
Sapphire RISC-V SoC
Hardware and Software
User Guide

UG-RISCV-SAPPHIRE-v7.3
June 2025
www.efinixinc.com

Copyright © 2025. All rights reserved. Efinix, the Efinix logo, the Titanium logo, the Topaz logo, Quantum, Trion, and Efinity are trademarks of Efinix,
Inc. All other trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Sapphire RISC-V SoC Hardware and Software User Guide

Contents
Introduction..v

VexRiscv RISC-V Core...v
Efinity® RISC-V Embedded Software IDE... vi
Required Software.. vii
Required Hardware..viii

Chapter 1: Install Software and SoC... 9
Install the Efinity Software...9
Install the Efinity RISC-V Embedded Software IDE... 10

Chapter 2: IP Manager.. 11
Customizing the Sapphire SoC..14
SoC Configuration Guideline... 23
Modify the Bootloader.. 24

Updating Bootloader with Efinity BRAM Initial Content Updater...27

Chapter 3: Program the Board with the Sapphire RTL Design... 30
About the Example Design.. 30
Enable the On-Board 10 MHz Oscillator (T120 BGA324 Board).. 32
Enable the LPDDR4x Memory (Ti180 J484 Board)...32
Installing USB Drivers.. 32
Program the Development Board... 34

Chapter 4: Simulate... 35

Chapter 5: Launch Efinity RISC-V Embedded Software IDE..37
Sapphire SoC IDE Backward Compatibility... 37
Launching the Efinity RISC-V Embedded Software IDE... 39
IDE Launcher from Efinity... 40
Optimization Settings.. 44

Chapter 6: Create, Import, and Build a Software Project... 46
Create a New Project...46
Import Sample Projects... 50
Build... 54

Chapter 7: Debug with the OpenOCD Debugger.. 55
Launch the Debug Script..56
Debug.. 57
Debug - Multiple Cores.. 58

Debug - Single Core...58
Debug - SMP..60

Debug - Daisy Chain... 61
Peripheral Register View... 64
CSR Register View..66
FreeRTOS View... 68
QEMU Emulator..69

Chapter 8: Boot Sequence...71
Boot Sequence: Case A..72
Boot Sequence: Case B.. 73
Boot Sequence: Case C..74
Booting Multiple Cores... 74

Chapter 9: Create Your Own RTL Design..76
Target another FPGA...76
Target another Efinix Board..77
Target Your Own Board.. 78
Create a Custom AXI4 Slave Peripheral... 80

www.efinixinc.com

Sapphire RISC-V SoC Hardware and Software User Guide

Create a Custom APB3 Peripheral.. 80
Use another DDR DRAM Module (Trion Only).. 80
Use the I2C Interface for DDR Calibration..81
Remove Unused Peripherals from the RTL Design... 81

Chapter 10: Create Your Own Software..82
Deploying an Application Binary...82

Boot from a Flash Device...82
Boot from the OpenOCD Debugger... 83
Copy a User Binary to Flash (Efinity Programmer)... 83

About the Board Specific Package..85
List of Restructured BSP Files...85
Address Map...88
Example Software...91

Axi4Demo Design..93
apb3Demo..93
clintTimerInterruptDemo.. 93
coremark... 94
customInstructionDemo..94
dCacheFlushDemo.. 95
dhrystone Example..95
FreeRTOS Examples.. 96
fpuDemo... 97
gpioDemo...97
iCacheFlushDemo..98
inlineAsmDemo..98
i2cDemo Example... 99
i2cEepromDemo..100
i2cMasterDemo Design..102
i2cSlaveDemo Design...103
memTest Example... 103
nestedInterruptDemo..104
semihostingDemo... 105
smpDemo... 106
spiDemo Example... 107
uartEchoDemo... 107
UartInterruptDemo Example..108
userInterruptDemo Example... 108
userTimerDemo... 108

Chapter 11: Third-party Debugger... 109

Chapter 12: Watchdog Timer..110
Introduction...111
Functional Description.. 111
Setting Limits for Both Counters... 112

Chapter 13: Using a UART Module... 113
Using the On-board UART (Titanium)...113
Set Up a USB-to-UART Module (Trion)... 114
Open a Terminal.. 115
Enable Telnet on Windows...115

Chapter 14: Unified Printf... 116
Bsp_print... 117
Bsp_printf.. 117
Bsp_printf_full... 117
Semihosting Printing..119
Preprocessor Directives...120

Chapter 15: Using a Soft JTAG Core for Example Designs...121
Connect the FTDI Mini-Module... 122

Chapter 16: Migrating to the Sapphire SoC... 125

www.efinixinc.com

Migrating to the Sapphire SoC v2.0 from a Previous Version... 125
Migrating Ruby, Jade, and Opal to the Sapphire SoC...127

Chapter 17: Troubleshooting.. 136
Error 0x80010135: Path too long (Windows).. 137
Installation Error (2350): Path too long (Windows)...137
OpenOCD Error: timed out while waiting for target halted... 137
Memory Test... 138
OpenOCD error code (-1073741515)..140
OpenOCD Error: no device found..140
OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO...140
OpenOCD Error: target 'fpga_spinal.cpu0' init failed..141
Eclipse Fails to Launch with Exit Code 13... 141
Efinity Debugger Crashes when using OpenOCD... 141
Exception in thread "main".. 142
Unexpected CPUTAPID/JTAG Device ID..143

Chapter 18: API Reference..144
Control and Status Registers..144
GPIO API Calls..147
I2C API Calls..150
I/O API Calls... 160
Core Local Interrupt Timer API Calls.. 162
User Timer API Calls..163
PLIC API Calls... 164
SPI API Calls..166
SPI Flash Memory API Calls... 169
UART API Calls... 173
RISC-V API Calls... 175
Handling Interrupts..176

Chapter 19: Inline Assembly... 179
Introduction...179
Inline Assembly Syntax..180

Operands.. 181
RISC-V Registers...185

Appendix: Required Software for Eclipse (RISC-V SDK).. 188
Install the RISC-V SDK... 189
Install the Java JRE.. 189

Appendix: Launch Eclipse (RISC-V SDK)... 190
Set Global Environment Variables...191

Appendix: Create and Build a Software Project (RISC-V SDK)... 192
Create a New Project.. 192
Import Project Settings (Optional)...192
Enable Debugging.. 193
Build... 193

Appendix: Debug with the OpenOCD Debugger (RISC-V SDK).. 194
Launch the Debug Script..194
Debug.. 195
Debug - Multiple Cores.. 196

Appendix: Re-Generate the Memory Initialization Files Manually...198
Appendix: Import the Debug Configuration.. 199
Appendix: Copy a User Binary to the Flash Device (2 Terminals).. 201
Revision History.. 203

Sapphire RISC-V SoC Hardware and Software User Guide

Introduction

Efinix provides a soft configurable RISC-V SoC, called Sapphire, that you can implement in
Trion® or Titanium FPGAs. This user guide describes how to:
• Build RTL designs using the Sapphire RISC-V SoC using an example design targeting an

Efinix® development board, and how to extend the example for your own application.
• Set up the software development environment using an example project, create your own

software based on example projects, and use the API.

Note: The Sapphire SoC v2.0, released with the Efinity software v2021.2, has significant improvements
from previous versions, and you cannot migrate an existing design to it automatically. Efinix recommends
that you use v2.0 or higher for all new designs. You can continue to use previous versions with the Efinity
software v2021.1. If you want to migrate an existing design to v2.0, refer to Migrating to the Sapphire SoC
v2.0 from a Previous Version on page 125.

Figure 1: Designing Hardware and Software for the Sapphire RISC-V SoC

FPGA

RISC-V SoC

Software

RTL Design

Create your RTL design
in the Efinity software
and then program it into
the FPGA.

Write your C/C++ code
using our Efinity RISC-V
Embedded software IDE,
then copy it to the flash
memory.

Create Hardware
(RTL) Design

Efinity
Software

Create Software Code (C/C++)

Efinity RISC-V
Embedded Software IDE

Learn more: Refer to the Sapphire RISC-V SoC Data Sheet for detailed specifications on the SoC.

VexRiscv RISC-V Core
The Sapphire SoC is based on the VexRiscv core created by Charles Papon. The VexRiscv
core is a 32-bit CPU using the ISA RISCV32I with M, A, F, D, and C extensions, has six
pipeline stages (fetch, injector, decode, execute, memory, and writeback), and a configurable
feature set.

In the Sapphire SoC, the VexRiscv core is user configurable, and can support AXI4 and APB3
bus interfaces and instruction and data caches. The Sapphire SoC VexRiscv core uses Little-
Endian for its memory storage.

The VexRiscv core won first place in the RISC-V SoftCPU contest in 2018.(1)

(1) https://www.businesswire.com/news/home/20181206005747/en/RISC-V-SoftCPU-Contest-Winners-Demonstrate-
Cutting-Edge-RISC-V

www.efinixinc.com v

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=SAPPHIREDS
https://www.businesswire.com/news/home/20181206005747/en/RISC-V-SoftCPU-Contest-Winners-Demonstrate-Cutting-Edge-RISC-V
https://www.businesswire.com/news/home/20181206005747/en/RISC-V-SoftCPU-Contest-Winners-Demonstrate-Cutting-Edge-RISC-V

Sapphire RISC-V SoC Hardware and Software User Guide

Efinity® RISC-V Embedded Software IDE
The Efinity® RISC-V Embedded Software IDE is an Eclipse-based Integrated Development
Environment (IDE) powered by Ashling's RiscFree™ IDE for Sapphire SoC. It provides a
complete and seamless environment for RISC-V C and C++ software development.

Features include:

• Eclipse based IDE with full source project creation, edit, build, and debug
• QEMU emulator support for 32-bit RISC-V cores with out-of-box example design
• High-level Peripheral Register viewer
• Control and Status Register (CSR) viewer
• Integrated new project creation process with Board Support Package (BSP) generated in

the Efinity software
• Integrated example program import process with Board Support Package (BSP) generated

in the Efinity software
• Integrated serial terminal for viewing UART data
• FreeRTOS task and queue list debug view
• Debug support for all OpenOCD compliant probes

Figure 2: Efinity RISC-V Embedded Software IDE

www.efinixinc.com vi

Sapphire RISC-V SoC Hardware and Software User Guide

Required Software
To write software for the Sapphire SoC, you need the following tools. The Efinity RISC-V
Embedded Software IDE installer for Windows and Linux operating systems are available in
the Efinity software download page.

Efinity® Software

Efinix® development environment for creating RTL designs targeting Trion®, Titanium, or
Topaz FPGAs. The software provides a complete RTL-to-bitstream flow, simple, easy to use
GUI interface, and command-line scripting support.
Version: 2021.1 or higher

Efinity RISC-V Embedded Software IDE
The Efinity RISC-V Embedded Software IDE is an Eclipse-based Integrated Development
Environment (IDE) powered by Ashling's RiscFree™ IDE for Sapphire SoC and provides
a complete provides a complete, seamless environment for RISC-V C and C++ software
development. The RISC-V IDE includes the following packages:

Disk space required: 2.4 GB (Windows), 2.5 GB (Linux)

xPack GNU RISC-V Embedded GCC—Open-source, prebuilt toolchain from the xPack
Project.
Version: 8.3.0-2.3
Disk space required: 1.53 GB (Windows), 1.5 GB (Linux)

OpenOCD Debugger—The open-source Open On-Chip Debugger (OpenOCD) software
includes configuration files for many debug adapters, chips, and boards. Many versions of
OpenOCD are available. The Efinix RISC-V flow requires a custom version of OpenOCD
that includes the VexRiscv 32-bit RISC-V processor.
Version: 0.11.0 (20240413)
Disk space required: 17.4 MB (Windows), 16.3 MB (Linux)

Note: Efinix recommends you use the latest version of Efinity RISC-V Embedded Software IDE to ensure
compatibility with Efinity software.

www.efinixinc.com vii

https://www.efinixinc.com/support/efinity.php

Sapphire RISC-V SoC Hardware and Software User Guide

Required Hardware
• Trion® T120 BGA324 Development Board, Titanium Ti60 F225 Development Board, or

Titanium Ti180 J484 Development Board
• 5 or 12 V power cable
• Micro-USB cable
• Computer or laptop
• (Optional) USB to UART converter module for the (2)

• Trion® T120 BGA324 Development Board(3)

• (Optional) FTDI mini-module or FTDI chip cable, C232HM-DDHSL-0, if you want to
use the OpenOCD debugger and Efinity® Debugger simultaneously

Note: Some of the software examples provided with the SoC use a UART terminal to display messages.
See Set Up a USB-to-UART Module (Trion) on page 114 and Using the On-board UART (Titanium) on
page 113 for more information.

(2) The Titanium Ti60 F225 Development Board has an on-board USB-to-UART converter and does not require a separate
module.

(3) The Titanium Ti60 F225 Development Board and Titanium Ti180 J484 Development Board have an on-board USB-to-
UART converter and do not require a separate module.

www.efinixinc.com viii

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 1

Install Software and SoC
Contents:

• Install the Efinity Software
• Install the Efinity RISC-V Embedded Software IDE

Install the Efinity Software
If you have not already done so, download the Efinity software from the Support Center
and install it. For installation instructions, refer to the Efinity Software Installation User
Guide.

Warning: Do not use spaces or non-English characters in the Efinity path.

www.efinixinc.com 9

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL

Sapphire RISC-V SoC Hardware and Software User Guide

Install the Efinity RISC-V Embedded Software
IDE
Download the installer file in Efinity RISC-V Embedded Software IDE <version> from
the Support Center.

To install the Efinity RISC-V Embedded Software IDE:

Windows

1. Execute the installer file efinity-riscv-ide-<version>-windows-x64.exe to launch the installer.
2. Follow the steps in the setup process.
3. Install Efinity RISC-V IDE in a preferred directory or use the default directory c:\Efinity\efinity-riscv-ide-

<version>\. Example, c:\Efinity\efinity-riscv-ide-2022.2.3\.

Linux

1. Execute the installer file efinity-riscv-ide-<version>-linux-x64.run or run the installer using ./<installer
run file>. Run the executable script with command:

chmod +x <installer run file>

2. Select either to install the RISC-V IDE for the current user or multiple users.
3. Follow the steps in the setup wizard.
4. Install Efinity RISC-V IDE in a preferred directory or use the default directory /home/user/efinity/efinity-

riscv-ide-<version>. Example, /home/user/efinity/efinity-riscv-ide-2022.2.3/.

Note:

• Efinix provides FREE licences for the Efinity software. Alternatively, when you buy a development
kit, you also get a software license and one year of upgrades. After the first year, you can request a free
maintenance renewal. The Efinity software is available for download from the Support Center. To get
your free license, create an account, login, and then go to the Efinity page to request your license.

• Efinix recommends you use the latest version of Efinity RISC-V Embedded Software IDE to ensure
compatibility with Efinity software.

www.efinixinc.com 10

https://www.efinixinc.com/support/index.php

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 2

IP Manager
Contents:

• Customizing the Sapphire SoC
• SoC Configuration Guideline
• Modify the Bootloader

The Efinity® IP Manager is an interactive wizard that helps you customize and generate
Efinix® IP cores. The IP Manager performs validation checks on the parameters you set to
ensure that your selections are valid. When you generate the IP core, you can optionally
generate an example design targeting an Efinix development board and/or a testbench. This
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
core with different parameters, or the same IP core for different projects.

The IP Manager consists of:
• IP Catalog—Provides a catalog of IP cores you can select. Open the IP Catalog using the

toolbar button or using Tools > Open IP Catalog.
• IP Configuration—Wizard to customize IP core parameters, select IP core deliverables,

review the IP core settings, and generate the custom variation.
• IP Editor—Helps you manage IP, add IP, and import IP into your project.

Generating Sapphire SoC with the IP Manager
The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose an IP core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note: You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed information
on the options, refer to the IP core's user guide or on-line help.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example
design targeting an Efinix® development board and/or testbench. For SoCs, you can also
optionally generate embedded software example code. These options are turned on by
default.

6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.
8. In the Review configuration generation dialog box, click Generate. The Console in the

Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

www.efinixinc.com 11

Sapphire RISC-V SoC Hardware and Software User Guide

Generated RTL Files
The IP Manager generates these files and directories:
• <module name>_define.vh—Contains the customized parameters.
• <module name>_tmpl.v—Verilog HDL instantiation template.
• <module name>_tmpl.vhd—VHDL instantiation template.
• <module name>.v—IP source code.
• settings.json—Configuration file.
• <kit name>_devkit—Has generated RTL, example design, and Efinity® project targeting

a specific development board.
• Testbench—Contains generated RTL and testbench files.

Note: For encrypted IP, the ModelSim software version of 2022.4 or later is
required for successful simulation. For other simulators, the latest version is
required.

Note: Refer to the IP Manager chapter of the Efinity Software User Guide for more information about the
Efinity IP Manager.

Generated Software Code
If you choose to output embedded software, the IP Manager saves it into the <project>/
embedded_sw/<SoC module> directory.
• bsp—Board specific package.
• config—Has the Eclipse project settings file and OpenOCD debug configuration settings

files for Windows.
• config_linux—Has the Eclipse project settings file and OpenOCD debug configuration

settings files for Linux.
• software—Software examples.
• tool—Helper scripts.
• cpu<n>.yaml—CPU file for debugging where <n> is the core number, up to 4 cores.

Instantiating the SoC

The IP Manager creates these template files in the <project>/ip/<module name> directory:
• <module name>.v_tmpl.sv is the Verilog HDL module.
• <module name>.v_tmpl.vhd is the VHDL component declaration and instantiation

template.

To use the IP, copy and paste the code from the template file into your design and update the
signal names to instantiate the IP.

www.efinixinc.com 12

Sapphire RISC-V SoC Hardware and Software User Guide

Important: When you generate the IP, the software automatically adds the module file (<module
name>.v) to your project and lists it in the IP folder in the Project pane. Do not add the <module name>.v
file manually (for example, by adding it using the Project Editor); otherwise the Efinity® software will issue
errors during compilation.

