
I2C Core User Guide

UG-CORE-I2C-v4.4
February 2023
www.efinixinc.com

Copyright © 2023. All rights reserved. Efinix, the Efinix logo, the Titanium logo, Quantum, Trion, and Efinity are trademarks of Efinix, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Contents

Introduction... 3

Features..3

Resource Utilization and Performance..4

Functional Description...5
Ports... 6
I2C Core Registers...8
I2C Write and Read Operations.. 8

IP Manager.. 12

Customizing the I2C.. 13

I2C Example Design.. 14

I2C Testbench...17

Interface Designer GPIO Block Settings... 17

Revision History...18

I2C Core User Guide

Introduction
The I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data
exchange between devices. The I2C core provides an interface between the Trion® FPGA and
an I2C bus.

Use the IP Manager to select IP, customize it, and generate files. The I2C core has an
interactive wizard to help you set parameters. The wizard also has options to create a
testbench and/or example design targeting an Efinix® development board.

Features
• Supports native user interface
• Master, slave, and multi-master operations
• Supports 100 kHz and 400 kHz I2C operation mode
• START, Repeated START and STOP signal generation and detection
• 7-bit slave addressing mode
• Verilog HDL RTL and simulation testbench
• Includes example designs targeting the Trion® T20 BGA256 Development Board and

Titanium Ti60 F225 Development Board
• Supports SDA and SCL spike filtering, and SCL clock stretching

FPGA Support
The I2C core supports all Trion® and Titanium FPGAs.

www.efinixinc.com 3

I2C Core User Guide

Resource Utilization and Performance

Note: The resources and performance values provided are just guidance and change depending on the
device resource utilization, design congestion, and user design.

Titanium Resource Utilization and Performance
FPGA Mode Logic and

Adders
Flip-flops Memory

Blocks
DSP48
Blocks

fMAX
(MHz)(1)

Efinity®

Version(2)

Master 217 175 0 0 561Ti60 F225 C4

Slave 216 175 0 0 438

2021.2

Trion Resource Utilization and Performance
FPGA Mode Logic

Utilization
(LUTs)

Registers Memory
Blocks

Multipliers fMAX
(MHz)(1)

Efinity®

Version(2)

Master 441 203 0 0 154T20 BGA256 C4

Slave 258 198 0 0 210

2021.1

(1) Using default parameter settings.
(2) Using Verilog HDL.

www.efinixinc.com 4

I2C Core User Guide

Functional Description
The core supports master and slave modes.

The I2C core consists of:

• I2C master—Top module wrapper that predefines the I2C core to master mode.
• I2C slave—Top module wrapper that predefines the I2C core to slave mode.
• I2C master/slave controller—I2C core logic.
• Microcontroller inbound data register (MIDR)—TX data register.
• Microcontroller outbound data register (MODR)—RX data register.
• Microcontroller address data register (MADR)—I2C slave address register.

Figure 1: I2C Master System Block Diagram
scl_in
sda_in
clk
rst
din [DATAWIDTH-1:0]
command_byte [7:0]
num_bytes [7:0]
read
write
i2c_soft_rst
i2c_arb_lost_clr
i2c_slave_addr [7:0]

scl_out
scl_oe
sda_out
sda_oe
data_out [DATAWIDTH-1:0]
i2c_busy
i2c_arb_lost
i2c_rxak
write_done
data_out_valid

I2C Master
(i2c_master_ctl.v)

I2C Controller

MIDR

MODR

Figure 2: I2C Slave System Block Diagram

scl_in
sda_in
clk
rst
din [DATAWIDTH-1:0]
read
write

scl_out
scl_oe
sda_out
sda_oe
data_out [DATAWIDTH-1:0]
ready_to_wr
ready_to_rd
rddata_valid
busy
command_byte [7:0]

I2C Slave
(i2c_slave_ctl.v)

I2C Controller

MIDR

MADR

MODR

www.efinixinc.com 5

I2C Core User Guide

Ports

Table 1: I2C Master Ports

Port Interface Direction Description

scl_in I2C Input I2C clock input.

sda_in I2C Input I2C data input.

scl_out I2C Output I2C clock output.

scl_oe I2C Output I2C clock output enable.

sda_out I2C Output I2C data output.

sda_oe I2C Output I2C data output enable.

clk System Input IP clock.

rst System Input IP reset.

din [DATA_WIDTH-1:0] System Input Write data input.

command_byte [7:0] System Input This 8-bit data is sent to the I2C slave device
during the I2C command phase.

