
Asymmetric Width FIFO
Core User Guide
UG-CORE-ASYM-FIFO-v1.0
July 2021
www.efinixinc.com

Copyright © 2021. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com


Contents

Introduction..................................................................................................................................... 3

Features............................................................................................................................................3

Functional Description.....................................................................................................................5
Ports............................................................................................................................................................. 5
Synchronous FIFO Operation..................................................................................................................7
Asynchronous FIFO Operation................................................................................................................8
Asymmetric Width Operation............................................................................................................... 10
Programmable Full and Empty Signals................................................................................................11
Reset..........................................................................................................................................................12
Datacount................................................................................................................................................. 12
Latency...................................................................................................................................................... 13

Synchronous FIFO....................................................................................................................... 13
Asynchronous FIFO..................................................................................................................... 13

Customizing the Asymmetric Width FIFO.................................................................................... 15

Asymmetric Width FIFO Testbench...............................................................................................16

Revision History.............................................................................................................................17



Asymmetric Width FIFO Core User Guide

Introduction
The Asymmetric Width FIFO core is a customizable first-in first-out memory queue that uses
block RAM in the FPGA for storage. The core has parameters you use to create a custom
instance. For example, you can set the FIFO depth, the data bus width, whether the read and
write domains are synchronous or asynchronous, etc.

Features
• Depths up to 131,072 words
• Data widths from 1 to 1024 bits
• Symmetric or non-symmetric aspect ratios (read-to-write port ratios ranging from 1:16 to

16:1)
• Synchronous or asynchronous clock domains supports standard
• Programmable full and empty status flags, set by user–defined parameters
• Almost full and almost empty flags indicate one word left
• Configurable handshake signals
• FIFO datacount to indicate how many words available in FIFO
• Option to exclude optional flags
• Verilog RTL and simulation testbench

FPGA Support
The Asymmetric Width FIFO core supports all Trion® and Titanium FPGAs.

Titanium Resource Utilization and Performance

Note:  This is an early access version of the IP core. The resources utilization and performance of this
version is not fully optimized.

Table 1: Synchronous Clock FIFO

FPGA Asymmetric
Width

XLR Memory
Blocks

DSP48 Blocks fMAX (MHz)
- clk_i

Efinity Version

0 160 2 0 422

1 152 2 0 440

2 150 2 0 377

3 136 2 0 433

4 60 2 0 474

5 56 4 0 497

6 55 10 0 501

7 52 20 0 539

Ti60 F225 ES

8 50 32 0 501

2021.1

www.efinixinc.com 3



Asymmetric Width FIFO Core User Guide

Table 2: Asynchronous Clock FIFO

fMAX (MHz)FPGA Asymmetric
Width

XLR Memory
Blocks

DSP48
Blocks

wr_clk_i rd_clk_i

Efinity
Version

0 160 2 0 324 312

1 152 2 0 341 350

2 150 2 0 340 326

3 136 2 0 323 346

4 60 2 0 426 378

5 56 4 0 383 391

6 55 10 0 395 408

7 52 20 0 416 430

Ti60 F225
ES

8 50 32 0 412 431

2021.1

Trion Resource Utilization and Performance
FPGA Asymmetric

Width
Logic

Utilization
(LUTs)

Memory
Blocks

Multipliers fMAX (MHz)
- clk_i

Efinity Version

0 161 4 0 134

1 161 4 0 134

2 157 4 0 140

3 162 4 0 144

4 70 4 0 180

5 57 4 0 172

6 54 8 0 176

7 52 20 0 168

T20 BGA256

8 47 32 0 165

2021.1

fMAX (MHz)FPGA Asymmetric
Width

LUTs Memory
Blocks

Multipliers

wr_clk_i rd_clk_i

Efinity
Version

0 255 4 0 110 110

1 249 4 0 110 110

2 250 4 0 118 118

3 250 4 0 110 110

4 153 4 0 132 132

5 141 4 0 134 123

6 128 8 0 138 134

7 116 20 0 133 146

T20
BGA256

8 104 32 0 131 131

2021.1

www.efinixinc.com 4



Asymmetric Width FIFO Core User Guide

Functional Description
The Asymmetric Width FIFO core is a first-in first-out memory queue for any application
requiring an ordered storage buffer and retrieval. The core provides an optimized solution
using the block RAM in Trion® and Titanium FPGAs. The core supports synchronous
(read and write use the same clock) and asynchronous (read and write use different clocks)
clocking.

