
FIFO Core User Guide
UG-CORE-FIFO2-v2.0
February 2024
www.efinixinc.com

Copyright © 2024. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction... 3

Features..3

Device Support.. 3

Resource Utilization and Performance..4

Release Notes.. 6

Functional Description...6
Ports... 7
Synchronous FIFO Operation..9
Asynchronous FIFO Operation... 11
Asymmetric Width Operation... 15
Programmable Full and Empty Signals..17
Reset..17
Datacount... 18
Latency.. 18

Synchronous FIFO... 18
Asynchronous FIFO... 19

IP Manager.. 20

Customizing the FIFO..21

FIFO Example Design..24

FIFO Testbench..26

Revision History...26

FIFO Core User Guide

Introduction

Note: The FIFO is available in the Efinity software v2021.1.165 with patch v2021.1.165.2.19 or higher.
The FIFO (Legacy) is obsoleted and replaced with FIFO in Efinity software v2021.2. You cannot migrate
automatically from the FIFO (Legacy) to the FIFO. Therefore, Efinix® recommends that you use the FIFO
for all new designs. You can continue to use FIFO (Legacy) with the Efinity software v2021.1.165 or lower.
However, the FIFO will not be supported in future Efinity releases.

The FIFO core is a customizable first-in first-out memory queue that uses block RAM in the
FPGA for storage. The core has parameters you use to create a custom instance. For example,
you can set the FIFO depth, the data bus width, whether the read and write domains are
synchronous or asynchronous, etc.

Use the IP Manager to select IP, customize it, and generate files. The FIFO core has an
interactive wizard to help you set parameters. The wizard also has options to create a
testbench and/or example design targeting an Efinix® development board.

Features
• Depths up to 131,072 words
• Data widths from 1 to 256 bits
• Symmetric or non-symmetric aspect ratios (read-to-write port ratios ranging from 1:16 to

16:1)
• Synchronous or asynchronous clock domains supports standard or

First–Word–Fall–Through (FWFT)
• Programmable full and empty status flags, set by user–defined parameters
• Almost full and almost empty flags indicate one word left
• Configurable handshake signals
• Asynchronous clock domain FWFT read mode
• FIFO datacount to indicate how many words available in FIFO
• Option to exclude optional flags
• Option to exclude overflow and underflow protection
• Includes example designs targeting the Trion® T20 BGA256 Development Board
• Verilog RTL and simulation testbench

Device Support

Table 1: FIFO Core Device Support

FPGA Family Supported Device

Trion All

Titanium All

www.efinixinc.com 3

FIFO Core User Guide

Resource Utilization and Performance

Note: The resources and performance values provided are based on some of the supported FPGAs.
These values are just guidance and can change depending on the device resource utilization, design
congestion, and user design.

The following timing data are based on default settings with overflow protection and
underflow protection disabled.

Titanium Resource Utilization and Performance

Table 2: Synchronous Clock FIFO

FPGA Mode Asymmetric
Width Ratio

Logic Elements
(Logic, Adders,
Flipflops, etc.)

Memory Block DSP Block fMAX
(MHz)(1)

Efinity
Version(2)

1:1 44/60800 (0.07%) 1/256 (0.4%) 0/160 (0%) 600Standard

1:2 44/60800 (0.07%) 2/256 (0.8%) 0/160 (0%) 600

1:1 70/60800 (0.1%) 1/256 (0.4%) 0/160 (0%) 600

Ti60 F225 C4

FWFT

1:2 65/60800 (0.1%) 2/256 (0.8%) 0/160 (0%) 600

2023.2

Table 3: Asynchronous Clock FIFO

fMAX (MHz)(1) Efinity
Version(2)

FPGA Mode Asymmetric
Width Ratio

Logic Elements
(Logic, Adders,
Flipflops, etc.)

Memory
Block

DSP
Block

wr_clk_i rd_clk_i

1:1 147/60800
(0.07%)

1/256 (0.4%) 0/160
(0%)

600 600Standard

1:2 139/60800
(0.07%)

2/256 (0.8%) 0/160
(0%)

600 350

1:1 189/60800
(0.1%)

1/256 (0.4%) 0/160
(0%)

600 600

Ti60 F225
C4

FWFT

1:2 174/60800
(0.1%)

2/256 (0.8%) 0/160
(0%)

600 350

2023.2

(1) Using default parameter settings.
(2) Using Verilog HDL.

www.efinixinc.com 4

FIFO Core User Guide

Trion Resource Utilization and Performance

Table 4: Synchronous Clock FIFO

FPGA Mode Asymmetric
Width Ratio

Logic Elements
(Logic, Adders,
Flipflops, etc.)

Memory Block DSP Block fMAX
(MHz)(3)

Efinity
Version(4)

1:1 44/19728 (0.2%) 2/204 (1%) 0/36 (0%) 200Standard

1:2 41/19728(0.2%) 2/204(1%) 0/36 (0%) 200

1:1 70/19728 (0.4%) 2/204 (1%) 0/36 (0%) 200

T20 F256 C4

FWFT

1:2 65/19728 (0.3%) 2/204 (1%) 0/36 (0%) 200

2023.2

Table 5: Asynchronous Clock FIFO

fMAX (MHz)(3) Efinity
Version(4)

FPGA Mode Asymmetric
Width Ratio

Logic Elements
(Logic, Adders,
Flipflops, etc.)