num_bytes [7:0] System Input Determines the number of data in bytes to be
written to the I2C slave device or read back
from the I2C slave device.

read System Input Assert high for one clock cycle to read data
from the I2C slave device.
Assign num_bytes before asserting the read
port.

write System Input Assert high for one clock cycle to write data to
the I2C slave device.
Assign num_bytes, command_bytes, and din
before asserting the write port.

i2c_soft_rst System Input Soft reset the I2C bus.

i2c_arb_lost_clr System Input Assert high for one clock cycle to clear the
i2c_arb_lost port.

i2c_slave_addr [7:0] System Input This 8-bit data is sent to the I2C slave device
during the I2C header phase.
The least significant bit is ignored.

data_out [DATA_WIDTH-1:0] System Output Read data output.

i2c_busy System Output Logic high indicates that the I2C bus is busy.

i2c_arb_lost System Output Logic high indicates that there is arbitration lost
in the I2C transfer.

i2c_rxak System Output Logic low indicates that the I2C slave device
received and acknowledged the I2C transfer.

write_done System Output Logic high indicates that I2C master write data
is sent and ready to accept by I2C slave device.

data_out_valid System Output Logic high indicates that I2C master read data
is valid and ready to read by user.

www.efinixinc.com 6

I2C Core User Guide

Table 2: I2C Slave Ports

Port Interface Direction Description

scl_in I2C Input I2C clock input.

sda_in I2C Input I2C data input.

scl_out I2C Output I2C clock output.

scl_oe I2C Output I2C clock output enable.

sda_out I2C Output I2C data output.

sda_oe I2C Output I2C data output enable.

clk System Input IP clock.

rst System Input IP reset.

din [DATA_WIDTH-1:0] System Input Write data input.

read System Input Assert high for one clock cycle to read data
from the I2C master.

write System Input Assert high for one clock cycle to write data
to the I2C master. Number of data bytes to be
sent to the master is equal to DATA_WIDTH/8.

data_out [DATA_WIDTH-1:0] System Output Read data output.

ready_to_wr System Output Logic high indicates that the slave is ready to
accept write data from the user.

ready_to_rd System Output Logic high indicates that the slave has read
data ready to be read.

rddata_valid System Output Logic high indicates that the read data is valid
and ready to be read by the user.

busy System Output Logic high indicates the is busy.

command_bytes [7:0] System Output This 8-bit data is received from I2C master
device during the I2C command phase.

www.efinixinc.com 7

I2C Core User Guide

I2C Core Registers

Table 3: I2C Core Registers

Bit Name Description

7:0 MIDR Data byte from command_byte and din ports are written into this data register and
transferred out through the I2C bus.
When num_bytes is more than 2, the subsequent byte of din is written to MIDR after
one byte of data transfer completed.

7:0 MODR Data received from the I2C transfer is written to this register. This register value is
assigned to the data_out port.
When there are more than 1 byte of data received, the previous data byte is right-
shifted to the least significant bit (LSB) and concatenate with the current received
byte to form data_out.

7:0 MADR This is an I2C slave specific register. Parameter SLAVE_ADDR is assigned to this
register.
This register value is compared with the I2C header byte send by the I2C master.
If these values match, the I2C slave sends ACK the I2C master. Otherwise, it sends
NACK to the 2C master.
The least significant bit is ignored. Only MADR [7:1] are compared with the header
byte.

I2C Write and Read Operations
Figure 3: I2C Operations on I2C Bus

S SLAVE ADDRESS R/W A COMMAND_BYTE

num_bytes

0 (write)

0 (write)

I2C Write Operation on I2C Bus

A DATA A DATA A P

S

S Sr

SLAVE ADDRESS R/W R/WA

A

SLAVE ADDRESS

SLAVE ADDRESS

A DATA

num_bytes - 1

Start by master Acknowledge by slave Repeated start by master

P AStop by master Acknowledge by master

NACK by master

Header byte by master

I2C Read Operation on I2C Bus

A PA DATA ASr

1 (read)

A

COMMAND_BYTE

www.efinixinc.com 8

I2C Core User Guide

Performing a Write Operation on I2C Master
1. Ensure the busy signal is low.
2. Assign din, command_byte, i2c_slave_addr and num_bytes, then assert the

write signal for one clock cycle.
3. Verify the status of the busy signal. If asserted, the I2C master sends out the write data to

the I2C slave device.
4. Verify the status of the write_done signal. If asserted, the din is written completely. If

you want to issue multiple I2C write, insert new din value after write_done is high.
5. After the busy signal goes low, verify i2c_arb_lost and i2c_rxak signals are low.
6. The write data successfully sent out.