Figure 1: FIFO System Block Diagram

FIFO
rd_en_i
empty_o
almost_empty_o
prog_empty_o
rdata[DATA_WIDTH-1:0 ]

Read
Agent

wr_en_i
full_o
almost_full_o
prog_full_o
wdata[DATA_WIDTH-1:0 ]

Write
Agent

wr_ack_o
overflow_o
wr_datacount_o[(log2DEPTH)-1:0]

rd_valid_o
underflow_o
rd_datacount_o[(log2DEPTH)-1:0]

a_rst_i

Read
Clock

Domain

Write
Clock

Domain

wr_clk_i rd_clk_i
rst_busy

Ports

Table 3: Asymmetric Width FIFO Core Clock, Reset and Datacount Ports

Port Synchronous Asynchronous Direction Description

a_rst_i Input Reset. Asynchronous reset signal that
initializes all internal pointers and
output flags.

rst_busy Output When asserted, this signal indicate the
core is being reset.

wr_clk_i Input Write clock. All signals in the write
domain are synchronous to this clock.

rd_clk_i Input Read clock. All signals in the read
domain are synchronous to this clock.

clk_i Input Clock. All signals on the write and read
domains are synchronous to this clock.

wr_datacount_o [n-1:0] Output Asynchronous FIFO write domain data
count.
n=log2[DEPTH].

rd_datacount_o [n-1:0] Output Asynchronous FIFO read domain data
count.
n=log2[DEPTH].

datacount_o [n-1:0] Output Synchronous FIFO data count.
n=log2[DEPTH].

www.efinixinc.com 5



Asymmetric Width FIFO Core User Guide

Table 4: Asymmetric Width FIFO Core Write Ports
For both synchronous and asynchronous clocks.

Port Direction Description

wdata [m-1:0] Input Write data. The input data bus used when writing to the FIFO buffer.
m=DATA_WIDTH.

wr_en_i Input Write enable. If the FIFO buffer is not full, asserting this signal causes data
(on wdata) to be written to the FIFO.

full_o Output Full flag. When asserted, this signal indicates that the FIFO buffer is full.
Write requests are ignored when the FIFO is full. Initiating a write while full
is not destructive to the FIFO.

almost_full_o Output Optional, almost full. When asserted, this signal indicates that only one
more write can be performed before the FIFO is full.

prog_full_o Output Optional, programmable full. This signal is asserted when the number
of words in the FIFO is greater than or equal to the assert threshold. It is
deasserted when the number of words in the FIFO is less than the negate
threshold.

wr_ack_o Output Optional, write acknowledge. This signal indicates that a write request
(wr_en_i) during the prior clock cycle succeeded.

overflow_o Output Optional, overflow. This signal indicates that a write request (wr_en_i)
during the prior clock cycle was rejected because the FIFO buffer is full.
Overflowing the FIFO is not destructive to the contents of the FIFO.

Table 5: Asymmetric Width FIFO Core Read Ports
For both synchronous and asynchronous clocks.

Port Direction Description

rdata [m-1:0] Output Read data. The output data bus driven when reading the FIFO buffer.
m=DATA_WIDTH.

rd_en_i Input Read enable. If the FIFO buffer is not empty, asserting this signal causes
data to be read from the FIFO (output on rdata).

empty_o Output Empty flag. When asserted, this signal indicates that the FIFO buffer is
empty. When empty, Read requests are ignored. Initiating a read while
empty is not destructive to the FIFO.

almost_empty_o Output Optional, almost empty flag. When asserted, this signal indicates that only
one word remains in the FIFO buffer before it is empty.

prog_empty_o Output Optional, programmable empty. This signal is asserted when the number
of words in the FIFO buffer is less than or equal to the assert threshold. It
is de-asserted when the number of words in the FIFO exceeds the negate
threshold.

rd_valid_o Output Optional, read valid. This signal indicates that valid data is available on the
output bus (rdata).

underflow_o Output Optional, underflow. Indicates that the read request (rd_en_i) during
the previous clock cycle was rejected because the FIFO buffer is empty.
Underflowing the FIFO is not destructive to the FIFO.

www.efinixinc.com 6



Asymmetric Width FIFO Core User Guide

Synchronous FIFO Operation
The FIFO core signals are synchronized on the rising edge clock of the respective clock
domain. If you want to synchronize to the falling clock edge, use an inverter before sending
the signal to the clock input.