Memory
Block

DSP
Block

wr_clk_i rd_clk_i

1:1 147/19728(0.7%) 2/204 (1%) 0/36 (0%) 200 200Standard

1:2 139/19728
(0.7%)

2/204 (1%) 0/36 (0%) 200 200

1:1 189/19728
(1.0%)

2/204 (1%) 0/36 (0%) 200 200

T20 F256
C4

FWFT

1:2 174/19728
(0.8%)

2/204 (1%) 0/36 (0%) 200 200

2023.2

(3) Using default parameter settings.
(4) Using Verilog HDL.

www.efinixinc.com 5

FIFO Core User Guide

Release Notes
You can refer to the IP Core Release Notes for more information about the IP core changes.
The IP Core Release Notes is available in the Efinity Downloads page under each Efinity
software release version.

Note: You must be logged in to the Support Portal to view the IP Core Release Notes.

Functional Description
The FIFO core is a first-in first-out memory queue for any application requiring an ordered
storage buffer and retrieval. The core provides an optimized solution using the block RAM in
Trion® and Titanium FPGAs. The core supports synchronous (read and write use the same
clock) and asynchronous (read and write use different clocks) clocking.

Figure 1: FIFO System Block Diagram

FIFO
rd_en_i
empty_o
almost_empty_o
prog_empty_o
rdata[DATA_WIDTH-1:0]

Read
Agent

wr_en_i
full_o
almost_full_o
prog_full_o
wdata[DATA_WIDTH-1:0]

Write
Agent

wr_ack_o
overflow_o
wr_datacount_o[(log2DEPTH):0]

rd_valid_o
underflow_o
rd_datacount_o[(log2DEPTH):0]

a_rst_i
a_wr_rst_i

Read
Clock

Domain

Write
Clock

Domain

wr_clk_i rd_clk_i
rst_busy
a_rd_rst_i

www.efinixinc.com 6

https://www.efinixinc.com/support/efinity.php

FIFO Core User Guide

Ports

Table 6: FIFO Core Clock, Reset, and Datacount Ports

Port Synchronous Asynchronous Direction Description

a_rst_i Input Reset. Asynchronous reset signal that
initializes all internal pointers and
output flags.

a_wr_rst_i Input The incoming reset signal should
already synchronized to the write clock
domain. You only use this port if you set
the BYPASS_RESET_SYNC parameter to
1.

a_rd_rst_i Input The incoming reset signal should
already synchronized to the read clock
domain. You only use this port if you set
the BYPASS_RESET_SYNC parameter to
1.

rst_busy Output When asserted, this signal indicate the
core is being reset.

wr_clk_i Input Write clock. All signals in the write
domain are synchronous to this clock.

rd_clk_i Input Read clock. All signals in the read
domain are synchronous to this clock.

clk_i Input Clock. All signals on the write and read
domains are synchronous to this clock.

wr_datacount_o [n:0] Output FIFO write domain data count.
Applicable to asymmetric width ratio.
n=log2[DEPTH].

rd_datacount_o [n:0] Output FIFO read domain data count.
Applicable to asymmetric width ratio.
n=log2[DEPTH].

datacount_o [n:0] Output FIFO data count. Applicable to
symmetric width ratio.
n=log2[DEPTH].

www.efinixinc.com 7

FIFO Core User Guide

Table 7: FIFO Core Write Ports
For both synchronous and asynchronous clocks.

Port Direction Description

wdata [m-1:0] Input Write data. The input data bus used when writing to the FIFO buffer.
m=DATA_WIDTH.

wr_en_i Input Write enable. If the FIFO buffer is not full, asserting this signal causes data
(on wdata) to be written to the FIFO.

full_o Output Full flag. When asserted, this signal indicates that the FIFO buffer is full.
Write requests are ignored when the FIFO is full if overflow protection
option is enabled. In this case, initiating a write while full is not destructive
to the FIFO.

almost_full_o Output Optional, almost full. When asserted, this signal indicates that only one
more write can be performed before the FIFO is full.

prog_full_o Output Optional, programmable full. This signal is asserted when the number
of words in the FIFO is greater than or equal to the assert threshold. It is
deasserted when the number of words in the FIFO is less than the negate
threshold.

wr_ack_o Output Optional, write acknowledge. This signal indicates that a write request
(wr_en_i) during the prior clock cycle succeeded.

overflow_o Output Optional, overflow. This signal is exposed when overflow protection
option is enabled to indicate that a write request (wr_en_i) during the
prior clock cycle was rejected because the FIFO buffer is full. In this case,
overflowing the FIFO is not destructive to the contents of the FIFO.

Table 8: FIFO Core Read Ports
For both synchronous and asynchronous clocks.