Figure 4: Write Operation on I2C Master Waveform

clk
write

command_byte [7:0]
din[31:0]
i2c_rxak

write_done
i2c_slave_addr[7:0]

num_bytes[7:0]
i2c_arb_lost

busy

0100

00

00

54

08

0504030200000000 07060504

02

Figure 5: Multiple Write Operation on I2C Master Waveform

clk

write

command_byte [7:0]

din[31:0]

i2c_rxak

write_done

i2c_slave_addr[7:0]

num_bytes[7:0]

i2c_arb_lost

busy

01 02 03 04

07060504 14527927 8433916705040302

00

00

00

54

08

00000000

www.efinixinc.com 9

I2C Core User Guide

Performing a Read Operation on I2C Master
1. Ensure the busy signal is low.
2. Assign command_byte,i2c_slave_addr and num_bytes, then assert the read

signal for one clock cycle.
3. Verify the status of the busy signal. If asserted, the I2C master reads from the

command_byte value of the I2C slave device.
4. When data_out_valid signal is asserted, the data_out is a valid read data.
5. After the busy signal is low, verify the i2c_arb_lost signal is low, and the

i2c_rxak signal is high.

Figure 6: Read Operation on I2C Master Waveform

clk

read

command_byte [7:0]

data_out

din[31:0]

i2c_rxak

data_valid_out

i2c_slave_addr[7:0]

num_bytes[7:0]

i2c_arb_lost

busy

0201

54

04

0706050405040302 05040302

00000000 07000000 04070000 08040700 0A080407 0B0A0804

01

Performing a Write Operation on I2C Slave
1. To send the data back to the I2C master, you must provide the write data based on the

command_byte value received.
2. Wait for the ready_to_wr signal to go high, then assert the write signal for one clock

cycle.
3. Verify the status of the busy signal. If asserted, the I2C slave sends out the write data to

the I2C master.
4. Verify the status of the busy signal. The write transfer is complete when the busy signal

is low.

Figure 7: Write Operation on I2C Slave Waveform

clk

write

command_byte[7:0]

din[31:0]

busy

ready_to_wr

0B0A080400000000

02

www.efinixinc.com 10

I2C Core User Guide

Performing a Read Operation on I2C Slave
1. Wait for the ready_to_rd signal to go high, then assert the read signal for one

clock cycle.
2. Verify the status of the busy signal. If asserted, the I2C slave reads out the data

transferred by the I2C master.
3. Verify the status of the rddata_valid signal. If asserted, the data_out is a valid read

data.
4. Verify the status of the busy signal. The read transfer is complete when the busy signal

is low.

Note: The I2C slave drops the additional byte if the I2C master sends more than DATA_BYTE_WIDTH/8
bytes of data.

Figure 8: Read Operation on I2C Slave Waveform

clk
read

ready_to_rd
rddata_valid

busy
data_out[31:0] 00000000 02.. 00000000

www.efinixinc.com 11

I2C Core User Guide

IP Manager
The Efinity® IP Manager is an interactive wizard that helps you customize and generate
Efinix® IP cores. The IP Manager performs validation checks on the parameters you set to
ensure that your selections are valid. When you generate the IP core, you can optionally
generate an example design targeting an Efinix development board and/or a testbench. This
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
core with different parameters, or the same IP core for different projects.

Note: Not all Efinix IP cores include an example design or a testbench.

Generating a Core with the IP Manager
The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose an IP core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note: You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed information
on the options, refer to the IP core's user guide or on-line help.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example
design targeting an Efinix® development board and/or testbench. For SoCs, you can also
optionally generate embedded software example code. These options are turned on by
default.

6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.
8. In the Review configuration generation dialog box, click Generate. The Console in the

Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

Generated Files
The IP Manager generates these files and directories:
• <module name>_define.vh—Contains the customized parameters.
• <module name>_tmpl.v—Verilog HDL instantiation template.
• <module name>_tmpl.vhd—VHDL instantiation template.
• <module name>.v—IP source code.
• settings.json—Configuration file.
• <kit name>_devkit—Has generated RTL, example design, and Efinity® project targeting

a specific development board.
• Testbench—Contains generated RTL and testbench files.

Note: Refer to the IP Manager chapter of the Efinity® Software User Guide for more information about the
Efinity® IP Manager.

www.efinixinc.com 12

I2C Core User Guide

Customizing the I2C
The core has parameters so you can customize its function. You set the parameters in the
General tab of the core's IP Configuration window.