IP Manager adds generated
IP to the IP folder (and

your project) automatically

Do not manually add
IP to the Design folder

www.efinixinc.com 13

Sapphire RISC-V SoC Hardware and Software User Guide

Customizing the Sapphire SoC
There are two options available for the Sapphire SoC, which provides for different needs and
applications:
• Standard—Best performance. This option utilizes more area of resources to achieve the

best performance. Advanced features are only available in this option.
• Lite—Smallest area. This option utilizes a small area of resources by limiting the Sapphire

SoC performance. Advanced features are not available in this option.

You customize the Sapphire SoC using the IP Configuration wizard. The parameters are
arranged on tabs so you can click through them more easily.

There will be differences in the SOC and Cache/Memory tabs depending on the chosen
option, either Standard or Lite, but all the other tabs are the same across both options.

Table 1: Sapphire SoC Tab Parameters

Parameter Options Description Availability

Option Standard,
Lite

This option in the Sapphire SoC provides for different
applications. Default: Standard

Standard and
Lite

Core Number 1 - 4 Enter the number of CPU cores.
Default: 1

Standard only

Frequency (MHz) 20 - 400 Enter the frequency in MHz.
Default: 100

Standard and
Lite

Peripheral Clock On, off Choose whether you want to run a dedicated clock for
the APB3 slaves (SPI, I2C, GPIO, UART, and user timer)
and AXI4 slave.

Standard and
Lite

Peripheral Clock
Frequency (MHz)

20 - 200 Enter the peripheral clock frequency in MHz. Standard and
Lite

Cache On, off Choose whether you want to include I$ and D$ caches. Standard and
Lite

Data Cache On, off Choose whether to include D$ cache.
This parameter is only available when Cache parameter
is turned on. You may choose to include I$ cache only or
include both I$ and $D caches.

Lite only

Custom
Instruction

On, off Choose whether to enable the custom instruction
interface.

Standard only

Linux Memory
Management
Unit

On, off Choose whether to enable the Linux MMU. Standard only

Floating-point
Unit

On, off Choose whether to enable the FPU. Standard only

Floating-point
Extension

F-Extension
Only, F and
D-Extension

Choose whether to enable single or double precision
for FPU.

Standard only

Atomic
Extension

On, off Choose whether to enable atomic extension instruction
support.
If you enable the Linux MMU, this option must be
enabled and is turned on by default.

Standard only

www.efinixinc.com 14

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Options Description Availability

Compressed
Extension

On, off Choose whether to enable compressed instruction
support.

Standard only

Multiplication
and Division

On, off Choose whether to enable multiplication and division,
which is the RISC-V M extension.

Note: This feature is turned on in Standard
option.

Lite only

Barrel Shifter On, off Choose whether to include the barrel shifter, which
is a module that can perform shift operations on any
number of bits within a single clock cycle.

Note: This feature is turned on in Standard
option.

Lite only

CSR
Optimization

On, off Choose whether to minimize the number of RISC-V
Control and Status Registers.

Note: This feature is turned off when the RISC-
V standard debug interface is enabled. This
feature is also turned off in Standard option.

Lite only

Important: When running the SoC at high frequencies, Efinix recommends that you use the TIMING_1
place and route optimization. To set this option:
1. Open the Project Editor.
2. Click the Place and Route tab.
3. Double-click the Value cell for --optimization_level.
4. Choose TIMING_1.
5. Click OK and then compile.

www.efinixinc.com 15

Sapphire RISC-V SoC Hardware and Software User Guide

Table 2: Sapphire Cache/Memory Tab Parameters

Parameter Options Description Availability

Data Cache Way 1, 2, 4, 8 Choose the number of ways for the data cache.
Default: 1

Standard and
Lite

Cache Size 1 KB, 2 KB,
4 KB, 8 KB,

16 KB, 32 KB

Choose the size of the data cache.
Default: 4 KB

Standard and
Lite

Instruction
Cache Way

1, 2, 4, 8 Choose the number of ways for the instruction cache.
Default: 1

Standard and
Lite

Cache Size 1 KB, 2 KB,
4 KB, 8 KB,

16 KB, 32 KB

Choose the size of the instruction cache.
Default: 4 KB

Standard and
Lite

External Memory
Interface

On, off On: By default. Instantiate the external memory
interface.
Off: Do not use the external memory interface.

Standard and
Lite

AXI Interface
Type

On, off On: Use an AXI4 full duplex interface.
Off: By default. Use an AXI3 half duplex interface.

Standard and
Lite

AXI Interface
Optimization

Optimize
for area,

Optimize for
bandwidth

Optimize for area: Smaller area but lower bandwidth.
Optimize for bandwidth: Full bandwidth but uses more
resources.

Lite only

External Memory
Clock Domain

Unified System
Clock, Dedicated

Memory Clock

Unified System Clock: The external memory interface
will use the system clock (io_systemClk). This will utilize
lesser resource as no CDC logic is required.

Note: By sharing the system clock, the
frequency of the system clock will be limited by
the slowest domain in the system.

Dedicated Memory Clock: The external memory
interface will use the dedicated memory clock
(io_memoryClk). This will utilize more resource.

Lite only

External Memory
Data Width

32, 64, 128,
256, 512

Choose the data width for the AXI interface.
Default: 128

Standard and
Lite

External Memory
AXI ID Width

6, 8 Choose the width of AXI ID. Standard and
Lite

External Memory
AXI3 Address
Size

4 MB, 8 MB,
16 MB, 32 MB,

64 MB, 128 MB,
256 MB, 0.5 GB,

1 GB, 1.5 GB,
2 GB, 2.5 GB,
3 GB, 3.5 GB

Choose the address size for the AXI interface.
Default: 3.5 GB

Standard and
Lite

On-Chip RAM
Size

1 KB, 2 KB, 4
KB, 8 KB, 16 KB,

24 KB, 32 KB,
48 KB, 64 KB,
80 KB, 96 KB,

128 KB, 144 KB,
160 KB, 192 KB,
224 KB, 256 KB,
384 KB, 512 KB

Choose the size of the internal BRAM.
Default: 4 KB

Standard and
Lite

www.efinixinc.com 16

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Options Description Availability

Custom On-Chip
RAM Application

On, off On: Overwrite the default SPI flash bootloader with the
user application.
Off: By default. Use the default SPI flash bootloader.

Standard and
Lite

User Application
Path

– Enter the path to your target user application. The file
must be in .hex format.

Standard and
Lite

Table 3: Sapphire Debug Tab Parameters

Parameter Options Description

Connection
Type

Standalone, Chain Choose whether you want to include the
chain debug feature to the SoC. This allows
the connection of multiple devices for JTAG
debugging with a daisy-chain. Else, select as
standalone.
Standalone: By default. The debug feature is
available for the standalone SoC only.
Daisy-chain: The debug feature extends to
multiple devices or SoC in the chain. Once
enabled, you can debug multiple devices with
a single debugger.

RISC-V
Standard
Debug

On, off Choose whether to enable the RISC-V standard
debug interface.
On: Use the debug module that follows the
RISC-V External Debug Support Version
0.13. (Recommended)(4)(5)

Off: Use debug module that is customized for
the VexRiscv core.

Hardware
Breakpoint

0 - 4 Number of hardware breakpoints. This
hardware breakpoint is a program type
breakpoint.
Only applicable when the RISC-V Standard
debug is turned on.

Additional Tap
Devices (Max)

1 - 8 The maximum number of extra devices in the
chain. This option is only applicable when you
are using daisy-chain connection type.
Default: 1

Soft Debug
Tap

On, off Choose whether you want to include a soft
debug TAP for debugging.
Off: By default. The SoC uses the JTAG User
TAP interface block to communicate with the
OpenOCD debugger.
On: The SoC has a soft JTAG interface to
communicate with the OpenOCD debugger.
You need to use this setting if you want to use
the soft JTAG interface instead of the JTAG
User TAP.

(4) RISC-V standard debug is supported starting from Efinity 2023.1 or later. Debugging with RISC-V standard debug is only
supported by Efinity RISC-V Embedded Software IDE version 2023.1 or later.

(5) The RISC-V standard debug requires connecting the hard JTAG UPDATE and RESET signals. Before Efinity 2023.1, these
signals were unconnected. However, with Efinity 2023.1, the generated example designs automatically connect both
signals.

www.efinixinc.com 17

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Options Description

FPGA Tap Port 1, 2, 3, 4 Choose which Tap port you want to target with
the OpenOCD debugger. This option is only
applicable when you are using the JTAG User
Tap interface block to communicate with the
OpenOCD debugger.

Target Board/
Cable/Module

Trion T120 BGA324 Development Board
Trion T120 BGA576 Development Board
Trion T20 BGA256 Development Board

Xyloni
Titanium Ti60 F225 Development Board

Titanium Ti180 J484 Development Board
C232HM-DDHSL-0 (Soft debug)

FTDI Module FT2232H (Soft debug)
FTDI Module FT4232 (Soft debug)

ISX-DLC_EF001 Programming Cable
Custom

Choose which board you want to target with
OpenOCD.
Choose Custom to target your own board.

IDE Selection Legacy Eclipse IDE (OpenOCD v0.10)
Efinity RISC-V IDE (OpenOCD v0.11)

Choose which debug script format you want to
generate. This selection allows you to roll back
to target the Legacy Eclipse IDE. By default,
Efinity RISC-V Embedded Software IDE is
targeted.

Custom Target
Board

– Enter the name of your board.

Application
Region Size

124KB, 252KB, 508KB, 1MB, 2MB, 4MB,
8MB, 16MB, 32MB, 64MB, 128MB, 256MB

Modify the linker script to outline the region
for the user application. This option is only
applicable for SoCs with external memory. For
SoCs with internal memory, the region size is
determined by the on-chip RAM size.

Application
Stack Size

1KB, 2KB, 4KB, 8KB, 16KB, 32KB, 64KB,
128KB, 256KB, 512KB, 1MB, 2MB,

4MB, 8MB, 16MB, 32MB, 64MB, 128MB

Modify the linker script to specify the
application stack size. This option is only
applicable for SoCs with external memory. For
SoCs with internal memory, the region size is
automatically set to 1/8 of the on-chip RAM
size.

OpenOCD
Debug Mode

Turn on by default
Turn off by default

Choose whether you want software
applications to run in debug mode by default
or not. See Debug with the OpenOCD
Debugger on page 55 for more details.

Table 4: Sapphire UART Tab Parameters
Where n is 0, 1, or 2

Parameter Options Description

UART n On, off On: Instantiate the interface.
Off: Do not use the interface.

UART n Interrupt ID 1 - 36 Choose the interrupt ID for the UART. The IDs default to:
UART 0: 1
UART 1: 2
UART 2: 3

UART n FIFO Depth 64, 128, 256 Specify the depth of UART’s FIFO.

www.efinixinc.com 18

Sapphire RISC-V SoC Hardware and Software User Guide

Table 5: Sapphire SPI Tab Parameters
Where n is 0, 1, or 2.

Parameter Options Description

SPI n On, off On: Instantiate the interface.
Off: Do not use the interface.

SPI n Interrupt ID 1 - 36 Choose the interrupt ID for the SPI. The IDs default to:
SPI 0: 4
SPI 1: 5
SPI 2: 6

SPI n Data Width 8 - 16 Configure the data width for the SPI interface.

Note: Only applicable for SPI 1 and SPI 2.

SPI n Chip Select
Width

1 - 8 Choose the number of Chip select required for the SPI interface.

Note: Only applicable for SP1 and SP2.

SPI n FIFO Depth 64, 128, 256,
512, 1024, 2048

Specify the depth of SPI’s FIFO.

Table 6: Sapphire I2C Tab Parameters
Where n is 0, 1, or 2.

Parameter Options Description

I2C n On, off On: Instantiate the interface.
Off: Do not use the interface.

I2C n Interrupt ID 1 - 36 Choose the interrupt ID for the I2C. The IDs default to:
I2C 0: 8
I2C 1: 9
I2C 2: 10

Table 7: Sapphire GPIO Tab Parameters
Where n is 0 or 1.

Parameter Options Description

GPIO n On, off On: Instantiate the interface.
Off: Do not use the interface.

GPIO n Bit Width 1, 2, 4, 8, 16, 32 Choose the number of pins for the GPIO.
Default: 4 (GPIO 0), 8 (GPIO 1)

GPIO n Interrupt ID 0 1 - 36 Choose the interrupt ID for the GPIO. The IDs default to:
GPIO 0: 12
GPIO 1: 14

GPIO n Interrupt ID 1 1 - 36 Choose the interrupt ID for the GPIO. The IDs default to:
GPIO 0: 13
GPIO 1: 15

www.efinixinc.com 19

Sapphire RISC-V SoC Hardware and Software User Guide

Table 8: Sapphire APB3 Tab Parameters
Where n is 0, 1, 2, 3, or 4.

Parameter Options Description

APB Slave Address
Size

4KB, 8KB, 16KB,
32KB, 64KB, 128KB,
256KB, 512KB, 1MB

Choose the APB slave size. This setting applies to all APB slaves.
Default: 64KB

APB3 Slave n On, off On: Instantiate the interface.
Off: Do not use the interface.

Table 9: Sapphire AXI4 Tab Parameters
Where n is 0 or 1.

Parameter Options Description

AXI Slave On, off On: Instantiate the interface.
Off: Do not use the interface.

AXI Slave Size 1 KB, 2 KB, 4 KB, 8
KB, 16 KB, 32 KB, 64
KB, 128 KB, 256 KB,
512 KB, 1 MB, 2 MB,
4 MB, 8 MB, 16 MB,

32 MB, 64 MB,
128 MB, 256 MB

Choose the size of the AXI slave.

AXI Master n On, off On: Instantiate the interface.
Off: Do not use the interface.

AXI Master n Data
Width

32, 64, 128, 256, 512 Choose the width of the AXI master.
Do not specify an AXI master width that is larger than the external
memory data width.

Table 10: Sapphire User Interrupt Tab Parameters
Where n is A, B, C, D, E, F, G, or H.

Parameter Options Description

User n Interrupt On, off On: Instantiate the interface.
Off: Do not use the interface.

User n Interrupt ID 1 - 36 Choose the interrupt ID. The defaults are:
User A Interrupt: 16
User B Interrupt: 17
User C Interrupt: 22
User D Interrupt: 23
User E Interrupt: 24
User F Interrupt: 25
User G Interrupt: 26
User H Interrupt: 27

www.efinixinc.com 20

Sapphire RISC-V SoC Hardware and Software User Guide

Table 11: Sapphire User Timer Tab Parameters
Where n is 0, 1, or 2.

Parameter Options Description

User Timer n On, off On: Instantiate the interface.
Off: Do not use the interface.

User Timer n
Counter Width

12, 16, 32 Choose the counter bit width.
Default: 12

User Timer n
Prescaler Width

8, 16 Choose the prescaler bit width.
Default: 8

User Timer n
Interrupt ID

1 - 36 Choose the interrupt ID. The defaults are:
User Timer 0: 19
User Timer 1: 20
User Timer 2: 21

Table 12: Sapphire Watchdog Timer Parameters

Parameter Option Description

Watchdog Timer On, Off On: Instantiate the interface.
Off: Do not use the interface.

Watchdog Timer Prescaler
Width

8, 16, 24, 32 Choose the prescaler bit width.
Default: 24

Watchdog Timer Counter
Width.

16, 24, 32 Choose the counter bit width.
Default: 16

Watchdog Timer Interrupt ID 1 ~ 36 Choose the interrupt ID.
Default: 32

www.efinixinc.com 21

Sapphire RISC-V SoC Hardware and Software User Guide

Table 13: Sapphire Base Address Tab Parameters

Parameter Options Description

Address Assignment
Method

AUTO, MANUAL AUTO: Automatically assign an address to the enabled
peripherals.
MANUAL: The user can assign addresses to the enabled
peripherals.

External Memory Base
Address

– Displays the base address. You cannot change it.

AXI Slave Base Address –

Peripheral and IO Base
Address

–

Displays the base address when the Address Assignment
Method is set to AUTO.
When the Address Assignment Method is Manual, enter the
base address value. The wizard automatically rounds the value
to 16 MB aligned addresses during IP generation. For example,
0x41234567 is rounded to 0x41000000.

Note: When external memory is disabled and auto
address assignment is used, the AXI slave is assigned
to 0x0100_0000 to preserve the Sapphire memory
space. However, you can set the desired base address
in manual address assignment mode, as long as it
does not overlap with other address regions.

UARTn Address Offset –

SPIn Address Offset –

I2Cn Address Offset –

GPIOn Address Offset –

User Timern Address
Offset

–

Displays the base address when the Address Assignment
Method is set to AUTO.
When the Address Assignment Method is Manual, enter base
address value. The wizard automatically rounds the value to
4 KB aligned addresses during IP generation. For example,
0x41230 is rounded to 0x41000.

APB3 Slave n Address
Offset

– Displays the base address when the Address Assignment
Method is set to AUTO.
When the Address Assignment Method is Manual, enter
base address value. The wizard automatically rounds the
value to APB sized aligned addresses during IP generation.
For example, if the APB size is 64 KB, 0x23456 is rounded to
0x20000.

On-Chip RAM Base
Address

– Displays the base address. You cannot change it.

www.efinixinc.com 22

Sapphire RISC-V SoC Hardware and Software User Guide

SoC Configuration Guideline
Sapphire SoC is highly adaptive to different use cases. It is configurable to get the best balance
between performance and resources. The following flow chart is a simple guideline to help
you choose the configuration that suits your needs.

Figure 3: Sapphire Soc Configuration Guideline

Start

Enable External
Memory Interface

Enable FPU

yes

no

Does your application
requires to store large data set /

compiled binary?

yes

Enable other peripherals according to your application needs

yes

no

no

Does your application
requires good overall computing

performance?

yes

no

Enable Cache

Does your application
requires self-defined instruction

sets?

Enable Custom
Instruction

Does your application
requires complex floating-point

computation?