Figure 2: Synchronous FIFO Block Diagram

Synchronous FIFOclk_i
a_rst_i
datacount_o[(log2DEPTH)-1:0]

State
Machine RAMwdata[DATA_WIDTH-1:0 ]

wr_en_i
rdata[DATA_WIDTH-1:0 ]
rd_en_i

Standard Mode
The following waveform shows the FIFO behavior in standard mode when it is written until
full and then read until empty. D1 and DN are the first and last data, respectively.

Figure 3: Synchronous FIFO Standard Mode Waveform

D1 D2 DN-1 DN DN+1D3

D1 D2 DN-1 DNDN-2

clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
underflow_o

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

If the system tries to write data DN+1 when full_o is asserted, the core ignores DN+1
and asserts overflow_o. full_o deasserts during a read request, signaling that the FIFO
is ready for more write requests. When the last data is read from the FIFO, the core asserts
empty_o, indicating there is no more data. Further read requests when there is no more data
triggers an assertion on underflow_o.

www.efinixinc.com 7



Asymmetric Width FIFO Core User Guide

Asynchronous FIFO Operation
With an asynchronous FIFO, the two protocols can work in their respective clock domains
and still transfer reliable data to each other. When there is a write or read request affecting
its own respective domain’s flags, the asynchronous FIFO has 0 delays. Whereas when
affecting the other domain’s flags, it has a 1 clock cycle delay from its respective domain
plus 2 clock cycles of the other domain. For example, a write request only reflects on the
read domain after 1 write clock cycle plus 2 read clock cycles and vice versa. Enabling the
PIPELINE_REGadds 1 more additional clock cycle of the other domain on top of it. Refer
to the latency table for asynchronous FIFO in Latency on page 13 for more info.

Figure 4: Asynchronous FIFO Block Diagram

Asynchronous FIFO

a_rst_i
wr_clk_i
wdata[DATA_WIDTH-1:0 ]
wr_en_i
wr_datacount_o[(log2DEPTH)-1:0]

Gray Decoder

Gray Encoder

State
Machine

Gray Encoder

Gray Decoder

State
Machine

RAM

Write Domain Read Domain

rd_clk_i
rdata[DATA_WIDTH-1:0 ]
rd_en_i
rd_datacount_o[(log2DEPTH)-1:0]

For asynchronous FIFO, a write operation affecting the write domain flags and a read
operation affecting the read domain flags have the same behavior as the synchronous FIFO
except when they are affecting crossed domain flags. The following examples emphasize the
cross-clock domain flags update latency.

Standard Mode
The following figures show examples of asynchronous FIFO standard mode with a faster read
clock and write clock, respectively. The waveforms show the FIFO written until full and a
few read requests afterwards.

In the read example shown in Figure 5: Asynchronous FIFO Standard Mode Faster Read
Clock with PIPELINE_REG=0 on page 9, the read clock frequency is double that of
the write clock with the same phase. When there is a write request at node 2, empty_o does
not deassert immediately; instead, it deasserts 1 write clock plus 2 clock read clocks later at
node 6. Similarly, almost_empty_o deasserts at node 8, which is 1 write clock plus 2 read
clocks later after the second write request at node 4. almost_full_o and full_o deassert
at the same time at node 22 because there are 2 read requests detected before the write domain
is synchronized at node 20.

www.efinixinc.com 8



Asymmetric Width FIFO Core User Guide

Figure 5: Asynchronous FIFO Standard Mode Faster Read Clock with PIPELINE_REG=0

D1 D2

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

DN-1 DN

W
rit

e 
D

om
ai

n
R

ea
d 

D
om

ai
n

DN+1

D1 D2

0

1st write
request

1st read
request

2nd write
request

2nd read
request

1 wr_clk_i 2 rd_clk_i

1 rd_clk_i
2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 2 rd_clk_i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

In the write example shown in Figure 6: Asynchronous FIFO Standard Mode Faster
Write Clock with PIPELINE_REG=0 on page 9, the write clock frequency is
double that of the read clock with the same phase. The empty_o deasserts at node 5 and
almost_empty_o deasserts at node 7. Each of these signals are affected by write requests on
node 1 and node 2 respectively. Read requests at node 11 and 13 reflect on the write domain
at node 15 and 17, respectively.