Table 4: I2C Core Master Parameters when I2C Controller Mode is MASTER

Parameters Options Description

I2C Data Transfer Speed 100 kHz normal
mode, 400

kHz fast mode

I2C data transfer speed.
Default = 100 kHz normal mode

Data Width 8, 16, 24, 32 Data width for the user interface data input/output bus.
Default = 32

Core Clock Frequency (MHz) 50, 100, 150 Core clock frequency.
Default = 100

SDA/SCL Spike Filtering Cycle 1 - 15 SDA/SCL spike filtering logic to filter out signal spike in
clock cycle with reference to core clock frequency.
Default = 2

Table 5: I2C Core Master Parameters when I2C Controller Mode is Slave

Parameters Range Description

8-bit I2C Slave Address — Slave address for the I2C slave.
The least significant bit is ignored.
Default = 84 (decimal)

I2C Data Transfer Speed 0, 1 I2C data transfer speed.
Default = 100 kHz normal mode

Data Width 8, 16, 24, 32 Data width for the user interface data input/output bus.
Default = 32

Core Clock Frequency (MHz) 50, 100, 150 Core clock frequency in MHz.
Default = 100

SDA/SCL Spike Filtering Cycle 1 - 15 SDA/SCL spike filtering logic to filter out signal spike in clock
cycle with reference to core clock frequency.
Default = 2

www.efinixinc.com 13

I2C Core User Guide

I2C Example Design
You can choose to generate the example design when generating the core in the IP Manager
Configuration window. Compile the example design project and download the .hex or .bit
file to your board.

Important: Efinix tested the example design generated with the default parameter options only.

The example designs the target the Trion® T20 BGA256 Development Board and Titanium
Ti60 F225 Development Board.

Figure 9: Example Design Block Diagram

I²C
Master

I²C
Slave

Looped back
on the board

I2C Example Design
(i2c_controller_test.v)

Write/Read User
Control Logic

and
Read Data

Comparator

The example design flow consists of the following steps:

1. The user control logic asserts the write signal with din, command_byte, and
num_bytes assigned to the I2C master.

2. The I2C master sends data to the I2C slave, once complete, the user control logic asserts
write_done signal.

3. Once the ready_to_rd signal is high, the user control logic asserts the read signal to
the I2C slave and start receiving the data from I2C master.

4. Once the rddata_valid signal is high, the user control logic compares the read data
from the I2C slave with the write data written from I2C master.

5. The user control logic asserts the read signal with command_byte and num_bytes
assigned to the I2C master.

6. The I2C master sends command_byte to the I2C slave.
7. Once the ready_to wr signal is high, the user control logic asserts the write signal with

din to the I2C slave.
8. The I2C slave sends data to the I2C master.
9. Once the data_out_valid signal is high, the user control logic compares the read data

from the I2C master with the write data written from I2C slave.
10. Once the busy signal is low, the example design operation is completed.

www.efinixinc.com 14

I2C Core User Guide

Trion® T20 BGA256 Development Board
External jumpers are required to connect the I2C SDA and SCL ports between master and
slave at the Trion® T20 BGA256 Development Board. The following table describes the
external jumper requirements for the example design.

Table 6: External Jumper for Trion® T20 BGA256 Development Board

Connection Port Header Jumper Setting

SDA H2 Connect pins 17 and 18

SCL H2 Connect pins 21 and 22

Figure 10: Jumper Connection Diagram

T20 BGA256
Development Board

H2 135

236

H3

H4

The LED displays the first data byte that the slave or master receive sequentially from LED
D3, D4, D5 and D6 continuously.

Titanium Ti60 F225 Development Board
External jumpers are required to connect the I2C SDA and SCL ports between master and
slave at the Titanium Ti60 F225 Development Board through the MIPI and LVDS Expansion
Daughter Card. Connect the P3 header of the daughter card to the P2 header of the Titanium
Ti60 F225 Development Board.

The following table describes the external jumper requirements at the MIPI and LVDS
Expansion Daughter Card for the example design.

Table 7: External Jumper for MIPI and LVDS Expansion Daughter Card

Connection Port Header Jumper Setting

SDA J5 Connect pins 32 and 34

SCL J5 Connect pins 38 and 40

www.efinixinc.com 15

I2C Core User Guide

Figure 11: Jumper Connection Diagram

MIPI and LVDS
Expansion Card

Ti60 F225
Development Board

P2P3

P1

J5 1

2

39

40

The LED displays the first data byte that the slave or master received in sequentially from
LEDs D16 green and LED D17 white to LED D16 red and LED D17 yellow continuously.