Does your application
requires to run

Linux?

Enable Linux MMU

End

yes

Disable External
Memory Interface

Disable Cache

Does your application
requires self-defined instruction

sets?

Enable Custom
Instruction

yes

no

no

(1)

(2)

(4)

(3)(4)

[4]

Notes :

2. Enabling the cache controller increases the
 efficiency of processing the instructions but
 consumes more RAM blocks.
3. The SoC calculates faster and more efficiently
 in floating-point computing if FPU is enabled,
 but it consumes more FPGA LUTs and
 RAM blocks.

 4. When enabling custom instructions, the FPU
 and the Linux impact the performance.fMAX

1. Using the SoC with an external memory
 interface but without a cache sharply
 impacts the SoC’s overall performance.

www.efinixinc.com 23

Sapphire RISC-V SoC Hardware and Software User Guide

Modify the Bootloader
When you generate the Sapphire SoC, the IP Manager creates a pre-built bootloader .bin to
target the on-chip RAM size you selected. If you assigned the peripheral addresses manually,
you need to create a custom bootloader according to the following instructions.

Learn more: You need the embedded software example code to make these changes; if you have not
already done so, generate it.

Note: The pre-build bootloader binaries only use a single data line SPI. To utilize dual or quad data line
SPI, refer to Modify the Bootloader Software to Enable Multi-Data Lines on page 26.

Modify the Bootloader Software to Extend the External Memory Size
First you need to modify the bootloader code:

1. Open the bootloaderConfig.h file in the embedded_sw/<SoC module>/bsp/efinix/
EfxSapphireSoc/app directory.

2. Change the #define USER_SOFTWARE_SIZE parameter for the new on-chip RAM
size and save.

3. If you are using the MX25 flash device (e.g., Ti180J484 development kit), incorporate
the following step into the bootloader application's makefile. Add CFLAGS+=-
DMX25_FLASH before the line LDSCRIPT?=${BSP_PATH}linker/bootloader.Id

Note: The addition of CFLAGS+=-DMX25_FLASH ensures that the necessary
commands specific to the MX25 flash device are included in your build process.

4. In Efinity RISC-V Embedded Software IDE, import standalone/bootloader project.
Build the project to generate new bootloader.hex file.

Second, you update and re-generate the SoC in the IP Manager to point to your new
bootloader.hex and change the application region size. The default maximum size is 124
KB.

1. In the Sapphire IP wizard, go to the Cache/Memory tab.
2. Turn on the Custom On-Chip RAM Application option.
3. Click the Browse button for the to select the new bootloader.hex you created in the

previous set of steps.
4. Generate the SoC.

www.efinixinc.com 24

Sapphire RISC-V SoC Hardware and Software User Guide

Modify the Bootloader Software without External Memory Enabled
First, you need to modify the bootloader linker script:

1. Open the bootloader.ld file in the embedded_sw/<SoC module>/bsp/efinix/
EfxSapphireSoc/linker directory.

2. Replace the MEMORY and PHDRS code with the following code. The
<bootloader_address> should be 0xF9000000 + (<memory size>-1024), where
<memory size> is your SoC's on-chip RAM size.

MEMORY
{
 start (wxai!r) : ORIGIN = 0xF9000000, LENGTH = 512
 ram (wxai!r) : ORIGIN = <bootloader_address>, LENGTH = 1024
}

PHDRS
{
 start PT_LOAD;
 ram PT_LOAD;
}

Second you need to modify the bootloader code:

1. Open the bootloaderConfig.h file in the embedded_sw/<SoC module>/bsp/efinix/
EfxSapphireSoc/app directory.

2. Change the #define USER_SOFTWARE_SIZE parameter for the new on-chip RAM
size and save.

3. If you are using the MX25 flash device (e.g., Ti180J484 development kit), incorporate
the following step into the bootloader application's makefile. Add CFLAGS+=-
DMX25_FLASH before the line LDSCRIPT?=${BSP_PATH}linker/bootloader.Id

Note: The addition of CFLAGS+=-DMX25_FLASH ensures that the necessary
commands specific to the MX25 flash device are included in your build process.

Note: If the new compiled bootloader does not fit into the allocated RAM, enable the following
optimization in the makefile; DEBUG?=no, BENCH?=yes. Refer to Optimization Settings on page 44.

In Efinity RISC-V Embedded Software IDE, import standalone/bootloader project. Build
the project to generate new bootloader.hex file.

www.efinixinc.com 25

Sapphire RISC-V SoC Hardware and Software User Guide

Modify the Bootloader Software to Enable Multi-Data Lines
Before you can utilize the multi-data lines SPI in your bootloader, verify whether your
board's flash drive supports Dual or Quad I/O modes.

In the Efinity RISC-V Embedded Software IDE example design, data ports 0 and 1 are
exclusively connected. If you intend to use the Quad SPI for data transfer, you must establish
connections for data ports 2 and 3. The following table shows the number of connected data
lines interfacing with the respective FPGAs and flash devices.

Table 14: Multi-Data Lines Interface with FPGAs and Flash Devices

Development Kit Flash Device Number of Data Lines Connected

T8BGA81 W25Q80DLSNIG 2

T20BGA256 W25Q32JVSSIQ 2

T120BGA324 W25Q128JVSIQ 4

T120BGA576 W25Q128JVSIQ 4

Xyloni W25Q128JVSIM 2

Ti60F225 W25Q64JWSSIQ 2

Ti180J484/ Ti180M484/ Tz170J484 MX25U25645GZ4I00 4

In the bootloaderConfig.h file, you can define the configurations by selecting from the
various data line modes:
• SINGLE_SPI: Single data line
• DUAL_SPI: Dual data line
• QUAD_SPI: Quad data line

#define SINGLE_SPI 1 //define DUAL_SPI for dual data SPI or QUAD_SPI for quad data SPI

void bsp Main() {
#ifndef SIM
 spiFlash_init(SPI, SPI_CS);
 spiFlash_wake(SPI, SPI_CS);
 spiFlash_exit4ByteAddr(SPI, SPI_CS);
#ifdef SINGLE_SPI
 spiFlash_f2m(SPI, SPI_CS, USER_SOFTWARE_FLASH, USER_SOFTWARE_MEMORY,
 USER_SOFTWARE_SIZE);
#elif DUAL_SPI
 spiFlash_f2m_dual(SPI, SPI_CS, USER_SOFTWARE_FLASH, USER_SOFTWARE_MEMORY,
 USER_SOFTWARE_SIZE); //dual data line half duplex
#elif QUAD_SPI
 spiFlash_f2m_quad(SPI, SPI_CS, USER_SOFTWARE_FLASH, USER_SOFTWARE_MEMORY,
 USER_SOFTWARE_SIZE); //quad data line full duplex
#else
 #error "You must either define SINGLE_SPI to use single data line SPI, DUAL_SPI to use
 dual data line SPI or QUAD_SPI to use quad data line SPI."
#endif
#endif
 void (*userMain)() = (void (*)())USER_SOFTWARE_MEMORY;
 #ifdef SMP
 smp_unlock(userMain);
 #endif
 userMain();
}

Note: If the flash device is MX25 (from Ti180J484 development kit), add CFLAGS+=-DMX25_FLASH
before the LDSCRIPT?=${BSP_PATH}linker/bootloader.Id into the bootloader application's makefile.
Defining the MX25 includes the required commands specific to the MX25 flash device.

www.efinixinc.com 26

Sapphire RISC-V SoC Hardware and Software User Guide

Updating Bootloader with Efinity BRAM Initial Content
Updater
The Efinity BRAM Initial Content Updater provides a convenient way to modify the default
firmware (either bootloader or other application) within the Sapphire SoC on-chip RAM.
This process enables you to update the on-chip RAM initial content without recompiling the
entire project.

To update the on-chip RAM initial content, follow these steps:

1. Compile and locate the .hex file: Compile your new application in Efinity RISC-V
Embedded Software IDE and locate the corresponding .hex file that contains the
compiled code.

2. Generate the Sapphire SoC with the new application: By using the Sapphire SoC IP
Configurator, update the default on-chip RAM application with your new application
compiled in the provious step. You may refer to the Modify the Bootloader Software
to Extend the External Memory Size on page 24 on how to use the Custom On-Chip
RAM Application in the Sapphire SoC IP Configurator. and you are now ready for the
updating process.

Note: You may opt to generate the binaries with the binGen.py helper script
provided manually. Refer to Appendix: Re-Generate the Memory Initialization Files
Manually on page 198.

3. Locate the new binaries for your application: After the Sapphire SoC is generated with your
application, locate the new binaries,
EfxSapphireSoc.v_toplevel_system_ramA_logic_ram_symbol<n>.bin where <n>
is the range from 0 to 3 (up to 7 if FPU extension is enabled).

4. Open the BRAM Initial Content Updater: Click on the BRAM Initial Content Updater
tab to launch the BRAM Initial Content Updater.

Figure 4: Open the BRAM Initial Content Updater
BRAM Initial Content Updater

5. Select Memory Initialization File: In the BRAM Initial Content Updater window, locate
the Sapphire SoC BRAM that you would like to update and click on the *_symbol0.
In the Select Memory Initialization File section, click the Select Memory Initialization
tab. Browse to the updated

EfxSapphireSoc.v_toplevel_system_ramA_logic_ram_symbol<n>.bin and click Open.

www.efinixinc.com 27

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 5: Select Memory Initialization File

Select
Memory
Initialization

6. Update the BRAM: Click on the Update Memory Content tab to update the symbol0
BRAM with the new application symbol0 binary.

Figure 6: Update the BRAM with New Application

Update Memory Content

7. Update the remaining BRAM: Repeat step 5 and 6 for all the available symbol files.
Update the BRAM with the corresponding binary. For example, update *_ram_symbol2
BRAM with EfxSapphireSoc.v_toplevel_system_ramA_logic_ram_symbol2.bin
binary file.

www.efinixinc.com 28

Sapphire RISC-V SoC Hardware and Software User Guide

8. Generate the new bitstream: Click on the Regenerate Bitstream icon to regenerate the
bitstream. The generated new bitstreams are located in the outflow folder.

Figure 7: Generate the New Bitstream

Regenerate Bitstream

Note: For more information on the Efinity BRAM Initial Content Updater and its application, see Efinity
Software User Guide.

www.efinixinc.com 29

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 3

Program the Board with the Sapphire RTL
Design

Contents:

• About the Example Design
• Enable the On-Board 10 MHz Oscillator (T120 BGA324 Board)
• Enable the LPDDR4x Memory (Ti180 J484 Board)
• Installing USB Drivers
• Program the Development Board

Before working with software code, Efinix recommends that you program your board with
an RTL design that instantiates the Sapphire SoC. When you generate the Sapphire SoC with
the IP Manager, you can optionally generate an example Efinity® project and bitstream file to
get you started quickly.

About the Example Design
This example targets Trion and Titanium development boards:

• Trion® T120 BGA324 Development Board—The RTL design files are in the
T120F324_devkit directory.

• Titanium Ti60 F225 Development Board—The RTL design files are in the
Ti60F225_devkit directory.

• Titanium Ti180 J484 Development Board—The RTL design files are in the
Ti180J484_devkit directory.

• Topaz Tz170 J484 Development Board —The RTL design files are in the
Tz170J484_devkit directory.

When you generate the IP core, the IP Manager creates the example design (PLL settings,
SDC timing constraints, and I/O assignments) using the settings you chose in the wizard,
with a few exceptions:
• For the Trion board, the example design only supports external memory widths of 128

and 256 bits because the DDR controller only supports these widths. Therefore, do not
choose 32 or 64 bits for the external memory.

• The example design automatically connects UART0, SPI0, I2C0, GPIO0, the soft TAP
pins, and the PLL source clock pins to top-level ports, and it assigns I/O pins to them
(if they are enabled). If you add more of these peripherals, you need to connect them
manually and create the I/O assignments for them.

• The example design uses PLL settings that look for the best effort multiplier and divider
values.

Note: The following description is for the example design using the default settings.

This example writes to and reads from the development board's memory module using the
AXI interface:

• For the Trion® T120 BGA324 Development Board, the design uses the board's LPDDR3
DRAM module.

www.efinixinc.com 30

Sapphire RISC-V SoC Hardware and Software User Guide

• For the Titanium Ti60 F225 Development Board, the design uses the board's HyperRAM
module.

• For the Titanium Ti180 J484 Development Board and Topaz Tz170 J484 Development
Board , the design uses the board's LPDDR4/LPDDR4x DRAM module.

The Sapphire SoC is configured for:
• 100 MHz frequency
• External memory interface is enabled with a width of 128 and size of 3.5 GB
• Caches are enabled with both Data Cache and Instruction Cache set to one way with

cachesize of 4 KB
• 4KB on-chip RAM size
• Soft Debug Tap is disabled
• UART 0 is enabled
• SPI 0 is enabled
• I2C 0 is enabled
• GPIO 0 is enabled
• APB3 0 is enabled
• AXI4 Slave is enabled
• AXI Master 0 is enabled
• User interrupt A is enabled

Figure 8: Example Design Block Diagram

Memory
Checker

Timer

AXI4
Master

APB3
Slave

Debug

RISC-V
CPU

AXI3/
AXI4

Memory
Controller

Memory
Module

FPGA

RISC-V SoC

JTAG

PLL
GPIO

UART

memoryCheckerPass

FTDI JTAG TAP

pll_refclk LED

UART

SPI Flash

I2C
PMOD or

P3 Header

AXI4
Slave

Table 15: Example Design Implementation

FPGA Logic +
Adders

Flipflops Multipliers
or DSP
Blocks

Memory
Blocks

fMAX (MHz) Language Efinity
Version

T120
BGA324 C4

8,830 8,919 4 70 107 Verilog HDL 2023.1

Ti60
F225 C4

11,178 9,973 4 82 180 Verilog HDL 2023.1

Ti180
J484 C4

12,213 15,866 4 100 146 Verilog HDL 2023.1

www.efinixinc.com 31

Sapphire RISC-V SoC Hardware and Software User Guide

Note: All example designs are constrained with a 100 MHz system clock.

Enable the On-Board 10 MHz Oscillator (T120
BGA324 Board)
For the Trion® T120 BGA324 Development Board, the SoC design uses the on-board
10 MHz oscillator. To enable it, add a jumper to connect pins 2 and 3 on header J10.

Figure 9: Connect Pins 2 and 3 on J10
J10

Jumper

10 MHz Oscillator

SMA Connector

GPIOR_188_PLLIN2

Enable the LPDDR4x Memory (Ti180 J484
Board)
For the Titanium Ti180 J484 Development Board, the SoC design uses LPDDR4x settings to
drive the external memory. To enable it, change the jumpers on PT12 and PT15 to connect
pins 1 and 2 to provide 0.6 V to VDDQ and VDDQ_PHY.

Figure 10: Connect Pins 1 and 2 on PT12 and PT15

Jumper

VDDO

2
3
4

VDDO_PHY

2
3
4

PT12

11

PT15

Installing USB Drivers
To program Trion® FPGAs using the Efinity® software and programming cables, you need to
install drivers.

Efinix development boards have FTDI chips (FT232H, FT2232H, or FT4232H) to
communicate with the USB port and other interfaces such as SPI, JTAG, or UART. Refer
to the Efinix development kit user guide for details on installing drivers for the development
board.

Note: If you are using more than one Efinix development board, you must manage drivers accordingly.
Refer to AN 050: Managing Windows Drivers for more information.

www.efinixinc.com 32

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN050

Sapphire RISC-V SoC Hardware and Software User Guide

Installing Drivers on Windows
On Windows, you use software from Zadig to install drivers. Download the Zadig software
(version 2.7 or later) from zadig.akeo.ie. (You do not need to install it; simply run the
downloaded executable.)

Install the driver for the interfaces listed in the following table.

Board Interface to Install Driver

Trion® T120 BGA324 Development Board Install drivers for all interfaces (0 and 1).

Titanium Ti60 F225 Development Board Install drivers for interfaces 0 and 1 only.
Windows automatically installs a driver for
interfaces 2 and 3 when you connect the board
to your computer.

Titanium Ti180 J484 Development Board,
Topaz Tz170 J484 Development Board

Install driver for interface 1 only.

To install the driver:

1. Connect the board to your computer with the appropriate cable and power it up.
2. Run the Zadig software.

Note: To ensure that the USB driver is persistent across user sessions, run the
Zadig software as administrator.

3. Choose Options > List All Devices.
4. Repeat the following steps for each interface. The interface names end with (Interface N),

where N is the channel number.
• Select libusb-win32 in the Driver drop-down list.
• Click Replace Driver.

5. Close the Zadig software.

Note: This section describes the instruction to install the libusb-win32 driver for each interface separately.
If you have previously installed a composite driver or installed using libusbK drivers, you do not need to
update or reinstall the driver. They should continue to work correctly.

Installing Drivers on Linux

The following instructions explain how to install a USB driver for Linux operating systems.

1. Disconnect your board from your computer.
2. In a terminal, use these commands:

> sudo <installation directory>/bin/install_usb_driver.sh
> sudo udevadm control --reload-rules
> sudo udevadm trigger

Note: If your board was connected to your computer before you executed these
commands, you need to disconnect it, then re-connect it.

www.efinixinc.com 33

https://zadig.akeo.ie

Sapphire RISC-V SoC Hardware and Software User Guide

Program the Development Board
When you generate the Sapphire SoC in the IP Manager, you can optionally generate an
example design targeting an Efinix development board. Example designs include a bitstream
file, soc.hex, so you can get started quickly without having to compile the design.

Table 16: Available Example Designs

Board Location

Titanium Ti60 F225 Development Board Ti60F225_devkit

Titanium Ti180 J484 Development Board Ti180J484_devkit

Trion® T120 BGA324 Development Board T120F324_devkit

Topaz Tz170 J484 Development Board Tz170J484_devkit

Download the .hex file to the board using these steps:

Connect the board to your computer using a USB cable.