Port Direction Description

rdata [m-1:0] Output Read data. The output data bus driven when reading the FIFO buffer.
m=DATA_WIDTH.

rd_en_i Input Read enable. If the FIFO buffer is not empty, asserting this signal causes
data to be read from the FIFO (output on rdata).

empty_o Output Empty flag. When asserted, this signal indicates that the FIFO buffer is
empty. When empty, Read requests are ignored if underflow protection
option is enabled. In this case, initiating a read while empty is not
destructive to the FIFO.

almost_empty_o Output Optional, almost empty flag. When asserted, this signal indicates that only
one word remains in the FIFO buffer before it is empty.

prog_empty_o Output Optional, programmable empty. This signal is asserted when the number
of words in the FIFO buffer is less than or equal to the assert threshold. It
is de-asserted when the number of words in the FIFO exceeds the negate
threshold.

rd_valid_o Output Optional, read valid. This signal indicates that valid data is available on the
output bus (rdata).

underflow_o Output Optional, underflow. This signal is exposed when underflow protection
option is enabled to indicate that the read request (rd_en_i) during the
previous clock cycle was rejected because the FIFO buffer is empty. In this
case, underflowing the FIFO is not destructive to the FIFO.

www.efinixinc.com 8

FIFO Core User Guide

Synchronous FIFO Operation
The FIFO core signals are synchronized on the rising edge clock of the respective clock
domain. If you want to synchronize to the falling clock edge, use an inverter before sending
the signal to the clock input.

Figure 2: Synchronous FIFO Block Diagram

Synchronous FIFOclk_i
a_rst_i
datacount_o[(log2DEPTH):0]

Control
Logic RAMwdata[DATA_WIDTH-1:0]

wr_en_i
rdata[DATA_WIDTH-1:0]
rd_en_i

Standard Mode
The following waveform shows the FIFO behavior in standard mode when it is written until
full and then read until empty. D1 and DN are the first and last data, respectively.

Figure 3: Synchronous FIFO Standard Mode Waveform

D1 D2 DN-1 DN DN+1D3

D1 D2 DN-1 DNDN-2

clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
underflow_o

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

When overflow protection option is enabled, if the system tries to write data DN+1 when
full_o is asserted, the core ignores DN+1 and asserts overflow_o. full_o deasserts
during a read request, signaling that the FIFO is ready for more write requests. When the
last data is read from the FIFO, the core asserts empty_o, indicating there is no more data.
Further read requests when there is no more data triggers an assertion on underflow_o if
the underflow protection option is enabled.

When overflow protection option is disabled, if the system tries to write data DN+1 when
full_o is asserted, the core still writes DN+1. User logic needs to guarantee that it is not
overflowing the FIFO by monitoring almost_full signal that indicates only 1 entry left
before the FIFO is full. The same concept applies to underflow protection.

www.efinixinc.com 9

FIFO Core User Guide

First-Word-Fall-Through Mode
First-Word-Fall-Through (FWFT), is a mode in which the first word written into the FIFO
"falls through" and is available at the output without a read request. The following waveform
shows the behavior of the FIFO in FWFT mode when it is written until full and then read
until empty. D1 and DN are the first and last data, respectively.

The write behavior is the same as standard mode; the read behavior is different. When
the first word is written into the FIFO buffer, the core deasserts empty_o and asserts
rd_valid_o. There is one clock cycle of latency from wr_en_i to deassert empty_o
and assert rd_valid_o. Consequently, the first word that falls through the FIFO onto the
rdata also has the one additional clock cycle of latency.

D1 is available on the rdata output data bus without a read request (that is, rd_en_i is
not asserted). When the second data is written into the FIFO buffer, the output data does not
change until there is a read request. When it detects a read request, the FIFO core outputs
the next available data onto the output bus. If the current data is the last data DN and the
core detects a read request, it asserts empty_o and deasserts rd_valid_o. Additional reads
underflow the FIFO.

Figure 4: Synchronous FIFO FWFT Mode Waveform

D1 D2 DN-1 DN DN+1D3

D1 D3D2 DN-2

clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
underflow_o

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata DN-1 DN

www.efinixinc.com 10

FIFO Core User Guide

Asynchronous FIFO Operation
With an asynchronous FIFO, the two protocols can work in their respective clock domains
and still transfer reliable data to each other. When there is a write or read request affecting
its own respective domain’s flags, the asynchronous FIFO has 0 delays. Whereas when
affecting the other domain’s flags, it has a 1 clock cycle delay from its respective domain
plus 2 clock cycles of the other domain. For example, a write request only reflects on the
read domain after 1 write clock cycle plus 2 read clock cycles and vice versa. Enabling the
PIPELINE_REGadds 1 more additional clock cycle of the other domain on top of it. Refer
to the latency table for asynchronous FIFO in Latency for more info.

Figure 5: Asynchronous FIFO Block Diagram

Asynchronous FIFO

a_rst_i
wr_clk_i
wdata[DATA_WIDTH-1:0]
wr_en_i
wr_datacount_o[(log2DEPTH):0]

Gray Decoder

Gray Encoder

Control
Logic

Gray Encoder

Gray Decoder

Control
Logic

RAM

Write Domain Read Domain

rd_clk_i
rdata[DATA_WIDTH-1:0]
rd_en_i
rd_datacount_o[(log2DEPTH):0]

For asynchronous FIFO, a write operation affecting the write domain flags and a read
operation affecting the read domain flags have the same behavior as the synchronous FIFO
except when they are affecting crossed domain flags. The following examples emphasize the
cross-clock domain flags update latency.

