notes

Device Serial Number Capability 0x150 –

Power Budgeting Capability 0x160 –

Resizable BAR Capability 0x180 LM Register, Resizable BAR Capability Enable
bit:
1: Capability Present
0: Capability Bypassed

DPA Capability 0x1C0 –

SR-IOV Capability 0x200 –

TPH Requester Capability 0x274 –

Vendor-Specific Capability 0x400 –

PASID Capability 0x440 –

ATS Capability 0x5C0 –

ATS PR Extended Capability 0x640 –

Data Link Feature Extended Capability 0x910 –

Table 85: VF0 PCIe Capabilities List

PCIe Capability Offset(hex)

PCI PM Capability 0x80

MSI Capability 0x090

MSIX Capability 0x0B0

PCI Express Capability 0x0C0

AER Capability 0x100

ARI Capability 0x140

TPH Requester Capability 0x274

ATS Capability 0x5C0

Table 86: PCIe Capabilities List for VFn (n>0)

PCIe Capability Offset(hex)

PCI PM Capability 0x80

MSI Capability 0x090

MSIX Capability 0x0B0

PCI Express Capability 0x0C0

AER Capability 0x100

ARI Capability 0x140

TPH Requester Capability 0x274

ATS Capability 0x5C0

www.efinixinc.com 140

Titanium PCIe Controller User Guide

Revision History

Table 87: Document Revision History

Date Version Description

September 2024 1.1 Corrected link up diagram. (DOC-2043)

July 2024 1.0 Initial release.

www.efinixinc.com 141

	Contents
	Introduction
	Features
	Functional Description
	Physical Layer
	SRIS Operation
	RX Lane Margining
	Command Processing (Endpoint)
	Command Processing (Root Port)
	Step Margin Command Execution
	Step Margin Execution Status
	Control SKIP for Lane Margining at Receiver
	Exception Handling
	Command Valid Check
	Command Supported Check
	RX Margining PIPE Interface: Write Ack Timeout
	Link Transition from Gen4 L0 State

	Data Link Layer
	Data Link Feature Exchange
	RX Scaled Flow Control
	TX Scaled Flow Control
	TX Flow Control Error Handling

	Aggregating ACK DLLPs

	Transaction Layer
	AXI Application Layer
	AXI Master Read Operation
	TLP (2 bytes, Aligned Address)
	TLP (2n and 2n>1, up to 32 Bytes, Unaligned Address)
	TLP (Other, up to 32 Bytes)
	TLP Read of Lengths > 32 Bytes
	Error Handling
	AXI ID Handling
	Zero Length Reads
	Non-Contiguous Reads

	AXI Master Write Operation
	Poison Bit Forwarding to AXI
	Error Handling
	AXI ID Management
	Zero-Length Writes
	Non-Contiguous Writes
	Ordering Between Posted and Non-Posted Writes

	Inbound Message Interface
	Message Interface Signals
	Message Interface FIFO Buffer
	Message Interface Codes

	Ordering Between AXI Master Write and Read Channels
	Inbound PCIe to AXI Address Translation (Root Port)
	Inbound PCIe to AXI Address Translation (Endpoint)
	AXI Slave Interface
	Unsupported Request Handling During Enumeration (Rootport)
	AXI Slave Ordering
	Completion Error Handling
	AXI Slave Read Operation
	Tag Management for Non-Posted Transactions
	Error Handling
	AXI ID Management
	Completion Data Ordering
	Error and Decode Errors

	AXI Slave Write Operation
	Error Handling
	AXI ID Management
	Zero-length Writes
	Write Transaction Ordering

	AXI Configuration and Status Registers
	PCIe Controller Outbound Accesses
	Outbound Access Using Regions
	Outbound AXI-to-PCIe Address Translation Registers
	Outbound PCIe Descriptor Registers
	AXI Region Base Address Registers
	Outbound Access through the Sideband Descriptor
	
	
	
	
	

	MSI Memory Writes
	MSI-X Memory Writes

	Outstanding Non-Posted Requests
	Ordering between AXI Slave Write and Read Channels
	Outbound Ordering (Endpoint)
	Outbound Ordering (Root Port)

	Completion Error Codes
	Completion Status Codes

	AXI Master and Slave Read/Write Length Limitations

	Interrupt Interface
	Legacy Interrupt Operation
	MSI and MSI-X Interrupt Modes
	Interrupt Sideband Signals

	Clock Sources
	Link Control
	Link Up
	Link Down and Reset
	Reset Types
	Cold Reset
	Warm Reset
	Hot Reset

	Reset Handshake
	Function-Level Reset (FLR)
	Concurrent FLR Request in Multiple PFs/VFs
	Reset During an FLR

	Power Management
	Function Power States
	L0s Power State
	L1 Power State
	Entering L1 via ASPM
	Entering L1 via PCI-PM
	L1 Exit Triggers
	L1 Register Programming
	Blocking L1 Explicit Client Exit or Endpoint Entry

	L1 Power Substates
	Entering L1 Substate
	Exiting L1 Substate
	L1.1 Operation
	L1.2 Operation
	L1 Substate Register Programming
	Delayed Entry
	Wait for Outstanding Completions before Entry
	Wait for Empty Receive Buffers before Entry
	Prevent Exit During Register Access

	Explicit Client Exit or Entry Block
	Integration Details

	L2 Power State
	Entering L2
	Wake Up or Exiting L2

	Configuring Registers with the APB Interface
	Configuration Snoop Interface
	Vendor-Specific Extended Capability (VSEC)
	Configuration Guide
	AXI Outbound Access Example
	Accessing the Configuration TLP
	Method 1
	Method 2

	Programming the Outbound PCIe Descriptor Register
	Address Translation
	Memory or I/O TLP Access
	Message TLP Access
	Endpoint Autonomous Link Bandwidth Management
	Programming the SR-IOV Registers
	VF Function Number Allocation
	Setting up the VF BAR Registers

	Managing Outbound NP Outstanding Requests and Completion Responses (Endpoint)
	Interface Signals
	Clock Signals
	Reset Interface Signals
	AXI Master Interface Signals
	AXI Slave Interface Signals
	Interrupt Interface Signals
	Message Interface Signals
	Status and Error Indicator Signals
	Function-Level Reset Signals
	Configuration Snoop Interface Signals
	Vendor Specific (VSEC) Interface Signals
	Power Management Interface Signals
	L1 Interface Signals
	L1 Substate Interface Signals
	APB Interface Signals

	Appendix A: Acronyms and Abbreviations
	Appendix B: Error Handling
	Non-Fatal Errors
	Multiple Errors
	Multiple-Error Scenarios

	Appendix C: LTSSM State Encoding
	Appendix D: PCIe Configuration Capabilities Linked List
	Configuration-Specific Capabilities

	Revision History