Learn more: Instructions on how to use the Efinity software and board documentation are available in
the Support Center.

www.efinixinc.com 34

http://www.efinixinc.com/support
http://www.efinixinc.com/support

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 4

Simulate

The IP Manager automatically generates a testbench and top-level file for simulation based on
the settings you made in the wizard, including the top-level file generation, I/O connection
to the testbench, simulation models, and stimulus such as clock and reset. The testbench
bypasses the SPI flash data retrieval step to speed up simulation.

Note: If you manually assign addresses to the peripherals, the default simulation may not function
correctly.

1. Open a terminal.
2. Change to the Testbench directory for your SoC.
3. Set up the Efinity environment:

• Linux: source /<path to Efinity>/bin/setup.sh
• Windows: c:\<path to Efinity>\bin\setup.bat

4. Run the simulation using the default application with the command Python3 run.py.

Note: The default application requires UART 0 to be turned on.

Note: If you want to include the SPI flash retrieval step (requires SPI 0 to be turned
on), run the simulation with the command:

Python3 run.py -f

A successful simulation returns the following messages

0 ---
0 [EFX_INFO]: Start executing helloWorld TEST
0 ---
51315 ---
51315 [EFX_INFO]: Receiving uart data from soc
51315 ---
2121065 ---
2121065 [EFX_INFO]: TEST PASSED
2121065 [EFX_INFO]: Hello World from Efinix!
2121065 ---

To simulate with a different application instead of the default, use the command:

Python3 run.py -b <path to application>/app.bin

When you use a non-default application, the testbench bypasses the default driver and
monitor sequences and displays warning messages.

0 ---
0 [EFX_INFO]: Executing custom binary file...
0 [EFX_WARN]: Skipped testbench default driver and monitor sequences.
0 [EFX_INFO]: Running simulation...

0 ---

You need to develop your own sequence for your application.

www.efinixinc.com 35

Sapphire RISC-V SoC Hardware and Software User Guide

The default simulator is Modelsim or Questasim. To run the simulation with Aldec Riviera
simulator, look for ALDEC_PATH on the top part of run.py, uncomment the line, and set
the path to your Aldec Riviera simulator installation path.

#ALDEC_PATH=Path('PUT', 'YOUR', 'OWN', 'ALDEC', 'PATH')

Then run the simulation command with “tool” argument:

Python3 run.py --tool aldec

www.efinixinc.com 36

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 5

Launch Efinity RISC-V Embedded Software IDE
Contents:

• Sapphire SoC IDE Backward Compatibility
• Launching the Efinity RISC-V Embedded Software IDE
• IDE Launcher from Efinity
• Optimization Settings

Sapphire SoC IDE Backward Compatibility
The Efinity software v2022.2 and higher includes the Efinity RISC-V Embedded software
IDE for developing RISC-V software applications. Previously, you developed software using
the open-source RISC-V SDK. The IDE provides an enhanced environment for developing
embedded applications, and Efinix recommends that all users switch to it. The IDE has these
features and advantages:

• Optimized process for importing projects
— Eliminates redundant steps to import C/C++ Project Settings
— Simplifies the sample projects import process with tick boxes
— Automatically loads the correct C/C++ project settings for both standalone and

FreeRTOS sample programs
• Ability to automate makefile generation for new project creation
• Integrated QEMU emulator for 32-bit RISC-V Core

— Bundled with project examples
— Allows you to debug without hardware

• Flexible workspace directory
— RISC-V IDE allows you to point to your project’s BSP and FreeRTOS Kernel
— Eliminates the need to copy the FreeRTOS Kernel folder to each project's directory,

embedded_sw/<SoC module>/software
• Easier debug experience

— CSR Register View
— Peripheral Register View
— FreeRTOS Queue and Task List View

When you configure your SoC in the Efinity IP Manager, the IDE Selection parameter is
provided in the Debug tab. If you intend to use the open-source Eclipse software in the
RISC-V SDK, select the Legacy Eclipse IDE (OpenOCD v0.10) option. By default, Efinity
RISC-V IDE (OpenOCD v0.11) is selected.

www.efinixinc.com 37

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 11: IDE Selection Parameter in the Debug tab

www.efinixinc.com 38

Sapphire RISC-V SoC Hardware and Software User Guide

Launching the Efinity RISC-V Embedded
Software IDE
Windows

Launch the Efinity RISC-V Embedded Software IDE by double-clicking on the Efinity
RISC-V IDE shortcut available in the efinity-riscv-ide-<version> folder (example:
efinity-riscv-ide-2022.2.3). For easy access, you may transfer the shortcut to the desktop. A
new IDE window opens once the IDE is successfully invoked.

You need to select a workspace directory to store the IDE's preferences, configurations and
temporary information. Follow these steps:

1. Click Browse and select your preffered location.
2. You may click the Recent Workspaces to select a previous workspace.
3. Click Launch.

Linux

Launch the Efinity RISC-V Embedded Software IDE in a Linux environment by double-
clicking the efinity-riscv-ide. Alternatively, you may launch the efinity-riscv-ide in the
terminal. A new IDE window opens once the IDE is successfully invoked.

You need to select a workspace directory to store the IDE's preferences, configurations and
temporary information. Follow these steps:

1. Click Browse and select your preffered location.
2. You may click the Recent Workspaces to select a previous workspace.
3. Click Launch.

Note: You can choose any location for your workspace. If you have selected a folder that does not exist,
the IDE automatically creates a folder for you.

www.efinixinc.com 39

Sapphire RISC-V SoC Hardware and Software User Guide

IDE Launcher from Efinity
Starting from v2025.1, you can launch the RISC-V IDE from Efinity itself. This feature
allows you to easily set-up the workspace and bsp automatically.

Important: The button is activated if there is an Efinity project with Sapphire SoC instantiated. It greys out
if there is no project being opened or no Sapphire SoC IP being instantiated.

Figure 12: IDE Launcher Button

After clicking the button, a dialog pops out. It shows all the installed IDE and BSP, and
detects the IDE installed in the same directory as Efinity, e.g., C:/Efinity/ or /home/efinity.
If multiple IDEs being detected, you must select only one.

Figure 13: Multiple IDE versions Detected

www.efinixinc.com 40

Sapphire RISC-V SoC Hardware and Software User Guide

The IDE Launcher automatically detects the BSP generated after you have instantiated the
Soft or Sapphire SoC.

Figure 14: BSP Detected

www.efinixinc.com 41

Sapphire RISC-V SoC Hardware and Software User Guide

If multiple SoCs are instantiated in the project, e.g., one Sapphire High-Performance SoC and
one Sapphire SoC, all the respective BSPs are shown in the BSP dialog box. Accordingly, you
need to select only one to proceed.

Figure 15: Multiple BSPs Detected

www.efinixinc.com 42

Sapphire RISC-V SoC Hardware and Software User Guide

If there is no SoC IP detected, or the BSP is broken, the BSP paths are empty. In this case,
you must manually point to the BSP target.

Figure 16: No BSP Detected

After clicking Open, the RISC-V IDE is launched without the workspace selection
window. The workspace is created automatically in the embedded_sw\efx_hard_soc or
embedded_sw\<soft soc name>.

There is also an additional file, ideconfig.properties, which is created in the same directory.
This file contains some information to pass into the IDE.

Figure 17: Workspace Created Automatically

Move Project to Other Location or Machine
You must delete the folder.metadata and the file, ideconfig.properties before moving
the projects to another location or machine. This is to prevent the IDE from using the old
workspace after the move to a new location.

www.efinixinc.com 43

Sapphire RISC-V SoC Hardware and Software User Guide

Optimization Settings
OpenOCD uses three environment variables, DEBUG, BENCH, and DEBUG_OG. It is simplest
to set them variables as global environment variables for all projects in your workspace.
Then, you can adjust them as needed for individual projects.

Note: When you configure the SoC in the IP Manager, you can choose whether to turn on the debug
mode by default or not. When you generate the SoC, the setting is saved in the /embedded_sw/bsp/
efinix/EfxSapphireSoc/include/soc.mk file. If you want to change the debug mode, you can change the
setting in the IP Configuration wizard and re-generate the SoC or use the following instructions to add the
variables to your project and change them there.

Choose Window > Preferences to open the Preferences window and perform the following
steps.

1

2

3

4

1. In the left navigation menu, expand C/C++ > Build.
2. Click C/C++ > Build > Environment.
3. Click Add to add the following environment variables:
4. Click Apply and Close.

www.efinixinc.com 44

Sapphire RISC-V SoC Hardware and Software User Guide

Table 17: Environment Settings for Preferences Window

Variable Value Description

DEBUG no Enables or disables debug mode.
no: Debugging is turned off
yes: Debugging is enabled (-g3)

Note: Setting the DEBUG to no prevents you from debugging step
by step in the IDE but saves memory resources.

DEBUG_OG no Enables or disables optimization during debugging.
Use an uppercase letter O not a zero.
no: No optimization for debugging (-O0 setting)
yes: Optimization for debugging (-Og setting)

BENCH no Modify the optimization level when DEBUG is set to no.
no: Optimization for size (-Os)
yes: Optimization for speed (-O3)

Alternatively, you may modify the variable through the projects's makefile similar to how it
is done for coremark demo project.

PROJ_NAME=coremark
STANDALONE = ..
DEBUG=no
BENCH=yes
CFLAGS += -DITERATIONS=2000

SRCS = $(wildcard src/*.c) \
 $(wildcard src/*.cpp) \
 $(wildcard src/*.S) \
 ${STANDALONE}/common/start.S

include ${STANDALONE}/common/bsp.mk
include ${STANDALONE}/common/riscv64-unknown-elf.mk
include ${STANDALONE}/common/standalone.mk

Note: For more information on the optimization settings, refer to https://gcc.gnu.org/onlinedocs/
gcc-8.3.0/gcc/Optimize-Options.html

www.efinixinc.com 45

https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Optimize-Options.html

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 6

Create, Import, and Build a Software Project
Contents:

• Create a New Project
• Import Sample Projects
• Build

After you set up your IDE workspace, you are ready to create a new or import an existing
project and build it. These instructions walk you through the process using the new project
wizard to create a project as well as using the import project wizard to import existing
projects and build it.

Create a New Project
In the Project Explorer:

1. Click Create a Project to open the new project wizard.
2. Select the Efinix Project > Efinix Makefile Project > Next .
In the New Efinix Makefile Project Wizard window:
3. Select either Standalone or FreeRTOS project type. With this selection, the IDE imports

the required header files.
4. Enter your project name. Whitespaces cause error and prevent you to complete the new

project creation.
5. Click on Browse... > Board Support Package (BSP). BSP location is generated by

Efinity when you generate the Sapphire SoC with the IP Manager. Example BSP location:
C:/<project name>/embedded_sw/<ip name>/bsp/.

Note: If the Efinity RISC-V Embedded software IDE is launched from the IDE
Launcher in Efinity software v2025.1 and later, the BSP location is automatically
detected.

6. Select FreeRTOS, browse to the FreeRTOS kernel location. By default, the kernel
location is pointing to the FreeRTOS that comes with package.

7. The new project location shows up.
8. Click Finish.

www.efinixinc.com 46

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 18: Create New Efinix Makefile Project Wizard for Standalone Project

Figure 19: Create New Efinix Makefile Project Wizard for FreeRTOS Project

The new projects are updated in the Project Explorer pane. All required files are imported
automatically. Launch scripts for softTap and ti configurations are generated automatically
based on the debug configuration. Trion.launch and ti.launch are generated if the hard TAP
option is selected for the Sapphire SoC, while softTap.launch is generated if the soft TAP
option is selected. Additionally, the corresponding *_mc.launch files are generated for multi-
core debugging.

www.efinixinc.com 47

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 20: Project Explorer Pane Showing All Projects Created

You can now browse the source files. To build the project, right-click on the project and
select Clean Project > Build Project. The compilation output shows in the Console
window.

Figure 21: Output Console Showing the Newly Generated Standalone Project Built
Successfully

www.efinixinc.com 48

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 22: Output Console Showing the Newly Generated FreeRTOS Project Built
Successfully

www.efinixinc.com 49

Sapphire RISC-V SoC Hardware and Software User Guide

Import Sample Projects
Efinix provides sample projects to help you get started with Sapphire SoC. The sample
projects are generated with the Efinity software. The followings steps explain how to import
existing projects into the IDE:

1. In the Project Explorer, click on Import Projects... to open the Import wizard.
2. In the Import wizard, select Efinix Makefile Project in Efinix Projects and click Next.

Figure 23: Import Wizard

3. In the Import BSP Sample Project Wizard, click Next to browse to the next BSP
location box.

Note: If the Efinity RISC-V Embedded software IDE is launched from the IDE
Launcher in Efinity software v2025.1 and later, the BSP location is automatically
detected.

www.efinixinc.com 50

Sapphire RISC-V SoC Hardware and Software User Guide

4. If you would like to import the FreeRTOS sample projects, browse to the FreeRTOS
kernel location. Turn on Create launch configurations and click Next.

Figure 24: Import BSP Sample Project Wizard

Note: FreeRTOS projects is filtered if the FreeRTOS kernel location is not defined.

The next wizard page shows the Import BSP Sample Project Wizard, all sample projects are
located in the embedded_sw/<soc name>/software are shown. Follow these steps:

1. Turn on the specific project to import that project.
2. You may turn on the sub-category, for example: Free RTOS, to import all the projects

belonging to that particular sub-category.
3. Alternatively, you may click Select all / Deselect all to select or deselect all the projects

available.
4. Click Next.

www.efinixinc.com 51

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 25: Import BSP Sample Project Wizard – List of Projects

Note:

• If you have custom programs that need to be exported to the IDE, you may either copy the programs
into existing folders (FreeRTOS or Standalone) or you can create a folder at the same level as FreeRTOS
and Standalone folders. Automatically, the IDE identifies the folder as a sub-category.

• IDE uses makefile to identify if the folder is considered a project. Ensure that you have a valid makefile
for your custom project.

www.efinixinc.com 52

Sapphire RISC-V SoC Hardware and Software User Guide

The selected sample projects are imported into the listed workspace in the Project Explorer
pane.

Figure 26: Project Explorer Pane showing all the Imported Projects

You can now browse the source files. To build the project, right-click the project name and
select Clean Project > Build Project. The compilation output shows up in the Console
window.

Figure 27: Output Console showing the apb3Demo Standalone Project Built
Successfully

www.efinixinc.com 53

Sapphire RISC-V SoC Hardware and Software User Guide

Build
Choose Project > Build Project or click the Build Project toolbar button. Alternatively,
right-click the project name in Project Explorer > Build Project.

Efinix recommends cleaning your project before building to ensure all files are compiled. To
clean project, right-click on the project in Project Explorer > Clean Project.

The makefile builds the project and generates these files in the build directory:
• <project name>.asm—Assembly language file for the firmware.
• <project name>.bin—Firmware binary file. Download this file to the flash device on

your board using OpenOCD. When you turn the board on, the SoC loads the application
into the RISC-V processor and executes it.

• <project name>.elf—Executable and linkable format. Use this file when debugging with
the OpenOCD debugger.

• <project name>.hex—Hex file for the firmware. (Do not use it to program the FPGA.)
• <project name>.map—Contains the SoC address map.

www.efinixinc.com 54

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 7

Debug with the OpenOCD Debugger
Contents:

• Launch the Debug Script
• Debug
• Debug - Multiple Cores
• Debug - Daisy Chain
• Peripheral Register View
• CSR Register View
• FreeRTOS View
• QEMU Emulator

With the development board programmed and the software built, you are ready to configure
the OpenOCD debugger and perform debugging. These instructions use the axiDemo
example to explain the steps required.

www.efinixinc.com 55

Sapphire RISC-V SoC Hardware and Software User Guide

Launch the Debug Script
With the Efinity software v2022.2 and higher, debugging scripts are available for each
software example in the /embedded_sw/<module>/software/ directory and are
imported into your project when you create a new project or importing existing project into
the workspace. You can use these scripts to launch the debug mode.

Table 18: Debug Configurations

Launch Script Description

axiDemo_trion.launch Debugging software on Trion® development boards.

axiDemo_ti.launch Debugging software on Titanium development boards.

axiDemo_softTap.launch Debugging software on Trion or Titanium development
boards with the soft JTAG TAP interface. For example,
you would need to use the soft TAP if you want to use the
OpenOCD debugger and the Efinity® Debugger at the same
time. (See Using a Soft JTAG Core for Example Designs on
page 121.)

axiDemo_trion_mc.launch Debugging software on Trion® development boards with
multiple cores.

axiDemo_ti_mc.launch Debugging software on Titanium development boards with
multiple cores.

axiDemo_softTap_mc.launch Debugging software on Trion or Titanium development
boards with the soft JTAG TAP interface with multiple cores.
For example, you would need to use the soft TAP if you want
to use the OpenOCD debugger and the Efinity® Debugger
at the same time. (See Using a Soft JTAG Core for Example
Designs on page 121.)

Note:

• The *_mc.launch scripts for SMP debug are generated by the Efinity RISC-V Embedded Software IDE
v2023.1 or later, with the number of cores configured is more than 1 core.

• You may receive TAP ID warnings in the Eclipse console when trying to debug a device with softTap
enabled that is not the Trion T120F324 device. These warnings do not affect the debugging process. To
remove these warnings, see Unexpected CPUTAPID/JTAG Device ID on page 143.

To debug the axiDemo project:

1. Right-click axiDemo > axiDemo_<family>.launch.
2. Choose Debug As > axiDemo > axiDemo_<family>. Efinity RISC-V Embedded

Software IDE launches the OpenOCD debugger for the project.
3. Click Debug.
4. Confirm Perspective Switch window would prompt out. Click Switch to switch from

C/C++ perspective to Debug perspective to start the debug process.

www.efinixinc.com 56

Sapphire RISC-V SoC Hardware and Software User Guide

Debug
After you click Debug in the Debug Configuration window, the OpenOCD server starts,
connects to the target, starts the gdb client, downloads the application, and starts the
debugging session. Messages and a list of VexRiscv registers display in the Console. The
main.c file opens so you can debug each step.