Standard Mode
The following figures show examples of asynchronous FIFO standard mode with a faster read
clock and write clock, respectively. The waveforms show the FIFO written until full and a
few read requests afterwards.

In the read example shown in Figure 6: Asynchronous FIFO Standard Mode Faster Read
Clock with PIPELINE_REG=0 on page 12, the read clock frequency is double that of
the write clock with the same phase. When there is a write request at node 2, empty_o does
not deassert immediately; instead, it deasserts 1 write clock plus 2 clock read clocks later at
node 6. Similarly, almost_empty_o deasserts at node 8, which is 1 write clock plus 2 read
clocks later after the second write request at node 4. almost_full_o and full_o deassert
at the same time at node 22 because there are 2 read requests detected before the write domain
is synchronized at node 20.

www.efinixinc.com 11

FIFO Core User Guide

Figure 6: Asynchronous FIFO Standard Mode Faster Read Clock with PIPELINE_REG=0

D1 D2

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

DN-1 DN

W
rit

e
D

om
ai

n
R

ea
d

D
om

ai
n

DN+1

D1 D2

0

1st write
request

1st read
request

2nd write
request

2nd read
request

1 wr_clk_i 2 rd_clk_i

1 rd_clk_i
2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 2 rd_clk_i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

In the write example shown in Figure 7: Asynchronous FIFO Standard Mode Faster
Write Clock with PIPELINE_REG=0 on page 12, the write clock frequency is
double that of the read clock with the same phase. The empty_o deasserts at node 5 and
almost_empty_o deasserts at node 7. Each of these signals are affected by write requests on
node 1 and node 2 respectively. Read requests at node 11 and 13 reflect on the write domain
at node 15 and 17, respectively.

Figure 7: Asynchronous FIFO Standard Mode Faster Write Clock with PIPELINE_REG=0

D1 D2 DN-1 DN

W
rit

e
D

om
ai

n
R

ea
d

D
om

ai
n

DN+1

D1 D2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i 2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 2 rd_clk_i

1 wr_clk_i 2 rd_clk_i

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

www.efinixinc.com 12

FIFO Core User Guide

FWFT Mode
The following figures show example of asynchronous FIFO FWFT mode with faster read
clock and faster write clock. Both examples have the similar read request to write flags
update behavior as their standard mode counterpart. The write request to empty_o delay
of synchronous FIFO FWFT applies here as well, just that the additional clock is of the read
clock.

In the example shown inFigure 8: Asynchronous FIFO FWFT Mode Faster Read Clock
with PIPELINE_REG=0 on page 13, the read clock frequency is double that of the
write clock with the same phase. When there is a write request at node 2, empty_o does
not deassert immediately; instead, it deasserts 1 write clock plus 3 clocks later at node 7,
which has one additional clock cycle latency compared to standard mode. Concurrently, the
empty_o deasserts, the first data falls through the FIFO onto rdata, and the rd_valid_o
is asserted. The almost_empty_o behaves the same as standard mode whereby it only
needs 1 write clocks plus 2 clocks to deasserts at node 8, after the second write request at node
4. Subsequent read request outputs the next available word inside FIFO.

Figure 8: Asynchronous FIFO FWFT Mode Faster Read Clock with PIPELINE_REG=0

D1 D3D2 DN-1 DN

W
rit

e
D

om
ai

n
R

ea
d

D
om

ai
n

DN+1

D1 D3D2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i 2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 3 rd_clk_i

1 wr_clk_i 2 rd_clk_i

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

In the example shown in Figure 9: Asynchronous FIFO FWFT Mode Faster Write Clock
with PIPELINE_REG=0 on page 14, the write clock frequency is double that of the
read clock with the same phase. Between positive edges of read clock at node 2 and node
4, 2 write requests are detected at the same time. The empty_o deasserts 3 clock cycles
later at node 8, while almost_empty_o only requires 2 clock cycles to deassert at node
6. This means that the FIFO read domain detected 2 write words at node 6, however it is
not ready for reading as the empty_o remains asserted. The first word only falls through
at the same time as empty_o is deasserted and rd_valid_o is asserted. Always refer to
empty_o instead of datacount_o value whenever you want to do a read request. Refer to
the Datacount on page 18 for more information about the datacount_o signal.

www.efinixinc.com 13

FIFO Core User Guide

Figure 9: Asynchronous FIFO FWFT Mode Faster Write Clock with PIPELINE_REG=0

D1 D2 D3 DN-1 DN

W
rit

e
D

om
ai

n
R

ea
d

D
om

ai
n

DN+1

D2 D3D1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i

2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 3 rd_clk_i

1 wr_clk_i 2 rd_clk_i

www.efinixinc.com 14

FIFO Core User Guide

Asymmetric Width Operation
Asymmetric aspect ratios allow the input and output of the FIFO width and depth to be
configured differently. You only need to configure the write width and depth, while the read
width and read depth are computed automatically by the FIFO based on your parameter
settings. The following table lists the supported asymmetric width ratio.