Figure 6: Asynchronous FIFO Standard Mode Faster Write Clock with PIPELINE_REG=0

D1 D2 DN-1 DN

W
rit

e 
D

om
ai

n
R

ea
d 

D
om

ai
n

DN+1

D1 D2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i 2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 2 rd_clk_i

1 wr_clk_i 2 rd_clk_i

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

www.efinixinc.com 9



Asymmetric Width FIFO Core User Guide

Asymmetric Width Operation
Asymmetric aspect ratios allow the input and output of the FIFO width and depth to be
configured in differently. You only need to configure the write width and depth, while the
read width and read depth are be computed automatically by the Asymmetric Width FIFO
based on your parameter settings. The following table lists the supported asymmetric width
ratio.

Table 6: Supported Asymmetric Width FIFO Ratio

Ratio Write Width Read Width Write Depth Read Depth

16:1 N N/16 2M 2M x 16

8:1 N N/8 2M 2M x 8

4:1 N N/4 2M 2M x 4

2:1 N N/2 2M 2M x 2

1:1 N N 2M 2M

1:2 N N*2 2M 2M / 2

1:4 N N*4 2M 2M / 4

1:8 N N*8 2M 2M / 8

1:16 N N*16 2M 2M / 16

In operations with 2:1 aspect ratio, the write width is two times the read width. In the
example below, each write request has 8-bit data which requires 2 read requests (4-bit width
per clock cycle) to free-up the entry.

Figure 7: 2:1 Aspect Ratio Example Waveform

clk_i

wr_en_i

wdata

wr_datacount_o

wr_ack_o

rd_en_i

rd_valid_o

rdata

rd_datacount_o

empty_o

AB

0 01 2 1

0 0

D

2 2 14 3

B CA

CD

www.efinixinc.com 10



Asymmetric Width FIFO Core User Guide

In operations with 1:2 aspect ratio, the read width is two times the write width. In the
example below, each write request has 8-bit data where two write requests are required to
contribute to a single read word (16-bit width).

Figure 8: 1:2 Aspect Ratio Example Waveform

clk_i

wr_en_i

wdata

wr_datacount_o

wr_ack_o

rd_en_i

rd_valid_o

rdata

rd_datacount_o

empty_o

AB

0 01 2 3 24

0 0

EF01

11 2

ABCD

CD EF 01

Programmable Full and Empty Signals
The FIFO core supports user-defined full and empty signals with customized
depths (prog_full_o and prog_empty_o). To enable these signals, set the
PROGRAMMABLE_FULL or PROGRAMMABLE_EMPTY parameters as STATIC_SINGLE or
STATIC_DUAL. Refer to Parameters for more info on the available values.

Important:  For the asynchronous FIFO, these signals are synchronized to their respective clock domain’s
available words.

Table 7: prog_full_o Assert and Deassert Conditions

Value Type Condition

Assert number of words in FIFO ≥ PROG_FULL_ASSERTSTATIC_SINGLE

Deassert number of words in FIFO < PROG_FULL_ASSERT

Assert number of words in FIFO ≥ PROG_FULL_ASSERTSTATIC_DUAL

Deassert number of words in FIFO < PROG_FULL_NEGATE

Table 8: prog_empty_o Assert and Deassert Conditions

Value Type Condition

Assert number of words in FIFO ≤ PROG_EMPTY_ASSERTSTATIC_SINGLE

Deassert number of words in FIFO > PROG_EMPTY_ASSERT

Assert number of words in FIFO ≤ PROG_EMPTY_ASSERTSTATIC_DUAL

Deassert number of words in FIFO > PROG_EMPTY_NEGATE

To avoid erratic behavior, follow these rules for STATIC_DUAL modes:
• PROG_FULL_ASSERT ≥ PROG_FULL_NEGATE
• PROG_EMPTY_ASSERT ≤ PROG_EMPTY_NEGATE