1. Click the Resume button or press F8 to resume code operation.
2. Click Step Over (F6) to do a single step over one source instruction.
3. Click Step Into (F5) to do a single step into the next function called.
4. Click Step Return (F7) to do a single step out of the current function.
5. Double-click in the bar to the left of the source code to set a breakpoint. Double-click a

breakpoint to remove it.
6. Click the Registers tab to inspect the processor's registers including the CSR registers.
7. Click the Memory tab to inspect the memory contents including the Peripheral register

monitors.
8. Click the Suspend button to stop the code operation.
9. Turn on any peripheral in the Peripheral pane to add the peripheral to the Memory

monitor.
10. When you finish debugging, click Terminate to disconnect the OpenOCD debugger.

Figure 28: Perform Debugging

Learn more: For more information on debugging with Eclipse, refer to Running and debugging projects
in the Eclipse documentation.

www.efinixinc.com 57

https://help.eclipse.org/2020-03/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Ftasks%2Fcdt_t_debug_prog.htm

Sapphire RISC-V SoC Hardware and Software User Guide

Debug - Multiple Cores

Debug - Single Core
By default, the OpenOCD debugger always targets the first core, core 0, when debugging. If
your SoC has multiple cores, you can do standalone debugging with a core other than core 0.
This debug method uses the openocdServer debug launch scripts, which are available in the
software/standalone/openocdServer directory. The general procedure is:

1. Create an SoC with more than 1 core.
2. Import your software project in Efinity RISC-V Embedded Software IDE.
3. Import openocdServer project with New > Makefile Project with Existing Code.
4. Start the OpenOCD server.

a) Right-click openocdServer > openocdServer_<family>.launch.
b) Choose Debug As > openocdServer_<family>.

5. Modify the debug configuration for your application to use the OpenOCD server:

a) Right-click <project folder> > Debug As > Debug Configurations.
b) Choose GDB OpenOCD Debugging > <launch script> (e.g., axiDemo_trion).
c) Click the Debugger tab.
d) Turn off Start OpenOCD locally.
e) Under Remote Target, change the Port number for the core you are using (the

default is 3333 for core 0).
• 3333: Core 0
• 3334: Core 1
• 3335: Core 2
• 3336: Core 3

6. Click Debug. The RISC-V IDE enters into debug mode targeting the CPU that you
specified with the port number.

www.efinixinc.com 58

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 29: Modify Debug Configuration for another Core

www.efinixinc.com 59

Sapphire RISC-V SoC Hardware and Software User Guide

Debug - SMP
With Efinity software v2023.1 and higher, the multi-core Sapphire SoC can be debugged
concurrently on all the available cores in a bare metal program. Import your project into
Efinity RISC-V Embedded Software IDE to debug your SMP program. You will notice the
following additional launch scripts that are generated:
• smpDemo_softTap_mc.launch
• smpDemo_ti_mc.launch
• smpDemo_trion_mc.launch

If the *_mc.launch scripts are not generated in your Efinity RISC-V Embedded Software
IDE, it is advisable to check whether you have imported the correct Board Specific Package
(BSP) specifically configured for multiple cores.

Launch *_mc.launch based on your hardware configuration; all the cores are shown as
threads in the Debug pane.

The Resume and suspend selection affect all the cores while Step Into, Step Over, and Step
Return selections affect only the core you have selected by clicking on the thread.

The Breakpoint selection breaks all the cores that go through the specific instruction. If the
core does not run the instruction, then the core will not be halted by the breakpoint.

Figure 30: SMP Debug using smpDemo

Note:

• To use the SMP debug, you must use both the Efinity RISC-V Embedded Software IDE v2023.1 and
Standard debug interface.

• By default, the smpDemo sets the DEBUG to NO. Modify the DEBUG setting in the project makefile and
then rebuild the project.

www.efinixinc.com 60

Sapphire RISC-V SoC Hardware and Software User Guide

Debug - Daisy Chain
JTAG allows multiple devices to be connected to an interface in a daisy chain configuration.
This allows user to use only one debugger to access multiple devices. In a daisy chain, only
TMS and TCK signals are common signals which means these signals are required to be routed
to all devices on the board. The first device's TDI is connected to the debugger and its TDO is
connected to the TDI of the next device. The connection is shown in the following figure.

Figure 31: Daisy Chain Connection of Multiple Devices

TCK

TDO

Device 1

TDI TDI

TMS

TDO

IR
DR

TCS
TMS

TDO

Device 2

TDI
IR
DR

TCS
TMS

TDO

Device 3

TDI
IR
DR

TCS
TMS

In IP Manager, by default, the SoC has a standalone configuration that JTAG cannot access
the device which, is outside of SoC. To fix this issue, you need to change the Connection
Type to Daisy Chain. Then, specify the number of additional devices in the chain using
the option Additional Tap Devices (Max). The total number of devices in the chain should
be Additional Tap Devices (Max) + 1. If you select 5 (five) as option for Additional Tap
Devices (Max), then you should have a total of up to 6 (six) devices in the chain.

Figure 32: Daisy Chain Parameter Input

After generating the SoC, you need to manually edit the debug launch script to include the
device information in the chain. The debug launch script is available in embedded_sw/
<soc>/bsp/efinix/EfxSapphireSoc/openocd/debug_<type>.cfg. The debug launch
script you select depends on the tap type that is being used on the first device, which is either
Trion hardened tap, Titanium hardened tap, or soft tap.

You need to insert information as described:

1. Create a new tap using jtag newtap command to specify other devices in the chain.
You need to provide the tap details like IR length, IR capture, and IR mask.

www.efinixinc.com 61

Sapphire RISC-V SoC Hardware and Software User Guide

2. Create a new target if there is Sapphire SoC available with the tap.

Figure 33: Example 1: Daisy-Chain with 2 Devices

Others

TDI TDO

RISC-V

TDOTDI TDI

TDO

Example 1: Two devices in the daisy chain, and one of them is running on Sapphire SoC.
The debug launch script is:

set _CHIPNAME fpga_spinal
set _CHIPNAME1 fpga_spinal1

#device closest to TDO
jtag newtap $_CHIPNAME bridge -expected-id $_CPUTAPID -irlen <unknown> -
ircapture <unknown> -irmask <unknown>
jtag newtap $_CHIPNAME1 bridge -expected-id $_CPUTAPID -irlen <unknown> -
ircapture <unknown> -irmask <unknown>
#device closest to TDI

target create $_CHIPNAME1.cpu0 vexriscv -endian $_ENDIAN -chain-position
 $_CHIPNAME1.bridge -coreid 0 -dbgbase 0x10B80000
vexriscv readWaitCycles 12
vexriscv cpuConfigFile $CPU0_YAML
vexriscv jtagMapping 8 8 0 1 2 2 1 1

3. Define a name for every device in the chain. Since, there are two devices, give it a name
like line 1 and line 2.

4. Create a new tap with the tap details. In the figure, the device closest to the TDO pin is the
device that is without Sapphire SoC and the device closest to the TDI is the device with
Sapphire SoC. Refer to the following table and fill the <unknown> with the correct tap
details.

Table 19: Tap Details

Device IR Length IR Capture IR Mask

Soft Tap 4 0x1 0xF

5. Create a new target to specify the Sapphire SoC JTAG mapping details. Refer to the
following table to insert the correct JTAG mapping.

www.efinixinc.com 62

Sapphire RISC-V SoC Hardware and Software User Guide

Table 20: JTAG Mapping Details

Additional Tap Devices (Max) JTAG Mapping

1 88012211

2 88012222

3 88012233

4 88012244

5 88012255

6 88012266

7 88012277

8 88012288

Figure 34: Example 2: Daisy Chain with 4 Devices

Others

TDI TDO

RISC-V

TDOTDI TDI

TDO

RISC-V

TDOTDI

Others

TDOTDI

Example 2: Four devices in the daisy chain, and two of them are running on Sapphire SoC.
The debug launch script is:

set _CHIPNAME other
set _CHIPNAME1 fpga_spinal1
set _CHIPNAME2 fpga other2
set _CHIPNAME1 fpga_spinal3

#device closest to TDO
jtag newtap $_CHIPNAME bridge -irlen <unknown> -ircapture <unknown> -irmask <unknown>
jtag newtap $_CHIPNAME1 bridge -expected-id $_CPUTAPID -irlen <unknown> -ircapture <unknown> -
irmask <unknown>
jtag newtap $_CHIPNAME2 bridge -irlen <unknown> -ircapture <unknown> -irmask <unknown>
jtag newtap $_CHIPNAME3 bridge -expected-id $_CPUTAPID -irlen <unknown> -ircapture <unknown> -
irmask <unknown>
#device closest to TDI

target create $_CHIPNAME1.cpu0 vexriscv -endian $_ENDIAN -chain-position $_CHIPNAME1.bridge -
coreid 0 -dbgbase 0x10B80000
vexriscv readWaitCycles 12
vexriscv cpuConfigFile $CPU0_YAML
vexriscv jtagMapping 8 8 0 1 2 2 3 3

target create $_CHIPNAME3.cpu0 vexriscv -endian $_ENDIAN -chain-position $_CHIPNAME3.bridge -
coreid 0 -dbgbase 0x10B80000
vexriscv readWaitCycles 12
vexriscv cpuConfigFile $CPU0_YAML
vexriscv jtagMapping 8 8 0 1 2 2 3 3

www.efinixinc.com 63

Sapphire RISC-V SoC Hardware and Software User Guide

Peripheral Register View
With the Peripheral Register View, you can easily view the value of each register of the
peripherals you have enabled for the Sapphire SoC. The view helps you with your debugging
process without the need to view through memory addresses.

The IDE automatically points to the .xsvd file generated by the Efinity software. If you want
to point to a different xsvd file, you may do it by going to Debug > Debug Configurations
> SVD Path and browse to another xsvd.json file. The default generated .xsvd file is
located in /bsp/efinix/EfxSapphireSoc/openocd/sapphire_soc_xsvd.json

Learn more: For more information on xsvd format, refer to the xPack SVD Definitions. This brings you to
the website upon clicking.

Figure 35: SVD Path Tab in Debug Configuration

www.efinixinc.com 64

https://xpack.github.io/metadata/xsvd/

Sapphire RISC-V SoC Hardware and Software User Guide

When working with the Peripherals View, note that:

1. All available peripherals for the current Sapphire SoC are listed in the Peripherals tab.
2. To view the specific peripheral, turn on the preferred peripheral.
3. Once you have chosen the peripheral(s), the Memory Monitor shows up on the bottom

right.
4. To view the register, just select the specific peripheral in the Monitor.
5. Each register has its own address and value in the memory. Hover your mouse over the

register to view more information on each register.
6. The color on the register row changes if the current value is different from the previous

value.

Figure 36: GUI with Peripherals View for all Available Peripherals

1

2

3

4 5

www.efinixinc.com 65

Sapphire RISC-V SoC Hardware and Software User Guide

CSR Register View
The CSR Register View displays all CSR values while you are debugging.

The IDE automatically points to the GDB Description file generated by the IP Manager
when you generate the Sapphire SoC. If you want to point to a different .xml file, you may
do it by going to Debug > Debug Configurations > Debugger > GDB Client Setup >
Register File and browse to the new xml file. The default generated xml file is located in /
bsp/efinix/EfxSapphireSoc/openocd/ sapphire_soc_32bit-reg.xml.

Figure 37: Debug Configurations with Register File

www.efinixinc.com 66

Sapphire RISC-V SoC Hardware and Software User Guide

When working with the CSR Register View, note that:

1. The CSR View is on the Registers tab.
2. All supported RISC-V CSRs are listed in the registers depending on the Sapphire SoC

configuration (example: FPU enabled, MMU enabled).
3. Each CSR has its own value and description. CSRs are represented in bits and show up in

drop-down menu.
4. The cell value is highlighted when the current value is different from the previous value.

Figure 38: Registers View

1

2 3

4

www.efinixinc.com 67

Sapphire RISC-V SoC Hardware and Software User Guide

FreeRTOS View
The FreeRTOS View includes Queue and Task List. These views help during your
debugging; you can view the available tasks and their priority and status. It also allows you to
view the maximum queue length, messages waiting, etc.

Figure 39: Show View Window

FreeRTOS Queue and Task List are not automatically instantiated during the debug session.
To view it go to Window > Show View > Others... > FreeRTOS > FreeRTOS Queue
List/Free RTOS Task List and click Open.

Figure 40: FreeRTOS Queue and Task List View

www.efinixinc.com 68

Sapphire RISC-V SoC Hardware and Software User Guide

QEMU Emulator
The QEMU Emulator lets you try out your program without hardware. This feature is
helpful for emulating your program before the hardware is ready.

To get started with the QEMU emulator, follow these steps:

1. Select Import Projects... in the Project Explorer.
2. In the Import Projects window, select General > Existing Projects into Workspace >

Next.
3. Choose the Select archive file > Browse. Browse to the <Efinity IDE Installation

Path>/efinity-riscv-ide-2022.2.2/examples/qemu32-baremetal.zip. Click Open.
4. Turn on for qemu32-baremetal project.

Figure 41: Importing QEMU Project

5. Click Finish.

www.efinixinc.com 69

Sapphire RISC-V SoC Hardware and Software User Guide

6. You can now browse through all source files in the project.

Figure 42: Project Explorer Pane showing qemu32-baremetal Project

7. To clean the project, right-click the project name and select Clean Project. Select Build
Project to start building the program.

8. To start debugging the QEMU, right-click on the QEMU project and select Debug As >
Debug Configurations....

9. In the Debug Configurations, select qemu32_baremetal in Ashling_QEMU Simulator
Debugging.

10. Click Debug to start the debugging process.

Note: Windows Security Alert might prompt you to ask for permission to allow the
QEMU machine emulator to run. Click Allow access.

www.efinixinc.com 70

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 8

Boot Sequence
Contents:

• Boot Sequence: Case A
• Boot Sequence: Case B
• Boot Sequence: Case C
• Booting Multiple Cores

When the SoC loads and runs your software application, there are several boot sequence
scenarios, depending on where the application is stored. With a bootloader, the embedded
program loads the user binary from secondary memory to primary memory during boot up.
If your software application is small enough (less than 4 KB), you can embed it in the on-chip
RAM. It is recommended to follow the procedure in Modify the Bootloader for building an
embedded user application.

Figure 43: Boot Sequence Flow Chart

Enable External
Memory?

no

yes

Start

Execute Application
in External Memory?

yes

no

Store Application
in SPI Flash?

yes

no

Case C

Case A

Case B

Table 21: User Application

Item Case A Case B Case C

Bootloader needed? Yes Yes No

Application storage SPI flash SPI flash On-chip RAM

Execute location External memory On-chip RAM On-chip RAM

The following sections describe these cases in more detail.

The Sapphire SoC supports multiple cores; Booting Multiple Cores on page 74 describes
the programming sequence.

www.efinixinc.com 71

Sapphire RISC-V SoC Hardware and Software User Guide

Boot Sequence: Case A
The following figure shows the interaction of the FPGA, SPI flash, and external memory
during booting.

Figure 44: Boot Sequence Diagram

0x0039_F000

0x0038_0000

0x0000_0000
FPGA

Bitstream

User
Application

Combined FPGA
Bitstream and User

Application Size

SPI Flash FPGA

RISC-V
A

B

CPU

SPI Bootloader

On-Chip
RAM

0xF900_0000

0xF900_0400

0xF900_1000

SPI
Channel

C D

User
Application

External
Memory

0x0000_1000

0x0002_0000

E

The system starts from the PC's 0xF900_0000, which is the starting address of the on-chip
RAM. The bootloader, which reads a larger user application from the SPI flash, is embedded
by default.

1. The PC starts at the system address 0xF900_0000 of the on-chip RAM.
2. The bootloader starts reading the SPI Flash address 0x38_0000 for the user application.
3. The bootloader writes the user application to external memory starting from system

address 0x0000_1000.
4. The bootloader finishes reading the user application from the SPI flash.
5. The PC jumps to system address 0x0000_1000 and starts to execute the user application.
6. All accesses remain in the external memory space, which is malloc() by default (unless you

specify the on-chip RAM space in the software code)

Note: For RISC-V SoC booting from a flash device, the GPIOs for the SPI signals (system_spi_*) should
have the Register Option > register set in the Interface Designer. Refer to the IP Manager generated
example design to see how you should set up the SPI channel.

www.efinixinc.com 72

Sapphire RISC-V SoC Hardware and Software User Guide

Boot Sequence: Case B
The following figure shows the interaction of the FPGA and SPI flash during booting.

Figure 45: Boot Sequence Diagram

0x0038_0C00

0x0038_0000

0x0000_0000
FPGA

Bitstream

User
Application

Combined FPGA
Bitstream and User

Application Size

SPI Flash FPGA

RISC-V
A

B

CPU

SPI

Bootloader
On-Chip

RAM

0xF900_0000

0xF900_0C00

0xF900_1000

SPI
Channel

C

D

User
Application

The boot sequence is:

1. The PC starts at the system address 0xF900_0000 of the on-chip RAM and the PC jumps
to 0xF900_0C00 for bootloader execution.

2. The bootloader starts reading the SPI Flash address 0x0038_0000.
3. The bootloader writes the user application to On-Chip RAM starting from system address

0xF900_0000.
4. The bootloader finishes reading the user application from the SPI flash.
5. The PC jumps to system address 0xF900_0000 and starts to execute the user application.

Note: For RISC-V SoC booting from a flash device, the GPIOs for the SPI signals (system_spi_*) should
have the Register Option > register set in the Interface Designer. Refer to the IP Manager generated
example design to see how you should set up the SPI channel.

www.efinixinc.com 73

Sapphire RISC-V SoC Hardware and Software User Guide

Boot Sequence: Case C
The following figure shows the interaction of the FPGA and SPI flash during booting.