Note: The write width must be divisible by the selected ratio. For example, for 8:1 ratio, the write width
can be 8, 16, 32, up to 256.

Table 9: Supported Asymmetric Width FIFO Ratio

Ratio Write Width Read Width Write Depth Read Depth

16:1 N N/16 2M 2M x 16

8:1 N N/8 2M 2M x 8

4:1 N N/4 2M 2M x 4

2:1 N N/2 2M 2M x 2

1:1 N N 2M 2M

1:2 N N*2 2M 2M / 2

1:4 N N*4 2M 2M / 4

1:8 N N*8 2M 2M / 8

1:16 N N*16 2M 2M / 16

In operations with 2:1 aspect ratio, the write width is two times the read width. In the
example below, each write request has 8-bit data which requires 2 read requests (4-bit width
per clock cycle) to free-up the entry.

Figure 10: 2:1 Aspect Ratio Example Waveform

clk_i

wr_en_i

wdata

wr_datacount_o

wr_ack_o

rd_en_i

rd_valid_o

rdata

rd_datacount_o

empty_o

AB

0 01 2 1

0 0

D

2 2 14 3

B CA

CD

www.efinixinc.com 15

FIFO Core User Guide

In operations with 1:2 aspect ratio, the read width is two times the write width. In the
example below, each write request has 8-bit data where two write requests are required to
contribute to a single read word (16-bit width).

Figure 11: 1:2 Aspect Ratio Example Waveform

clk_i

wr_en_i

wdata

wr_datacount_o

wr_ack_o

rd_en_i

rd_valid_o

rdata

rd_datacount_o

empty_o

AB

0 01 2 3 24

0 0

EF01

11 2

ABCD

CD EF 01

For asymmetric width operation, the full and empty flags are active only when one complete
word can be read or written. Therefore, accessing partial words is not allowed. For example,
assuming a full FIFO, if the write width is 8 bits and read width is 4 bits, two valid read
operations are needed before full de-asserts and a write operation is accepted.

www.efinixinc.com 16

FIFO Core User Guide

Programmable Full and Empty Signals
The FIFO core supports user-defined full and empty signals with customized
depths (prog_full_o and prog_empty_o). To enable these signals, set the
PROGRAMMABLE_FULL or PROGRAMMABLE_EMPTY parameters as STATIC_SINGLE or
STATIC_DUAL. Refer to Parameters for more info on the available values.

Important: For the asynchronous FIFO, these signals are synchronized to their respective clock domain’s
available words.

Table 10: prog_full_o Assert and Deassert Conditions

Value Type Condition

Assert number of words in FIFO ≥ PROG_FULL_ASSERTSTATIC_SINGLE

Deassert number of words in FIFO < PROG_FULL_ASSERT

Assert number of words in FIFO ≥ PROG_FULL_ASSERTSTATIC_DUAL

Deassert number of words in FIFO < PROG_FULL_NEGATE

Table 11: prog_empty_o Assert and Deassert Conditions

Value Type Condition

Assert number of words in FIFO ≤ PROG_EMPTY_ASSERTSTATIC_SINGLE

Deassert number of words in FIFO > PROG_EMPTY_ASSERT

Assert number of words in FIFO ≤ PROG_EMPTY_ASSERTSTATIC_DUAL

Deassert number of words in FIFO > PROG_EMPTY_NEGATE

To avoid erratic behavior, follow these rules for STATIC_DUAL modes:
• PROG_FULL_ASSERT ≥ PROG_FULL_NEGATE
• PROG_EMPTY_ASSERT ≤ PROG_EMPTY_NEGATE

Reset
The FIFO core uses active high asynchronous reset. By default, the reset signal (a_rst_i) is
synchronized to the respective clock domains before it being used in the core logic. You must
ensure that the rst_busy signal is low before the start any of the FIFO operation.

If the reset synchronization is already included in the user logic, you can bypass the reset
synchronizer logic in FIFO core by setting the SKIP_RESET_SYNC parameter to value 1. In
this scenario, you should directly connect a_wr_rst_i and a_rd_rst_i ports.

www.efinixinc.com 17

FIFO Core User Guide

Datacount
The FIFO core includes datacount signal as output. Synchronous FIFO enables
datacount_o while asynchronous FIFO enables both wr_datacount_o and
rd_datacount_o.

The datacount is zero when the FIFO is in empty and full state. You must ensure that the
width of datacount is log2(DEPTH) to get the correct value.

Note: Always refer to the empty_o and full_o signals when reading or writing FIFO.

Latency
This section defines the latency of the output signals in the FIFO core. The output signals
latency are updated in response to the read or write requests. Latency is described in the
following waveform. A 0 latency means the signal is asserted or deasserted at the same rising
edge of the clock at which the write or read request is sampled. A latency of 1 means the
signal is asserted or deasserted at the next rising edge of the clock.