www.efinixinc.com 11



Asymmetric Width FIFO Core User Guide

Reset
The Asymmetric Width FIFO core can be reset through the a_rst_i reset signal, which
is active high. In synchronous mode, the FIFO operation can be started as soon as 3 cycles
after the reset signal go low. For asynchronous mode, the FIFO operation only can be started
after the reset_busy signal go low. Ensure that the reset pulse is equivalent or more than 2
clock cycles of the slowest clock

Datacount
The FIFO core includes datacount signal as output. Synchronous FIFO enables
datacount_o while asynchronous FIFO enables both wr_datacount_o and
rd_datacount_o.

The datacount is zero when the FIFO is in empty and full state. You must ensure that the
width of datacount is log2(DEPTH) to get the correct value.

Note:  Always refer to the empty_o and full_o signals when reading or writing FIFO.

www.efinixinc.com 12



Asymmetric Width FIFO Core User Guide

Latency
This section defines the latency of the output signals in the FIFO core. The output signals
latency are updated in response to the read or write requests. Latency is described in the
following waveform. A 0 latency means the signal is asserted or deasserted at the same rising
edge of the clock at which the write or read request is sampled. A latency of 1 means the
signal is asserted or deasserted at the next rising edge of the clock.

Synchronous FIFO

Table 9: Synchronous FIFO Write Flags Update Latency (clk_i) Due to wr_en_i and
rd_en_i Signals

Port wr_en_i rd_en_i

wr_ack_o 0 –

full_o 0 0

almost_full_o 0 0

prog_full_o 0 0

overflow_o 0 –

Table 10: Synchronous FIFO Read Flags Update Latency Due to wr_en_i and
rd_en_i Signals

Port wr_en_i rd_en_i

rd_valid_o – 0(1)

empty_o 0 0

almost_empty_o 0 0

prog_empty_o 0 0

underflow_o – 0

datacount_o 0 0

Asynchronous FIFO

Table 11: Asynchronous FIFO Write Flags Update Latency Due to wr_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

wr_ack_o 0 0

full_o 0 0

almost_full_o 0 0

prog_full_o 0 0

overflow_o 0 0

wr_datacount_o 0 0

(1) OUTPUT_REG adds one latency to these signal.

www.efinixinc.com 13



Asymmetric Width FIFO Core User Guide

Table 12: Asynchronous FIFO Read Flags Update Latency Due to wr_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

rd_valid_o – –

empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

almost_empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

prog_empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

underflow_o – –

rd_datacount_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

Table 13: Asynchronous FIFO Write Flags Update Latency Due to rd_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

wr_ack_o – –

full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

almost_full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

prog_full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

overflow_o – –

wr_datacount_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

Table 14: Asynchronous FIFO Read Flags Update Latency Due to rd_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

rd_valid_o 0(2) 0(3)

empty_o 0 0

almost_empty_o 0 0

prog_empty_o 0 0

underflow_o 0 0

rd_datacount_o 0 0

(2) OUTPUT_REG adds one latency to these signal.
(3) OUTPUT_REG adds one latency to these signal.

www.efinixinc.com 14



Asymmetric Width FIFO Core User Guide

Customizing the Asymmetric Width FIFO
The core has parameters so you can customize its function. You set the parameters in the
test_param.vh file.