Figure 46: Boot Sequence Diagram

0x0000_0000

FPGA
Bitstream
plus Initial

Memory File
(User

Application)

Combined FPGA
Bitstream and User

Application Size

SPI Flash FPGA

RISC-V
A

B

CPU

On-Chip
RAM

0xF900_0000

0xF900_1000

SPI
Channel

C

User
Application

The boot sequence is:

1. The system starts from the PC's 0xF900_0000, which is the starting address of the On-
Chip RAM.

2. The user application is already compiled with the bitstream. It starts executing
automatically from the FPGA's BRAM.

Booting Multiple Cores
If you configure multiple cores, the Sapphire SoC has two or more identical processors
that share a common main memory and the same set of hardware I/Os. The processors can
execute programs simultaneously; one processor can access the processed data or result from
other processors because they are connected in a shared backplane.

With symmetric multi-processing (SMP), you can share the workload across all of the
processors, resulting in less time to get a result compared to using a single-core processor.
Thus, SMP helps improve overall system throughput and performance. The following flow
chart explains how to do multi-core programming in a baremetal environment.

www.efinixinc.com 74

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 47: Boot Sequence for Multiple Cores

Start

Core 0 handles the boot process
Other cores are redirected to a wait loop.

Boot process completes.
Core 0 wakes up other cores using the smp_unlock function.

Each core initializes its stack pointer based on its own hart
ID using the smpInit function.

Check each core is alive by printing the hart ID.

Program
Core 0

Program
Core 1

Program
Core 2

Program
Core 3

End

Table 22: SMP Helper Functions

File Description

start.S Functions to lock and unlock additional cores directory. To enable
these functions, you should include following flag in your makefile:

CFLAGS+=-DSMP

smpInit.S Function to initialize the core.

These files are located in the embedded_sw/standalone/common/ directory.

Each core has a dedicated interrupt ID for the PLIC to determine which core serves the
external interrupts. Refer to bsp/efinix/EfxSapphireSoc/include/soc.h for the interrupt
ID definitions for each core:

#define SYSTEM_PLIC_SYSTEM_CORES_0_EXTERNAL_INTERRUPT 0
#define SYSTEM_PLIC_SYSTEM_CORES_1_EXTERNAL_INTERRUPT 1
#define SYSTEM_PLIC_SYSTEM_CORES_2_EXTERNAL_INTERRUPT 2
#define SYSTEM_PLIC_SYSTEM_CORES_3_EXTERNAL_INTERRUPT 3

For the Clint timer interrupt, each core has a dedicated MTIMECMP register that you can
use to set the trigger. You should provide the hart ID to the API to determine which core
receives the interrupt from the Clint timer. For example:

clint_setCmp(BSP_CLINT, TriggerValue, HartID);

Each core has a dedicated floating-point unit, Linux memory management unit, and custom
instruction interface, if these features are enabled in IP Manager.

www.efinixinc.com 75

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 9

Create Your Own RTL Design
Contents:

• Target another FPGA
• Target another Efinix Board
• Target Your Own Board
• Create a Custom AXI4 Slave Peripheral
• Create a Custom APB3 Peripheral
• Use another DDR DRAM Module (Trion Only)
• Use the I2C Interface for DDR Calibration
• Remove Unused Peripherals from the RTL Design

After you have explored the Sapphire using the included example Efinity® project, you can
use these tips to modify the design for your own use.

Note: Efinix recommends that you use the provided example design project as a starting point instead of
creating a new project.

Target another FPGA
To change the design to target a different FPGA:

1. Edit the project to change the FPGA, package, and speed grade.
2. Update the interface design.

a) Open the Interface Designer. The software prompts you that a device change was
detected. Click Update Design. The Interface Designer opens and shows invalid
assignments in the Message Viewer.

b) Open the Resource Assigner.
c) Click the instance name in the Message Viewer. The software jumps to that

assignment in the Resource Assigner. Pick a new resource and press enter.
d) Continue re-assigning pins until all assignments are valid.
e) Generate a constraint file and close the Interface Designer.

3. Compile your modified design.

www.efinixinc.com 76

Sapphire RISC-V SoC Hardware and Software User Guide

Target another Efinix Board
The Sapphire SoC BSP includes FTDI configuration files that specify the FTDI device VID
and PID and board description for Efinix development boards.

When you configure the SoC, you can choose which Efinix board to target with the Debug
tab > Target OpenOCD option. To target another board, change this option and re-
generate the SoC files.

Table 23: Provided FTDI Configuration Files

File Use for

ftdi.cfg Trion development board

ftdi_ti.cfg Titanium development board

If you do not want to re-generate the SoC, you can also change the target Efinix board
manually by editing the .cfg file. However, if you want to target your own board, refer to
Target Your Own Board on page 78 because the Efinix drivers specifically target the
FTDI chips used on Efinix boards and your board will probably not have that chip.

To target a different Efinix development board manually, follow these steps with the
development board attached to the computer:

1. Open the Efinity® Programmer.
2. Click the Refresh USB Targets button to display the board name in the USB Target

drop-down list.
3. Make note of the board name.
4. In a text editor, open the ftdi.cfg or ftdi_ti.cfg file in the embedded_sw/<SoC

module>/bsp/efinix/EfxSapphireSoC/openocd directory.
5. Change the ftdi_device_desc setting to match the board name. For example,

use this code to change the name from Trion T120F324 Development Board to Trion
T120F576 Development Board:

interface ftdi
ftdi_device_desc "Trion T120F324 Development Board"
#ftdi_device_desc "Trion T120F576 Development Board"
ftdi_vid_pid 0x0403 0x6010

6. Save the file.
7. Debug as usual in OpenOCD.

www.efinixinc.com 77

Sapphire RISC-V SoC Hardware and Software User Guide

Target Your Own Board
For your own board, you generally use an FTDI cable or another JTAG cable or module.
You can also use an FTDI chip on your board.

Using the FTDI Module or FTDI C232HM-DDHSL-0 JTAG cable
The Sapphire SoC also includes a configuration file for the FTDI Module or FTDI C232HM-
DDHSL-0 JTAG cable (external.cfg), which bridges between your computer's USB
connector and the JTAG signals on the FPGA. If you use external JTAG cable to connect
your board to your computer, you can simply use this configuration file instead of ftdi.cfg or
ftdi_ti.cfg. You may select your preffered external JTAG cable in Debug and Linker Scripts
Support under the Debug tab in the IP Manager.

Note: Efinix does not recommend the FTDI Chip C232HM-DDHSL-0 programming cable due to the
possibility of the FPGA not being recognized or the potential for programming failures. You are encourage
to use FTDI chip FT2232H or FT4232H mini-module.

Note: Refer to Connect the FTDI Mini-Module on page 122 for instructions on using the cable.

Updating OpenOCD Configuration for External FTDI Cable
If you are using a custom FTDI cable to debug your board, you need to update the
OpenOCD configuration file for external FTDI cable, external.cfg before launching the
OpenOCD debugger.

Table 24: OpenOCD Confuguration File Setting for External FTDI Cable

Setting Description

ftdi device_desc FTDI device descriptor. The default setting is based on your selection
of the debug cable during SoC configuration. You may find your cable
description in the Device Manager (Windows) or lsusb (Linux) easily, i.e.,
ftdi device_desc "C232HM-DDHSL-0".

ftdi vid_pid FTDI device vendor ID and product ID. The first hexadecimal represents
the FTDI vendor ID while the second hexadecimal represents the FTDI
product ID, i.e., ftdi vid_pid 0x403 0x6014.

ftdi layout_init Initial values of the FTDI GPIO data and direction registers. The first
hexadecimal represents data register while the second hexadecimal
represents direction register. The values are based on the schematics of
the adapter, i.e., ftdi_layout_init 0x0008 0x000b.

ftdi channel FTDI device channel usage. Selects the channel of the FTDI device for
operations, i.e., ftdi channel 1. The default is channel 0.

Note: You can ignore this configuration if your FTDI device is
single channel or uses channel 0.

www.efinixinc.com 78

Sapphire RISC-V SoC Hardware and Software User Guide

Launching OpenOCD for Your Own Board
The standard launch scripts only support the following:
• *_softTap: External FTDI Cable + SoC soft JTAG Port
• *_ti: Standard Titanium FTDI + SoC hard JTAG Port
• *_trion: Standard Trion FTDI + SoC hard JTAG Port

To use an external FTDI Cable (i.e., C232HM-DDHSL-0 Programming Cable) with SoC
hard JTAG Port (using device TAP Controller), you are required to modify the debug
configuration to use the external.cfg to target the external FTDI cable and ftdi.cfg for
Trion device or ftdi_ti.cfg for Titanium device.

The following steps guide you to adapt the existing gpioDemo launch configuration to utilize
the external FTDI cable + SoC hard JTAG Port:

1. Select the preferred external JTAG Cable in the IP Manager when configuring the
Sapphire SoC.

2. Import your desired project (i.e., gpioDemo) in the Efinity RISC-V Embedded Software
IDE.

3. Right-click on the gpioDemo_trion.launch file in the Project Explorer pane to open the
Debug Configuration setting.

4. Click on either gpioDemo_ti or gpioDemo_trion for either Titanium or Trion device.
5. In the Debugger tab, browse to the OpenOCD Setup section. There, you would see the

Config options text box. Replace either the ftdi_ti.cfg or ftdi.cfg file depending on the
launch scripts you have selected with external.cfg. Use your own configuration filename
if you are using a different configuration file.

6. Click Apply and Debug to launch your application.

Note: Unexpected tap/device errors may occur in the console. You can remove the error by updating the
CPUTAPID in the external .cfg file.

Using another JTAG Cable or Module
Generally, when debugging your own board you use a JTAG cable to connect your
computer and the board. Therefore, you need to use the OpenOCD driver for that cable
when debugging. OpenOCD includes a number of configuration files for standard hardware
products. These files are located in the following directory:

openocd/build-win64/share/openocd/scripts/interface (Windows)

openocd/build-x86_64/share/openocd/scripts/interface (Linux)

You can also write your own configuration file if desired.

Follow these instructions when debugging with your own board:

1. Connect your JTAG cable to the board and to your computer.
2. Copy the OpenOCD configuration file for your cable to the bsp/efinix/

EfxSapphireSoc/openocd directory.
3. Follow the instructions for debugging, except target your configuration file instead of the

ftdi.cfg (Trion) or ftdi_ti.cfg (Titanium) file.

-f <path>/bsp/efinix/EfxSapphireSoc/openocd/<my cable>.cfg

Using an FTDI Chip on your Board
When you configure the Sapphire SoC in the IP Configuration wizard, choose Target
OpenOCD > Custom. Then, specify your board name. When you generate the SoC, the
ftdi.cfg file is populated with your board name. Edit the file for your board's VID and PID.

www.efinixinc.com 79

Sapphire RISC-V SoC Hardware and Software User Guide

Create a Custom AXI4 Slave Peripheral
When you generate an example design for the Sapphire SoC, the IP Manager creates an
example AXI4 peripheral and software code that you can use as a template to create your
own peripheral. This example uses the simple dual-port RAM design to write to and read
from the CPU through the AXI4 interface.
• Refer to the axi4_slave module in design_modules.v in the T120F324_devkit,

Ti60F225_devkit, or Ti180J484_devkit directory for the RTL design.
• Refer to main.c in the embedded_sw/<SoC module>/software/

standalone/axiDemo/src directory for the C code.

Create a Custom APB3 Peripheral
When you generate an example design for the Sapphire SoC, the IP Manager creates an APB3
peripheral and software code that you can use as a template to create your own peripheral.
This simple example shows how to implement an APB3 slave wrapper.

• Refer tothe apb3_slave module in design_modules.v in the T120F324_devkit,
Ti60F225_devkit, or Ti180J484_devkit directory for the RTL design.

• Refer to main.c in the embedded_sw/<SoC module>/software/standalone/
apb3Demo/src directory for the C code.

Use another DDR DRAM Module (Trion Only)
The Trion® T120 BGA324 Development Board has an LPDDR3 DRAM module with
256 Mbits x 16 bits supporting up to 4 Gb. If you want to target a different module, you
need to update the DDR block in the Interface Designer to reflect the specifications for your
module.

Note: Refer to the Trion DDR DRAM Block User Guide for more information on changing the DDR block.

www.efinixinc.com 80

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-DDR-DRAM

Sapphire RISC-V SoC Hardware and Software User Guide

Use the I2C Interface for DDR Calibration
You can use the I2C interface to calibrate and reset the DDR DRAM interface on the
Trion® T120 BGA324 Development Board or Trion® T120 BGA576 Development Board. If
you want to use calibration:

1. In the Efinity Interface Designer, select the DDR block and turn on Enable Control in
the Block Editor's Control tab. Save.

2. In your RTL design, connect the I2C interface to the DDR block's I2C interface. See the
following example code:

// top level port
output ddr_inst1_CFG_SCL_IN,
output ddr_inst1_CFG_SDA_IN,
input ddr_inst1_CFG_SDA_OEN,

// assignment
assign ddr_inst1_CFG_SDA_OEN_workaround = ddr_inst1_CFG_SDA_OEN;
assign ddr_inst1_CFG_SDA_IN = system_i2c_2_io_sda_write &&
 ddr_inst1_CFG_SDA_OEN_workaround;
assign ddr_inst1_CFG_SCL_IN = system_i2c_2_io_scl_write;

assign system_i2c_2_io_sda_read = system_i2c_2_io_sda_write &&
 ddr_inst1_CFG_SDA_OEN_workaround;
assign system_i2c_2_io_scl_read = system_i2c_2_io_scl_write;

// SoC connection
.system_i2c_2_io_sda_write (system_i2c_2_io_sda_write),
.system_i2c_2_io_sda_read (system_i2c_2_io_sda_read),
.system_i2c_2_io_scl_write (system_i2c_2_io_scl_write),
.system_i2c_2_io_scl_read (system_i2c_2_io_scl_read),

3. Connect the DDR control pins in the Interface Designer's DDR Block Editor.

Remove Unused Peripherals from the RTL
Design
The Sapphire SoC includes a variety of peripherals. if you do not want to use a peripheral,
simply remove the signal name from within the parentheses () in the SapphireSoc
SapphireSoc_inst definition in the top-level Verilog HDL file. For example, the SoC
instantiation has these signals:

.system_i2c_0_io_sda_write (system_i2c_0_io_sda_write),

.system_i2c_0_io_sda_read (system_i2c_0_io_sda_read),

.system_i2c_0_io_scl_write (system_i2c_0_io_scl_write),

.system_i2c_0_io_scl_read (system_i2c_0_io_scl_read),

To disable I2C 0, remove the signal name in () as shown below:

.system_i2c_0_io_sda_write (),

.system_i2c_0_io_sda_read (),

.system_i2c_0_io_scl_write (),

.system_i2c_0_io_scl_read (),

www.efinixinc.com 81

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 10

Create Your Own Software
Contents:

• Deploying an Application Binary
• About the Board Specific Package
• List of Restructured BSP Files
• Address Map
• Example Software

Now that you have explored the methodology for designing with the Sapphire SoC, you can
develop your own software applications.

Deploying an Application Binary
During normal operation, your user binary application file (.bin) is stored in a SPI flash
device. When the FPGA powers up, the Sapphire SoC copies your binary file from the SPI
flash device to the DDR DRAM module, and then begins execution.

For debugging, you can load the user binary (.elf) directly into the Sapphire SoC using the
OpenOCD Debugger. After loading, the binary executes immediately.

Note: The settings in the linker prevent user access to the address. This setting allows the embedded
bootloader to work properly during a system reset after the user binary is executed but the FPGA is not
reconfigured.

Boot from a Flash Device
When the FPGA boots up, the Sapphire SoC copies your binary application file from a SPI
flash device to the external memory module, and then begins execution. The SPI flash binary
address starts at 0x0038_0000.

To boot from a SPI flash device:

1. Power up your board. The FPGA loads the configuration image from the on-board flash
device.

2. When configuration completes, the bootloader begins cloning a 124 KByte user binary
file from the flash device at physical address 0x0038_0000 to an off-chip DRAM logical
address of 0x0000_1000.

Note: It takes ~300 ms to clone a 124 KByte user binary (this is the default size).

3. The Sapphire SoC jumps to logical address 0x0000_1000 to execute the user binary.

Note: Refer to Boot Sequence on page 71 for other possible boot scenarios.

www.efinixinc.com 82

Sapphire RISC-V SoC Hardware and Software User Guide

Boot from the OpenOCD Debugger
To boot from the OpenOCD debugger:

1. Power up your board. The FPGA loads the configuration image from the on-board flash
device.

2. Launch Efinity RISC-V Embedded Software IDE.
3. The user binary is suspended on boot up. Click the Resume button to start the program.

Note: Refer to Debug with the OpenOCD Debugger on page 55 for complete instructions.

Copy a User Binary to Flash (Efinity Programmer)
To boot from a flash device, you need to copy the application binary to the flash. If you want
to store the binary in the same flash device that holds the FPGA bitstream, you can simply
combine the two files and download the combined file to the flash device with the Efinity
Programmer.

1. Open the Efinity Programmer.
2. Click the Combine Multiple Image Files button.
3. Choose Mode > Generic Image Combination.
4. Enter a name for the combined file in Output File.
5. Click the Add Image button. The Open Image File dialog box opens.
6. Browse to the bitstream .hex file, select it, and click Open.
7. Click the Add Image button a second time.
8. Browse to the RISC-V application binary .bin file, select it, and click Open.
9. Specify the Flash Address as follows:

File Address

Bitstream 0x00000000

RISC-V application binary 0x00380000

www.efinixinc.com 83

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 48: Combining a Bitstream and RISC-V Application Binary

10. Click Apply. The software creates the combined .hex file in the specified Output
Directory (the default is the project outflow directory).

11. Program the flash with the .hex file using Programming Mode > SPI Active.
12. Reset the FPGA or power cycle the board.

Note: You can also use two terminals to copy the application binary to flash. Refer to Appendix: Copy a
User Binary to the Flash Device (2 Terminals) on page 201.

www.efinixinc.com 84

Sapphire RISC-V SoC Hardware and Software User Guide

About the Board Specific Package
The board specific package (BSP) defines the address map and aligns with the Sapphire
SoC hardware address map. The BSP files are located in the bsp/efinix/EfxSapphireSoC
subdirectory.