Synchronous FIFO

Table 12: Synchronous FIFO Write Flags Update Latency (clk_i) Due to wr_en_i and
rd_en_i Signals

Port wr_en_i rd_en_i

wr_ack_o 0 –

full_o 0 0

almost_full_o 0 0

prog_full_o 0 0

overflow_o 0 –

Table 13: Synchronous FIFO Read Flags Update Latency Due to wr_en_i and
rd_en_i Signals

Port wr_en_i rd_en_i

rd_valid_o – 0(5)

empty_o 0 0

almost_empty_o 0 0

prog_empty_o 0 0

underflow_o – 0

datacount_o 0 0

(5) OUTPUT_REG adds one latency to these signal.

www.efinixinc.com 18

FIFO Core User Guide

Asynchronous FIFO

Table 14: Asynchronous FIFO Write Flags Update Latency Due to wr_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

wr_ack_o 0 0

full_o 0 0

almost_full_o 0 0

prog_full_o 0 0

overflow_o 0 0

wr_datacount_o 0 0

Table 15: Asynchronous FIFO Read Flags Update Latency Due to wr_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

rd_valid_o – –

empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

almost_empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

prog_empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

underflow_o – –

rd_datacount_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

Table 16: Asynchronous FIFO Write Flags Update Latency Due to rd_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

wr_ack_o – –

full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

almost_full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

prog_full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

overflow_o – –

wr_datacount_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

Table 17: Asynchronous FIFO Read Flags Update Latency Due to rd_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

rd_valid_o 0(6) 0(7)

empty_o 0 0

almost_empty_o 0 0

prog_empty_o 0 0

underflow_o 0 0

rd_datacount_o 0 0

(6) OUTPUT_REG adds one latency to these signal.
(7) OUTPUT_REG adds one latency to these signal.

www.efinixinc.com 19

FIFO Core User Guide

IP Manager
The Efinity® IP Manager is an interactive wizard that helps you customize and generate
Efinix® IP cores. The IP Manager performs validation checks on the parameters you set to
ensure that your selections are valid. When you generate the IP core, you can optionally
generate an example design targeting an Efinix development board and/or a testbench. This
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
core with different parameters, or the same IP core for different projects.

Note: Not all Efinix IP cores include an example design or a testbench.

Generating the FIFO Core with the IP Manager
The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose Memory > FIFO core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note: You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed information
on the options, refer to the Customizing the FIFO section.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example design
targeting an Efinix® development board and/or testbench. These options are turned on by
default.

6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.
8. In the Review configuration generation dialog box, click Generate. The Console in the

Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

Generated Files
The IP Manager generates these files and directories:
• <module name>_define.vh—Contains the customized parameters.
• <module name>_tmpl.v—Verilog HDL instantiation template.
• <module name>_tmpl.vhd—VHDL instantiation template.
• <module name>.v—IP source code.
• settings.json—Configuration file.
• <kit name>_devkit—Has generated RTL, example design, and Efinity® project targeting

a specific development board.
• Testbench—Contains generated RTL and testbench files.

www.efinixinc.com 20

FIFO Core User Guide

Customizing the FIFO
The core has parameters so you can customize its function. You set the parameters in the
General tab of the core's IP Configuration window.

Table 18: FIFO Core Parameter

Parameter Options Description

Device Family Trion , Titanium Select the target device family.
Default: Trion

Clock Mode Asynchronous,
Synchronous

Defines whether the FIFO read and write domain is
synchronous or asynchronous.
Default: Asynchronous

FIFO Depth 16 – 131072 Defines the FIFO depth, which determines the maximum
number of words the FIFO can store before it is full. The depth
is multiples of 2 from 16 – 217.
Default: 512

Data Bus Width 1 – 256 Defines the FIFO's read and write data bus widths.
Default: 16

FIFO Mode STANDARD,
FWFT

Defines the FIFO's read mode as standard or FWFT.
Default: STANDARD

Output Register Enable, Disable Adds one pipeline stage to rdata and rd_valid_o to improve
timing delay out from efx_ram.
Default: 0 (Disable)

Programmable Full Assert
Value

4 - (FIFO
Depth - 2)

Threshold value when prog_full_o is enabled. When Enable
Programmable Full Option is:
STATIC_SINGLE: Single threshold value for assertion and
deassertion of prog_full_o.
STATIC_DUAL: Upper threshold value for assertion of
prog_full_o.
Default: 128

Enable Programmable Full
Option

NONE,
STATIC_SINGLE,

STATIC_DUAL

Controls the prog_full_o signal:
NONE: Disabled.
STATIC_SINGLE: Enabled, asserts and deasserts at a single
threshold value. (default)
STATIC_DUAL: Enabled, asserts or deasserts at different
threshold values.