Table 8: Trion® Example Design Implementation

FPGA Mode Logic
Utilization

(LUTs)

Registers Memory
Blocks

Multipliers fMAX
(MHz)(3)

Efinity®

Version(4)

Master 723 414 0 0 95T20 BGA256 C4

Slave 722 414 0 0 93

2021.1

Table 9: Titanium Example Design Implementation

FPGA Mode Logic and
Adders

Flip-flops Memory
Blocks

DSP48
Blocks

fMAX
(MHz)(3)

Efinity®

Version(4)

Master 703 414 0 0 332Ti60 F225 C4

Slave 700 414 0 0 339

2021.2

(3) Using default parameter settings.
(4) Using Verilog HDL.

www.efinixinc.com 16

I2C Core User Guide

I2C Testbench
You can choose to generate the testbench when generating the core in the IP Manager
Configuration window.

Note: You must include all .v files generated in the /testbench directory in your simulation.

Efinix provides a simulation script for you to run the testbench quickly using the Modelsim
software. To run the Modelsim testbench script, run vsim -do modelsim.do in a
terminal application. You must have Modelsim installed in your computer to use this script.

The testbench provides read and write tests. Each test case indicates a pass or fail results
for the register read/write tests. After running the simulation, the test prints the following
message indicating the pass/fail results:

Slave received the command byte from Master 01
Slave received the data byte from Master 040302
Slave received the command byte from Master 02
Slave received the data byte from Master 060504
Master received the data byte from Slave, 4

Note: If you want to use your own testbench file, add the following line in your testbench file,
instancename_tb.v:

`define SIM

Interface Designer GPIO Block Settings
The I2C SCL and SDA are bidirectional ports. When using the I2C core to communicate with
I2C devices outside of the Trion® FPGA, set the GPIO block as follows:

1. In the Interface Designer, create a new GPIO block.
2. In the GPIO Block Editor, set the Mode to inout.
3. Select weak pullup in the Pull Option drop-down list.

www.efinixinc.com 17

I2C Core User Guide

Revision History

Table 10: Revision History

Date Version Description

February 2023 4.4 Added note about the resource and performance values in the
resource and utilization table are for guidance only.

January 2022 4.3 Updated resource utilization table. (DOC-700)

October 2021 4.2 Added note to state that the fMAX in Resource Utilization and
Performance, and Example Design Implementation tables were
based on default parameter settings.
Updated design example target board to production Titanium
Ti60 F225 Development Board and updated Resource Utilization
and Performance, and Example Design Implementation tables.
(DOC-553)

September 2021 4.1 Removed num_bytes [7:0] port possible values limitation.

June 2021 4.0 Added note about including all .v generated in testbench folder is
required for simulation.
Added write_done, data_out_valid, and slv_command_byte ports.
Updated resource utilization and performance table.
Updated example design output and implementation table.
Added support for Titanium FPGAs and example design for
Titanium Ti60 F225 Development Board.
Added multiple write on master waveform.
Updated for Efinity v2021.1.

December 2020 3.0 Added busy signal to the I2C slave controller.
Updated core name to I2C core.
Updated user guide for Efinix® IP Manager which includes added
IP Manager topics, updated parameters, and user guide structure.

July 2020 2.0 Updated for I2C Master/Slave Controller core v2.0.
Added support for SDA and SCL spike filtering and SCL clock
stretching.
Updated LUTs utilization for master and slave mode in resource
utilization and performance.
Added MASTER_I2C_FAST_MODE, MASTER_CLOCK_FREQ,
MASTER_SPIKE_FILTER_CYCLE, SLAVE_I2C_FAST_MODE,
SLAVE_CLOCK_FREQ, and SLAVE_SPIKE_FILTER_CYCLE
parameters.
Updated LUTs and fMAX in example design implementation.
Updated example design block diagram to remove clock divider
block. I2C I2C core v2.0 supports core clock frequency of 150 Mhz
and 100 Mhz and clock divider is no longer needed.

May 2020 1.0 Initial release.

www.efinixinc.com 18

	Contents
	Introduction
	Features
	Resource Utilization and Performance
	Functional Description
	Ports
	I2C Core Registers
	I2C Write and Read Operations

	IP Manager
	Customizing the I2C
	I2C Example Design
	I2C Testbench
	Interface Designer GPIO Block Settings
	Revision History