Table 25: BSP Files

File or Directory Description

app Files used by the example software and bootloader.

include\soc.mk Supported instruction set.

include\soc.h Defines the system frequency and address map.

linker\default.ld Linker script for the main memory address and size.

linker\default_i.ld Linker script for the internal memory address and size.

linker\freertos.ld Linker script for the main memory address and size for
freertos app.

linker\freertos_i.ld Linker script for the internal memory address and size for
freertos app.

linker\bootloader.ld Linker script for the bootloader address and size.

openocd OpenOCD configuration files.

List of Restructured BSP Files
When upgrading Sapphire SoC IP using Efinity software v2025.1, the following files are
restructured.

Changes in software:

1. Obsolete and exclusion of legacy print functions.
2. Obsolete of old definition:

The old definition from legacy SoC like BSP_MACHINE_TIMER,
BSP_MACHINE_TIMER_HZ, machineTimer_setmp, machineTimer_getTime,
machineTimer_uDelay,bsp_putString, configMTIME_BASE_ADDRESS,
configMTIMECMP_BASE_ADDRESS, configCPU_CLOCK_HZ, BSP_LED_GPIO,
BSP_LED_MASKhave been removed.

3. soc.h, freertosHalConfig.h, print.h, print_full.h, and semihosting.h moved from
bsp/efinix/EfxSapphireSoc/app to bsp/efinix/EfxSapphireSoc/include folder.

4. Every hardware definition for demo bsp/efinix/EfxSapphireSoc/app has been
removed and replaced with userDef.h in the demo folder. The bsp/efinix/
EfxSapphireSoc/app folder is redefined to put the middleware like FatFs and LWIP.

Note: This feature is enabled by default. The BSP files are restructured when you upgrade using the
Efinity software v2025.1, For backup purpose, the old embedded_sw/SapphireSoc folder is backed up as
embedded_sw/SapphireSoc_backup.

www.efinixinc.com 85

Sapphire RISC-V SoC Hardware and Software User Guide

Table 26: List of Files Structure Changes

Directory Files/Folder Changes

embedded_sw config/
config_linux/

Removed.

embedded_sw/software application
• coremark
• dhrystone
• memTest
apb3
• apb3Demo
axi4
• axi4Demo
customInstruction
• customInstructionDemo
fpu
• fpuDemo
gpio
• gpioDemo
• inlineAsmDemo
i2c
• i2cDemo
• i2cEepromDemo
• i2cMasterDemo
• i2cSlaveDemo
smp
• smpDemo
spi
• spiDemo
timer
• clintTimerInterruptDemo
• nestedInterruptDemo
• userTimerDemo
• watchdogDemo

File Restructure.

Note:
spiReadFlashDemo,
spiWriteFlashDemo, and
coreTimerInterrupt are
no longer supported.

embedded_sw/software/
freeRTOS/driver

apb3_cl.h, clint.h, dmasg.h,
asdefx_mmc_driver.h,
efx_tse_mac.h, efx_tse_phy.h,
gpio.h, i2c.h, io.h, mmc.h, plic.h,
prescaler.h, riscv.h, spi.h, spiFlash.h,
start.h, timer.h, type.h, uart.h,
vexriscv.h

Removed.

bsp/efinix/EfxSapphireSoC/app bootloaderConfig.h,
core_portme.h,coremark.h,
DDRCali_i2c.h,
i2cDemo.h, i2cMcp4725.h,
nestedInterruptDemo.h,
print.h, print_full.h,
sdHostDemo.h, semihosting.h,
smpDemo.h, spiDemo.h,
tseDemo.h, userTimerDemo.h,
freertosHalConfig.h

Reallocated.
Refer to Table 27: List of
Reallocation File on page 87.

bsp/efinix/EfxSapphireSoC/include print.h,
print_full.h,
semihosting.h

Added.

www.efinixinc.com 86

Sapphire RISC-V SoC Hardware and Software User Guide

Directory Files/Folder Changes

bsp/efinix/EfxSapphireSoC/linker freertos_i.ld
freertos.ld

Added.

All hardware definitions for demo bsp/efinix/EfxSapphireSoC/app have been removed
and replaced with userDef.h in the demo folder. The bsp/efinix/EfxSapphireSoC/app has
been redefined to include the middleware such as FatFs and LWIP. Refer to the Table 27: List
of Reallocation File on page 87 for the location of the old header file.

Table 27: List of Reallocation File

Original Path Original File Destination Path

freertosHalConfig.h bsp/efinix/EfxSapphireSoc/include/
freertosHalConfig.h

print.h bsp/efinix/EfxSapphireSoc/include/print.h

print_full.h bsp/efinix/EfxSapphireSoc/include/print_full.h

semihosting.h bsp/efinix/EfxSapphireSoc/include/
semihosting.h

bootloaderConfig.h software/standalone/bootloader/src/
bootloaderConfig.h

coremark.h software/standalone/application/coremark/
src/coremark.h

core_portme.h software/standalone/application/coremark/src/
core_portme.h

i2cDemo.h software/standalone/i2c/i2cDemo/src/userDef.h

smpDemo.h software/standalone/smp/smpDemo/
src/userDef.h

spiDemo.h software/standalone/smp/spiDemo/src/userDef.h

nestedInterruptDemo.h software/standalone/timer/
nestedInterruptDemo/src/userDef.h

userTimerDemo.h software/standalone/timer/userTimerDemo/src/
userDef.h

DDRCali_i2c.h software/standalone/driver/DDRCali_i2c.h

i2cMcp4725.h Removed.

sdHostDemo.h Removed.

bsp/efinix/ EfxSapphireSoC/app

tseDemo.h Removed.

www.efinixinc.com 87

Sapphire RISC-V SoC Hardware and Software User Guide

Address Map
Because the address range might be updated, Efinix recommends that you always refer to
the parameter name when referencing an address in firmware, not by the actual address. The
parameter names and address mappings are defined in /embedded_sw/<module>/bsp/
efinix/EfxSapphireSoc/include/soc.h.

Note: If you need to update the address map, use the IP Configuration wizard to change the addressing
and then re-generate the SoC. Using this method keeps the software soc.h and FPGA netlist definitions
aligned.

Table 28: Default Address Map, Interrupt ID, and Cached Channels
The AXI user slave channel is in a cacheless region (I/O) for compatibility with AXI-Lite.

Device Parameter Size Interrupt ID Region

Off-chip memory SYSTEM_DDR_BMB 4 MB to
3.5 GB

– Cache

GPIO 0 SYSTEM_GPIO_0_IO_CTRL 4 K [0]: 12
[1]: 13

I/O

GPIO 1 SYSTEM_GPIO_1_IO_CTRL 4 K [0]: 14
[1]: 15

I/O

I2C 0 SYSTEM_I2C_0_IO_CTRL 4 K 8 I/O

I2C 1 SYSTEM_I2C_1_IO_CTRL 4 K 9 I/O

I2C 2 SYSTEM_I2C_2_IO_CTRL 4 K 10 I/O

Core timer SYSTEM_CLINT_CTRL 4 K – I/O

PLIC SYSTEM_PLIC_CTRL 4 K – I/O

SPI master 0 SYSTEM_SPI_0_IO_CTRL 4 K 4 I/O

SPI master 1 SYSTEM_SPI_1_IO_CTRL 4 K 5 I/O

SPI master 2 SYSTEM_SPI_2_IO_CTRL 4 K 6 I/O

UART 0 SYSTEM_UART_0_IO_CTRL 4 K 1 I/O

UART 1 SYSTEM_UART_1_IO_CTRL 4 K 2 I/O

UART 2 SYSTEM_UART_2_IO_CTRL 4 K 3 I/O

User timer 0 SYSTEM_USER_TIMER_0_CTRL 4 K 19 I/O

User timer 1 SYSTEM_USER_TIMER_1_CTRL 4 K 20 I/O

User timer 2 SYSTEM_USER_TIMER_2_CTRL 4 K 21 I/O

User peripheral 0 IO_APB_SLAVE_0_CTRL 4 K to 1 MB – I/O

User peripheral 1 IO_APB_SLAVE_1_CTRL 4 K to 1 MB – I/O

User peripheral 2 IO_APB_SLAVE_2_CTRL 4 K to 1 MB – I/O

User peripheral 3 IO_APB_SLAVE_3_CTRL 4 K to 1 MB – I/O

User peripheral 4 IO_APB_SLAVE_4_CTRL 4 K to 1 MB – I/O

On-chip BRAM SYSTEM_RAM_A_BMB 1 - 512 KB – Cache

AXI user slave SYSTEM_AXI_A_BMB 1 K to
256 MB

– I/O

www.efinixinc.com 88

Sapphire RISC-V SoC Hardware and Software User Guide

Device Parameter Size Interrupt ID Region

External interrupt – – [0]: 16
[1]: 17
[2]: 22
[3]: 23
[4]: 24
[5]: 25
[6]: 26
[7]: 27

I/O

When accessing the addresses in the I/O region, type casting the pointer with the keyword
volatile. The compiler recognizes this as a memory-mapped I/O register without
optimizing the read/write access. An example of the casting is shown by the following
command:

((volatile u32) address);

For the cached regions, the burst length is equivalent to an AXI burst length of 8. For the I/
O region, the burst length is equivalent to an AXI burst length of 1. The AXI user slave is
compatible with AXI-Lite by disconnecting unused outputs and driving a constant 1 to the
input port.

Note: The RISC-V GCC compiler does not support user address spaces starting at 0x0000_0000.

The following figure shows the default address map and the corresponding software
parameters for modules in the memory space.

Figure 49: Sapphire Memory Space

Cached

0x0000_1000

SYSTEM_BRIDGE_BMB 0x0000_0000

SYSTEM_DDR_BMB

0x0002_0000

Cached
Bootloader (4 K)

Address Gap
(16 MB)

Address Gap
(16 MB)

0xE100_0000

0xF800_0000

0xF900_0000

0xFFFF_FFFF

APB3 I/O Space
(16 MB)

SYSTEM_AXI_A_BMB

AXI Slave
(4 KB - 256 MB)

SYSTEM_BMB_PERIPHERAL_BMB

User Application
124 KB

External Memory
Address Size

(4 MB - 3.5 GB)

On-Chip RAM
(4 KB to 512 KB)

SYSTEM_RAM_A_CTRL

www.efinixinc.com 89

Sapphire RISC-V SoC Hardware and Software User Guide

Note: When external memory is disabled and auto address assignment is used, the AXI slave is assigned
to 0x0100_0000 to preserve the Sapphire memory space. However, you are allowed to set a desired base
address in manual address assignment mode, as long as it does not overlap with other address regions.

The following figure shows the default address map and the corresponding software
parameters for I/O.

Figure 50: Sapphire I/O Space

0x00_0000 0xF800_0000

0x01_0000

0x01_7000

0x10_0000

0xB0_0000

0xFF_FFFF
Interrupt

SYSTEM_USER_TIMER_0_IO_CTRL

Custom Logic
Space

IO_APB_SLAVE_0_INPUT

SYSTEM_CLINT_CTRL

SYSTEM_UART_0_IO_CTRL

0x01_4000SYSTEM_SPI_0_IO_CTRL

0x01_5000SYSTEM_GPIO_0_IO_CTRL

0x01_6000SYSTEM_I2C_0_IO_CTRL

0xC0_0000SYSTEM_PLIC_CTRL

APB3 Custom
Devices

Timer, SPI, I2C,
GPIO, UART,
up to 256 devices

Default I/O address offset: 0xF800_0000
Total: 16 MB

www.efinixinc.com 90

Sapphire RISC-V SoC Hardware and Software User Guide

Example Software
To help you get started writing software for the Sapphire, Efinix provides a variety of
example software code that performs functions such as communicating through the UART,
controlling GPIO interrupts, performing Dhrystone benchmarking, etc. Each example
includes a makefile and src directory that contains the source code.

Note: Many of these examples display messages on a UART. Refer to the following topics for information
on attaching a UART module and connecting to it in a terminal:
Learn how to attach a UART module.
Learn how to open serial terminal in Efinity RISC-V Embedded Software IDE and connect to the UART
module.

Table 29: Example Software Code

Directory Description

apb3Demo This example shows how to implement an ABP3 slave.

Axi4Demo This example illustrates how to implement a user AXI4 slave.

bootloader This software is the bootloader for the system.

common Provides linking for the makefiles.

clintTimerInterruptDemo This example shows how to use the clint timer with interrupt.

coremark This example is a synthetic computing benchmark program.

customInstructionDemo This example illustrates how to implement a custom instruction.

dCacheFlushDemo This example illustrates how to invalidate the data cache.

dhrystone This example is a synthetic computing benchmark program.

driver This directory contains the system drivers for the peripherals
(I2C, UART, SPI, etc.). Refer to API Reference on page 144 for
details.

FreeRTOS This example shows the example software projects targeting
the RTOS.

fpuDemo This example shows how to use the floating-point unit.

gpioDemo This example shows how to control the GPIO and its interrupt.

iCacheFlushDemo This example illustrates how to invalidate the instruction cache.

inlineASMDemo This example illustrates utilizing the inline assembly feature.

i2cDemo This example shows how to connect to an MCP4725 digital-to-
analog converter (DAC) using an I2C peripheral.

i2CEepromDemo This example illustrates how to use I2C driver to communicate
with the on-board EEPROM device, AT24C01 on either the
T120F324 or T120F576 Development Kit.

i2cMasterDemo This example illustrates how to effectively utilize the Sapphire
SoC as an I2C master.

i2cSlaveDemo This example illustrates how to effectively utilize the Sapphire
SoC as an I2C slave.

memTest This code performs a memory address and data test.

www.efinixinc.com 91

Sapphire RISC-V SoC Hardware and Software User Guide

Directory Description

nestedInterruptDemo This example shows how to set a higher priority to an interrupt
routine, which allows the CPU to prioritize the task execution
instead of other interrupts.

semihostingDemo This examples shows how to use write and read debug
messages through semihosting.

smpDemo This example illustrates how to use multiple cores to execute
the Tiny encryption algorithm in parallel.

spiDemo This code reads the device ID and JEDEC ID of a SPI flash
device and echoes the characters on a UART.

uartEchoDemo This example shows how to use the UART.

uartInterruptDemo This exmple shows how to use a UART interrupt.

userInterruptDemo This example demonstrates user interrupts with UART
messages.

userTimerDemo This example shows how to use the user timer with interrupt.

www.efinixinc.com 92

Sapphire RISC-V SoC Hardware and Software User Guide

Axi4Demo Design
This example (axi4Demo directory) performs a write and read test for the internal BRAM
that is attached to an AXI interface. First, the software writes to the internal BRAM through
the AXI interface. Next, it reads back the data and compares it to the expected value. If the
data is correct, the software writes Passed to a UART terminal

The AXI bus interrupt pin triggers a software interrupt when write data to the AXI bus is
0xABCD. The design displays these messages in a UART terminal:

axi4 slave demo !
Passed!
axi4 slave interrupt demo !
Entered AXI Interrupt Routine, Passed!

apb3Demo
This simple software design illustrates how to use an APB3 slave peripheral.

The APB3 slave is attached to a pseudorandom number generator. When you run the
application, the Sapphire SoC programs the APB3 slave to stop generating a new random
number and reads the last random number generated. The test passes if the returned data is a
non-zero value.

apb3 slave 0 demo !
Random number:
0xE1ECA84A
Passed!

clintTimerInterruptDemo
This demo (clintTimerInterruptDemo directory) shows how to use the core timer and its
interrupt function. This demo configures the core timer to generate an interrupt every 1
second. It prints messages on a terminal when the SoC is interrupted by the core timer.

Starting Clint Timer Interrupt Demo
Entering clint timer interrupt routine ..
Count:0 .. Done
Entering clint timer interrupt routine ..
Count:1 .. Done
Entering clint timer interrupt routine ..
Count:2 .. Done
Entering clint timer interrupt routine ..
Count:3 .. Done
Entering clint timer interrupt routine ..
Count:4 .. Done
Entering clint timer interrupt routine ..
Count:5 .. Done
Entering clint timer interrupt routine ..
Count:6 .. Done
Entering clint timer interrupt routine ..
Count:7 .. Done
Entering clint timer interrupt routine ..
Count:8 .. Done

www.efinixinc.com 93

Sapphire RISC-V SoC Hardware and Software User Guide

coremark
This code (coremark directory) is a benchmark application to measure CPU performance.
The final score is calculated based on the result of algorithm processing (e.g., list processing,
matrix manipulation, state machine, and CRC). This application is configured to run 2,000
iterations with a runtime of approximately 20s.

When you run the application, it displays information similar to the following in a terminal:

coremark app is running, please wait...
2K performance run parameters for coremark.

CoreMark Size : 666

Total ticks : 1117963326

Total time (secs): 11.179633

Iterations/Sec : 178.896745

Iterations : 2000

Compiler version : GCC8.3.0

Compiler flags : -o3

Memory location : STACK

seedcrc : 0xe9f5

[0]crclist : 0xe714

[0]crcmatrix : 0x1fd7

[0]crcstate : 0x8e3a

[0]crcfinal : 0x4983

Correct operation validated. See README.md for run and reporting rules.

CoreMark 1.0 : 178.896745 / GCC8.3.0 / -o3
 / STACK

customInstructionDemo
This demo (customInstructionDemo directory) shows how to use a custom instruction to
accelerate the processing time of an algorithm. It demonstrates how performing an algorithm
in hardware can provide significant acceleration vs, using software only. This demo uses the
Tiny encryption algorithm to encrypt two 32-bit unsigned integers with a 128-bit key. The
encryption is 1,024 cycles.