Programmable Full Negate
Value

3 - (FIFO
Depth - 3)

Use when PROGRAMMABLE_FULL is set to STATIC_DUAL. Sets
the lower threshold value for prog_full_o during deassertion.
Default: 127

Programmable Empty
Assert Value

2 - (FIFO Read
Depth - 4)

Threshold value when prog_empty_o is enabled. When Enable
Programmable Empty Option is:
STATIC_SINGLE: Single threshold value for assertion and
deassertion of prog_empty_o.
STATIC_DUAL: Lower threshold value for assertion of
prog_empty_o.
Default: 2

www.efinixinc.com 21

FIFO Core User Guide

Parameter Options Description

Programmable Empty
Negate Value

3 - (FIFO Read
Depth - 3)

Use when PROGRAMMABLE_EMPTY is set to STATIC_DUAL.
Sets the upper threshold value for prog_empty_o during
deassertion.
Default: 3

Enable Programmable
Empty Option

NONE,
STATIC_SINGLE,

STATIC_DUAL

Controls the prog_empty_o signal:
NONE: Disabled (default).
STATIC_SINGLE: Enabled, asserts and deasserts at a single
threshold value.
STATIC_DUAL: Enabled, asserts or deasserts at different
threshold values.

Optional Signals Enable, Disable Enables the optional signals: wr_ack_o, almost_full_o, ,
rd_valid_o, and almost_empty_o. You can enable this feature
with some trade-offs in timing performance. However, this
feature must be enabled when generating the Example
Designs or Testbench.
Default: Disable

Pipeline Register Enable, Disable Applicable to asynchronous FIFO mode only. Adds one latency
of the opposing clock domain to all applicable output signals
when wr_en_i or rd_en_i signal is asserted. Enable this feature
to improve the macro timing. Efinix recommends that you
enable this parameter in asynchronous FIFO mode.
Default: Enable

Synchronization Stages 2 – 8 Configures the number of synchronization stages for the cross
clock domain signals in asynchronous mode. This increases the
latency of opposing clock domain status flag signals.
Default: 2

Asymmetric Width Ratio 16:1, 8:1, 4:1,
2:1, 1:1, 1:2,
1:4, 1:8, 1:16

Selects asymmetrical width ratios. 1:1 is symmetric width ratio.
Default: 1:2

Reset Synchronizer Enable, Disable Disable if you do not want the reset signal to be synchronized
to the respective clock domain during asynchronous mode.
Ensure that the supplied reset signal is synchronized to the
respective FIFO clock domain in design upper level order for
the FIFO reset to operate correctly.
Default: Enable

Endianness BIG_ENDIAN,
LITTLE_ENDIAN

Select the order in which the bytes are stored and read out first.
Write width > Read width:
• BIG_ENDIAN: The most significant portion of the wdata is

stored into the FIFO first and being read out first.
• LITTLE_ENDIAN: The least significant byte of the wdata is

stored into the FIFO first and being read out first.

Read width > Write width:
• BIG_ENDIAN: Least significant portion of therdata contains the

newer data.
• LITTLE_ENDIAN: Most significant portion of the rdata

contains the newer data.

Default: BIG_ENDIAN

www.efinixinc.com 22

FIFO Core User Guide

Parameter Options Description

Overflow Protection Enable, Disable The overflow protection disables the wr_en_i port when the
FIFO is full. If enabled, overflowing the FIFO is not destructive
to the contents of the FIFO. The overflow_o port is exposed
when this feature is enabled. You can choose to disable this
feature to achieve better timing performance.
Default: Enable

Underflow Protection Enable, Disable The underflow protection disables the rd_en_i port when
the FIFO is empty. If enabled, underflowing the FIFO is not
destructive to the contents of the FIFO. The underflow_o port
is exposed when this feature is enabled. You can choose to
disable this feature to achieve better timing performance.
Default: Enable

FIFO Implementation Block RAM,
LUT Register

Defines the FIFO RAM implementation as Block RAM or LUT
Register. This is only available for FIFO Depth <= 32
Default: Block RAM

www.efinixinc.com 23

FIFO Core User Guide

FIFO Example Design
You can choose to generate the example design when generating the core in the IP Manager
Configuration window. Compile the example design project and download the .hex or
.bit file to your board. To generate example design, the Optional Signals option must be
enabled.

Important: Efinix tested the example design generated with the default parameter options only.

The example design targets the Trion® T20 BGA256 Development Board. The design
demonstrates the continuous read-write operation using both symmetric and asymmetric
width FIFO as well as using FIFO status signal as part of the read write control operation.

The data generator produces continuous 16-bit incremental data once the system reset is
release. The 16-bit data is directly written into the asymmetric FIFO (configured as 1:2
ratio including asynchronous clock settings). The same 16-bit data goes through the data
accumulator block to assemble a 32-bit data before written into the symmetric FIFO. This
process is to ensure that the write and read data has a 1:1 ratio.

Both FIFO read operations are triggered only after prog_full_o signal of asymmetric
FIFO is asserted. The programmable full threshold is set to a quarter of the total write depth.
The FIFO read-write operation can run continuously without hitting FIFO full / FIFO
empty due to:
• The FIFO write clock is running two times faster than the read clock
• Both write and read clock is generated from the same PLL (0 PPM)

In order to observe asymmetric FIFO full or empty behavior, you can trigger a stop read or
stop write to interrupt the FIFO read / write operation through the pushbuttons.