Table 15: Asymmetric Width FIFO Core Parameter

Parameter Options Description

SYNC_CLK Asynchronous,
Synchronous

Defines whether the FIFO read and write domain is
synchronous or asynchronous.
Default: Synchronous

DEPTH 16 – 131072 Defines the FIFO depth, which determines the maximum
number of words the FIFO can store before it is full. The depth
is multiples of 2 from 16 – 217.
Default: 512

DATA_WIDTH 1 – 256 Defines the FIFO's read and write data bus widths.
Default: 32

MODE STANDARD Defines the FIFO's read mode.
Default: STANDARD

OUTPUT_REG Enable, Disable Adds one pipeline stage to rdata and rd_valid_o to improve
timing delay out from efx_ram.
Default: Enable

PROG_FULL_ASSERT 1 – DEPTH Threshold value when prog_full_o is enabled. When Enable
Programmable Full Option is:
STATIC_SINGLE: Single threshold value for assertion and
deassertion of prog_full_o.
STATIC_DUAL: Upper threshold value for assertion of
prog_full_o.
Default: 512

PROGRAMMABLE_FULL NONE,
STATIC_SINGLE,

STATIC_DUAL

Controls the prog_full_o signal:
NONE: Disabled.
STATIC_SINGLE: Enabled, asserts and deasserts at a single
threshold value. (default)
STATIC_DUAL: Enabled, asserts or deasserts at different
threshold values.

PROG_FULL_NEGATE 1 –
Programmable

Full Assert Value

Use when PROGRAMMABLE_FULL is set to STATIC_DUAL. Sets
the lower threshold value for prog_full_o during deassertion.
Default: 512

PROG_EMPTY_ASSERT 0 – (FIFO
Depth-1)

Threshold value when prog_empty_o is enabled. When Enable
Programmable Full Option is:
STATIC_SINGLE: Single threshold value for assertion and
deassertion of prog_empty_o.
STATIC_DUAL: Lower threshold value for assertion of
prog_empty_o.
Default: 0

www.efinixinc.com 15



Asymmetric Width FIFO Core User Guide

Parameter Options Description

PROG_EMPTY_NEGATE Programmable
Empty Assert

Value – (DEPTH-1)

Use when PROGRAMMABLE_EMPTY is set to STATIC_DUAL.
Sets the upper threshold value for prog_empty_o during
deassertion.
Default: 0

PROGRAMMABLE_EMPTY NONE,
STATIC_SINGLE,

STATIC_DUAL

Controls the prog_empty_o signal:
NONE: Disabled.
STATIC_SINGLE: Enabled, asserts and deasserts at a single
threshold value. (default)
STATIC_DUAL: Enabled, asserts or deasserts at different
threshold values.

OPTIONAL_FLAGS Enable, Disable Enables the optional signals: wr_ack_o, almost_full_o,
overflow_o, rd_valid_o, almost_empty_o and underflow_o. You
can disable this feature to improve macro timing.
Default: Enable

PIPELINE_REG Enable, Disable Applicable to Asynchronous FIFO mode only. Adds one latency
of the opposing clock domain to all applicable output signals
when wr_en_i or rd_en_i signal is asserted. Enable this feature
to improve the macro timing. You can disable this feature if a
project does not require fast speed.
Default: Enable

SYNC_STAGE 1 – 4 Number of synchronization stages in asynchronous mode.
Default: 2

ASYM_WIDTH_RATIO 0 – 8 Selects asymmetrical width ratios:
0: 16:1 ratio
1: 8:1 ratio
2: 4:1 ratio
3: 2:1 ratio
4: 1:1 ratio (default)
5: 1:2 ratio
6: 1:4 ratio
7: 1:8 ratio
8: 1:16 ratio

Asymmetric Width FIFO Testbench
The core includes a simulation testbench, tb.sv, which performs asymmetric width FIFO
write and FIFO read operation according to the configured asymmetric width ratio. The
FIFO read data is verified during the simulation.

Refer to the readme.txt file in the testbench folder for detailed steps to run the simulation
testbench.

The simulation run time depends on the DEPTH parameter set. The default value is 512.

www.efinixinc.com 16



Asymmetric Width FIFO Core User Guide

Revision History

Table 16: Revision History

Date Version Description

July 2020 1.0 Initial release.

www.efinixinc.com 17


	Contents
	Introduction
	Features
	Functional Description
	Ports
	Synchronous FIFO Operation
	Asynchronous FIFO Operation
	Asymmetric Width Operation
	Programmable Full and Empty Signals
	Reset
	Datacount
	Latency
	Synchronous FIFO
	Asynchronous FIFO


	Customizing the Asymmetric Width FIFO
	Asymmetric Width FIFO Testbench
	Revision History