Figure 12: FIFO Example Design

Data
Comparison

led_fifo_full

led_fifo_empty

block write

block read

led_rdata_error

prog_full_oExample Design

Storage
(Symmetric
1:1 FIFO)

DUT
(Asymmetric

1:2 FIFO)

Read/Write
Controller

Read/Write
Controller

Data
Accumulator

Data
Generator

www.efinixinc.com 24

FIFO Core User Guide

Table 19: Example Design Input and Output

Input / Output Description

LED D3 Upon power-up, LED D3 blinks continuously to indicate that the design is running
on the board.

LED D4 Turns on when there is read data error during comparison.
Pressing SW5 / SW6 button can also cause read data comparison error.

LED D5 Turns on when asymmetric FIFO is full. Occurs when pressing SW6 pushbutton.

LED D6 Turns on when asymmetric FIFO is empty. Occurs when pressing SW5 pushbutton.

Pushbutton SW4 System reset. Use system reset to clear read comparison error.

Pushbutton SW5 Stop write. Triggers a stop write and causes the asymmetric FIFO to hit full status.

Pushbutton SW6 Stop read. Triggers a stop read and causes the asymmetric FIFO to hit empty status.

Table 20: Titanium Asynchronous Example Design Implementation

fMAX (MHz)(10) Efinity
Version(11)

FPGA Mode Logic Elements
(Logic, Adders,
Flipflops, etc.)

Memory Block DSP
Block

wr_clk_i rd_clk_i

Standard 334/60800 (0.07%) 4/256 (2%) 0/160
(0%)

416.84 262.74Ti60 F225 C4

FWFT 351/60800 (0.1%) 4/256 (2%) 0/160
(0%)

431.22 259.67

2023.2

Table 21: Trion® Example Design Implementation

fMAX (MHz)(10) Efinity
Version(11)

FPGA Mode Logic Elements
(Logic, Adders,
Flipflops, etc.)

Memory Block DSP
Block

wr_clk_i rd_clk_i

Standard 354/19728(2%) 2/204 (3%) 0/36 (0%) 155.06 134.48T20 F256 C4

FWFT 371/19728 (2%) 2/204 (3%) 0/36 (0%) 157.73 117.63

2023.2

(10) Using default parameter settings.
(11) Using Verilog HDL.

www.efinixinc.com 25

FIFO Core User Guide

FIFO Testbench
You can choose to generate the testbench when generating the core in the IP Manager
Configuration window. To generate testbench, the Optional Signals option must be enabled.

Note: You must include all .v files generated in the /testbench directory in your simulation.

Efinix provides a simulation script for you to run the testbench quickly using the Modelsim
software. To run the Modelsim testbench script, run vsim -do modelsim.do in a
terminal application. You must have Modelsim installed on your computer to use this script.

Revision History

Table 22: Revision History

Date Version Description

February 2024 2.0 Updated Features section. (DOC-1704)
Updated Resource Utilization and Performance section.
Updated Table FIFO Core Clock, Reset, and Data,FIFO
Core Write Ports, FIFO Core Read Ports in Ports topic.
Added additional information in Synchronous FIFO
Operation and Asymmetric Width Operation section.
Updated Table FIFO Core Parameter in Customizing
the FIFO section.
Updated Table Titanium Asynchronous Example
Design Implementation and Trion Example Design
Implementation in FIFO Example Design. Also, added
a statement in the first paragraph.
Updated figure FIFO System Block Diagram,
Synchronous FIFO Block Diagram, and Asynchronous
FIFO Block Diagram.

January 2024 1.9 Added in extra information in Assymetric Width
Operation section. (DOC-1621)
Updated Table: FIFO Core Parameter in Customizing
the FIFO section.
Corrected figure FIFO System Block Diagram in
Functional Description section.

October 2023 1.8 Added description for wr_datacount_o,
rd_datacount_o and datacount_o port. (DOC-1513)

February 2023 1.7 Added note about the resource and performance
values in the resource and utilization table are for
guidance only.

January 2023 1.6 Corrected reset signal name.

August 2022 1.5 Removed description about reset pulse width
requirement. (DOC-903)

April 2022 1.4 Corrected supported data width in feature list.

www.efinixinc.com 26

FIFO Core User Guide

Date Version Description

January 2022 1.3 Updated resource utilization table and Asymmetric
Width Ratio parameter options. (DOC-700)

December 2021 1.2 Core included in main Efinity release.

October 2021 1.1 Added note to state that the fMAX in Resource
Utilization and Performance, and Example Design
Implementation tables were based on default
parameter settings.
Corrected the Titanium FPGA used in Resource
Utilization and Performance tables.

September 2021 1.0 Initial release.

www.efinixinc.com 27

	Contents
	Introduction
	Features
	Device Support
	Resource Utilization and Performance
	Release Notes
	Functional Description
	Ports
	Synchronous FIFO Operation
	Asynchronous FIFO Operation
	Asymmetric Width Operation
	Programmable Full and Empty Signals
	Reset
	Datacount
	Latency
	Synchronous FIFO
	Asynchronous FIFO

	IP Manager
	Customizing the FIFO
	FIFO Example Design
	FIFO Testbench
	Revision History