The demo first processes the algorithm with a custom instruction, and then processes the
same algorithm in software. Timestamps indicate how many clock cycles are needed to
output results. If both methods output the same results, Passed! prints on a terminal.
Otherwise, it prints Failed.

custom instruction demo !
please enable custom instruction plugin to run this demo

custom instruction processing clock cycles:1093
software processing clock cycles:36126

Passed!

www.efinixinc.com 94

Sapphire RISC-V SoC Hardware and Software User Guide

dCacheFlushDemo
This example (dCacheFlushDemo directory) illustrates how to invalidate the data cache by
using API.

Starting Invalidate Data Cache Demo
Invalidate 3 cache lines ..
invalidate all cache line ..
Successfully Ran Demo

dhrystone Example
The Dhrystone example (dhrystone directory) is a classic benchmark for testing CPU
performance. When you run this application, it performs dhrystone benchmark testing and
displays messages and results on a UART terminal.

The following code shows example results:

Dhrystone Benchmark, Version C, Version 2.2
 Program compiled without 'register' attribute
 Using time(), HZ=12000000
 Trying 500 runs through Dhrystone:
 Final values of the variables used in the benchmark:
 Int_Glob: 5
 should be: 5
 Bool_Glob: 1
 should be: 1
....
 Enum_Loc: 1
 should be: 1
 Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING
 should be: DHRYSTONE PROGRAM, 1'ST STRING
 Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING
 should be: DHRYSTONE PROGRAM, 2'ND STRING

 Microseconds for one run through Dhrystone: 40
 Dhrystones per Second: 24472
 User_Time : 245176
 Number_Of_Runs : 500
 HZ : 12000000
 DMIPS per Mhz: 1.16

www.efinixinc.com 95

Sapphire RISC-V SoC Hardware and Software User Guide

FreeRTOS Examples
The Sapphire SoC supports the popular FreeRTOS real-time operating system, and includes
example software projects targeting the RTOS. For more details on using FreeRTOS, go to
their web site at https://www.freertos.org.

Download the FreeRTOS
By default, the RISC-V IDE is bundled with FreeRTOS version 202212.01. It will be auto
detected when creating or importing projects. Follow these steps if you need a different
version FreeRTOS.

1. Download the FreeRTOS zip file from https://www.freertos.org.
2. Unzip the folder to any directory.
3. Point to the folder when importing existing project or creating new project.

After you have downloaded the FreeRTOS, you use the software projects in the same
manner as the other example software.

freertosDemo
This example shows how the FreeRTOS schedular handles two program executions using
task and queue allocation. Generally, the FreeRTOS queue is used as a thread FIFO buffer
and for intertask communication. This example creates two tasks and one queue; the queue
sends and receives traffic. The receive traffic (or receive queue) blocks the program execution
until it receives a matching value from the send traffic (or send queue).

Tasks in the send queue sit in a loop that blocks execution for 1,000 miliseconds before
sending the value 100 to the receive queue. Once the value is sent, the task loops, i.e., blocks
for another 1,000 miliseconds.

When the receive queue receives the value 100, it begins executing its task, which sends the
message Blink to the UART peripheral and toggles an LED on the development board.

Hello world, this is FreeRTOS
Blink
Blink
Blink

www.efinixinc.com 96

https://www.freertos.org
https://www.freertos.org

Sapphire RISC-V SoC Hardware and Software User Guide

fpuDemo
This example (fpuDemo directory) shows how to use the floating-point unit to perform
various mathematical operations such as calculating sine, cosine, tangent, square root, and
division. The demo records the number of clock cycles needed to complete each calculation.
You can turn off the floating-point unit in the SoC's IP Configuration wizard to compare the
FPU results with those obtained using the base I-extension.

The processing time to obtain the results are faster and the binary size is smaller when using
the F/D-extension with floating-point unit.

fpu math demo !
rv32i (base-extension) is capable to perform floating-point calculation but
 rv32i requires
more processing time and instruction to calculate the result enable fpu with
 d-extension
will sharply improve processing time and decrease app binary size

sine processing clock cycles:879

cosine processing clock cycles:864

tangent processing clock cycles:1148

square root processing clock cycles:2171

division processing clock cycles:377

Input i (in rad): 0.5820
Sine result: 0.5497
Cosine result: 0.8353
Tangent result: 0.6581

Input x: 3828.1234
Square root result: 61.8718
Divsion result: 1040.5619

gpioDemo
This example(gpioDemo directory) shows how to use the GPIO and its interrupt function.
LED(s) on the development board blink for about 5 seconds and then the application goes
into interrupt mode. Toggle system_gpio_0[0] to let the GPIO go into the interrupt
routine.

gpio 0 demo !
onboard LEDs blinking
gpio 0 interrupt demo !
Ti60 press and release onboard button sw6
T120 press and release onboard button sw7
gpio 0 interrupt routine

www.efinixinc.com 97

Sapphire RISC-V SoC Hardware and Software User Guide

iCacheFlushDemo
This example (iCacheFlushDemo directory) illustrates how to invalidate the instruction
cache. The instruction cache invalidation is critical to ensure the coherency between the
cache and the main memory, ensuring that the CPU fetches the most up-to-date instructions.
Firstly, the string funcA is copied into an array that is printed out in this example. The
funcA can be seen as the output. Next, the string funcB is copied into the same array that is
printed out again. Even though funcB is stored in the array, the funcA is seen as the output
because the instruction cache has not yet been flushed.

To address this, the instruction cache invalidation is called upon. Once the instruction
cache is invalidated, the funcB can be expected to be printed out in the UART console.
Additionally, the most up-to-date instructions are fetched from the main memory.

By following this process, you can ensure that the CPU fetches the most recent instructions
from the main memory and maintains coherency with the instruction cache. The design
displays these messages in a UART terminal:

Expected 'funcA', Obtained : funcA
Expected 'funcA', Obtained : funcA
Expected 'funcB', Obtained : funcB
Test Complete

inlineAsmDemo
This example (inlineAsmDemo directory) illustrates utilizing the inline assembly feature.
The inline assembly feature allows you to embed assembly language code into your high-level
code such as C and C++ whenever you need to implement low-level operations or improve
the performance.

The following are demonstrations of inlineAsmDemo applications
• Integer arithmetic operations
• Looping implementation
• if-else implementation
• Memory access
• Proper use of general-purpose register (x0 – x31)
• Exchange of values between the inline assembly and C

This example provides both C and assembly language for the same implementation for
easier understanding and further includes the following definition to use the C language
implementation.

#define C_IMPLEMENTATION 1

This application increments the LEDs until all LEDs are enabled and waits for the UART
input character 'r'. Once received, the LEDs will be reset for increment again.

The UART terminal prints these messages when C_IMPLEMENTATION is defined.

Inline Assembly Demo

Demonstrating C implementation

Reset the LEDs by pressing 'r'

The UART terminal prints these messages when C_IMPLEMENTATION is not defined and
inline assembly is used.

Inline Assembly Demo

Reset the LEDs by pressing 'r'

Refer to Inline Assembly to understand more about inline assembly and its application.

www.efinixinc.com 98

Sapphire RISC-V SoC Hardware and Software User Guide

i2cDemo Example
The I2C interrupt example (i2cDemo directory) provides example code for an I2C master
writing data to and reading data from an off-chip MCP4725 device with interrupt. The
Microchip MCP4725 device is a single channel, 12-bit, voltage output digital-to-analog
converter (DAC) with an I2C interface.

The MCP4725 device is available on breakout boards from vendors such as Adafruit and
SparkFun. You can connect the breakout board's SDA and SCL pins to a development board.

The code assumes that the I2C block is the only master on the bus, and it sends frames in
blocks. When you run it, the application connects to the MCP4725 device and increases the
DAC value. It also prints the message Start on a UART terminal.

In this example:
• void trap() traps entries on exceptions and interrupt events
• void externalInterrupt() triggers an interrupt event

www.efinixinc.com 99

Sapphire RISC-V SoC Hardware and Software User Guide

i2cEepromDemo
This example (i2cEepromDemo directory) demonstrates the usage of the I2C driver to
establish communication with the on-board EEPROM device, specifically the AT24C01 that
is used in the Trion T120F324 and T120F576 development kit. The UART console serves as
an interactive terminal that allows you to select the available operations, specify the address
and number of bytes to read/write, and provide the data to be written.

This example shows you on the interaction and configuration with the onboard EEPROM
using the I2C driver that facilitates the data transfer and its manipulation through the UART
console.

T120F324/T120F576 Dev Kit on-board EEPROM, AT24C01 i2c-demo !
Please make sure you are using the T120F324/T120F576 Dev Kit to run this demo!
Please choose the feature you would like to run (key in the selection and press enter):
1: Write a byte to EEPROM
2: Read a byte from EEPROM
3: Current Address Read (Last accessed address incremented by 1)
4: Read multiple byte from EEPROM
5: Write multiple byte to EEPROM

To write a byte of data to the EEPROM, follow these steps:

1. Type 1 on the console and press enter.
2. Enter the desired address in hexadecimal format. For example, if you want to write to the

address '0000', enter 0000 and press enter.
3. If you enter an invalid address, the message "invalid address input" is displayed. Re-enter a

valid address in hexadecimal format.
4. Upon entering a valid address, you will be prompted to enter a byte of data to be written

into the EEPROM. For instance, if you want to write the hexadecimal value of '55', type
the value 55 and press enter.

By following these steps, you will be able to write a byte of data to the EEPROM using the
provided interface. You must follow the instructions and input the required values accurately
to ensure successful data writing.

Please choose the feature you would like to run (Key in the selection and press Enter):
1: Write a byte to EEPROM
2: Read a byte from EEPROM
3: Current Address Read (Last accessed address incremented by 1)
4: Read multiple byte from EEPROM
5: Write multiple byte to EEPROM
1
Write operation selected, please enter the location in hex with 16-bit size
00000
Invalid address input, please key in correct address. I.e. 1024 which is in hexadecimal.
0000
Valid address input, please wait while the operation process
address in hex = 0x0000000000000000
Enter the byte of data to write into the eeprom in hexadecimal
55
Inputted number of byte of data to write
Single Byte Write operation started
Write operation successful

www.efinixinc.com 100

Sapphire RISC-V SoC Hardware and Software User Guide

To read a byte of data from the EEPROM, follow these steps:

1. Type 2 on the console and press enter to select the read operation.
2. Enter the desired address in hexadecimal format. For example, if you want to read from

the address '0000', enter 0000 and press enter.

The system reads the data from the specified address in the EEPROM and prints out the read-
back data on the console.

Please choose the feature you would like to run (Key in the selection and press Enter):
1: Write a byte to EEPROM
2: Read a byte from EEPROM
3: Current Address Read (Last accessed address incremented by 1)
4: Read multiple byte from EEPROM
5: Write multiple byte to EEPROM
2
Read operation selected, please enter the location in hex with 16-bit size
0000
Valid address input, please wait while the operation process
address in hex = 0x0000000000000000
Read operation started
Read operation successful.
Read data = 00000055

To write multiple bytes of data to the EEPROM, follow these steps:

1. Type 5 on the console and press enter to select the multiple bytes to write operation.
2. Enter the desired address in hexadecimal format. For example, type 0000 if you want to

start writing at address '0000', and press enter.
3. Enter the number of bytes of data you want to write into the EEPROM, in hexadecimal

format. For example, type 05 if you want to write 5 bytes and press enter.
4. Enter the bytes of data to be written into the EEPROM, in hexadecimal format. The data

must not have any spacing in between and in an ascending pattern. For example, type
0102030405 to write the bytes 01, 02, 03, 04, and 05, and press enter.

By following these steps, you will be able to write multiple bytes of data to the EEPROM
using the provided interface. You must enter the correct values in hexadecimal format in an
ascending order data pattern without spacing between the bytes.

Please choose the feature you would like to run (Key in the selection and press Enter):
1: Write a byte to EEPROM
2: Read a byte from EEPROM
3: Current Address Read (Last accessed address incremented by 1)
4: Read multiple byte from EEPROM
5: Write multiple byte to EEPROM
5
Write Multi-Byte operation selected, please enter the location in hex with 16-bit size
0000
Valid address input, please wait while the operation process
address in hex = 0x0000000000000000
Enter the number of byte of data to write/read into/from the eeprom in hexadecimal (Maximum:
 255 Bytes)
05
Number of bytes: 00000005
Enter the byte of data to write intothe eeprom in hexadecimal (without spacing in between)
0102030405
Inputted number of byte of data to write
Multi Byte Write operation started
Write operation successful

www.efinixinc.com 101

Sapphire RISC-V SoC Hardware and Software User Guide

To read multiple bytes of data from the EEPROM, follow these steps:

1. Type 4 on the console and press enter to select the multiple bytes read operation.
2. Enter the desired address in hexadecimal format. For example, if you want to start reading

from the address '0000', enter 0000 and press enter.
3. Enter the number of bytes of data to be read from the EEPROM, in hexadecimal format.

For example, type 5 if you want to read 5 bytes, and press enter.

The system reads the specified number of bytes of data from the EEPROM, starting from the
specified address, and prints out the read-back data on the console.

By following these steps, you will be able to read multiple bytes of data from the EEPROM
using the provided interface. You must enter the correct operation code of the desired
starting address and the number of bytes to read, in hexadecimal format, to retrieve accurate
data from the EEPROM.

Please choose the feature you would like to run (Key in the selection and press Enter):
1: Write a byte to EEPROM
2: Read a byte from EEPROM
3: Current Address Read (Last accessed address incremented by 1)
4: Read multiple byte from EEPROM
5: Write multiple byte to EEPROM
4
Read Multi-Byte operation selected, please enter the location in hex with 16-bit size
0000
Valid address input, please wait while the operation process
address in hex = 0x0000000000000000
Enter the number of byte of data to write/read into/from the eeprom in hexadecimal (Maximum:
 255 Bytes)
05
Number of bytes to read: 00000005
Read operation successful.
0x00000001 0x00000002 0x00000003 0x00000004 0x00000005

Note:

• This example can only be used either for Trion T120F324 or T120F576 Development Kit.
• The input to the terminal is in hexadecimal number. You are not require to add “0x” to your input.

i2cMasterDemo Design
This example illustrates how to utilize the Sapphire SoC as an I2C master. The program
demonstrates the transmission and reception of data, initially with a single byte, and
subsequently with a larger chunk of 20 bytes.

By default, the configuration assumes the slave device is set to transmit a 1-byte
register address. For 2-byte register addresses, you need to modify the definition of
WORD_REG_ADDR to 1.

The design displays these messages in a UART terminal:

i2c Master Demo!
Please ensure you 've either connect to a compatible I2C Slave or running the
 i2CSlaveDemo
with I2C ports connected.
TEST STARTED!
I2C Master Demo completed.
TEST PASSED!

Note: In the event that the I2C slave is not connected to the I2C Master, the terminal displays up to TEST
STARTED only.

www.efinixinc.com 102

Sapphire RISC-V SoC Hardware and Software User Guide

i2cSlaveDemo Design
This example illustrates how to utilize the Sapphire SoC as an I2C slave, offering the
functionality of an 8-bit by 256-bit memory module. The provided i2cMasterDemo
application can control the i2cSlaveDemo application as described in this section.

Upon running the program, you will have the information on the I2C configurations,
including the slave address, timeout settings, and various timing configurations.

The UART console acts as an interactive terminal, facilitating the monitoring of current
memory values by simply pressing the I key.

By default, the slave is configured for 1-byte register addresses. For 2-byte register addresses,
you need to modify the definition of WORD_REG_ADDR to 1.

The design displays these messages in a UART terminal:

i2c 0 slave demo!
i2c 0 init done
This device will asct as I2C Slave with 8 bit x 256 bit memory
Configurations:
Slave Address = 0x67
Timeout setting = 0x4c4b40
Tsu = 166
tLow = 250
tHigh = 250
tBuf = 500

 0 1 2 3 4 5 6 7 8 9 a b c d e f
0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
10: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
20: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
30: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
40: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
50: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
60: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
70: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
90: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
a0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
b0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
c0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
d0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff
e0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff

press i to show the memory content of I2C slave
>>

memTest Example
The memory test example (memTest directory) provides example code that performs a
memory test on the external memory module and reports the results on a UART terminal. A
successful test prints:

Memory test
Passed

If the memory test fails, the application prints Failed at address <address>.

www.efinixinc.com 103

Sapphire RISC-V SoC Hardware and Software User Guide

nestedInterruptDemo
This demonstration (nestedInterruptDemo directory) illustrates how to escalate from
an interrupt routine and to execute higher priority routine. The program returns to the
lower priority routine after the higher priority routine finished executing. This demo
instantiates two user timers; timer 0 has higher priority than timer 1. Timer 0 interrupts the
CPU multiple times. The CPU then executes the timer 0 interrupt routine in the middle of
executing the timer 1 interrupt routine.

The demo outputs the following messages to a terminal:

T1S
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T1E

www.efinixinc.com 104

Sapphire RISC-V SoC Hardware and Software User Guide

semihostingDemo
The semihosting facilitates communication between the host machine and the targeted
embedded system through a debugger. This feature is useful during the development and
debugging phases, as it allows you to print debug messages without needing a UART
peripheral enabled. Also, this is practically advantageous when you want to omit the UART
peripheral in resource-constrained designs.

The semihostingDemo example design clearly illustrates how to leverage semihosting in the
Sapphire SoC. To activate semihosting, ensure that the ENABLE_SEMIHOSTING_PRINT
define is set to 1 in the bsp.h header file. This enables the seamless output of debug messages.
All UART printing calls, e.g., bsp_print, bsp_printf, and other printing APIs, that are
available in the bsp.h file is directed to the Efinity RISC-V Embedded Software IDE console.
No modifications are required for your embedded software design.

This demonstration showcases the capability of the Efinity RISC-V Embedded Software IDE
in printing debug messages and reading them from the console itself.

Note: While running the application, you may observe a warning in the console indicating
keep_alive() is not invoked. This warning arises from the blocking nature of the semihosting reading,
which can potentially delay the debugger from sending the keep_alive() signal on time. This warning
does not impact the functionality of the application. It is simply a notification related to the timing of the
keep_alive() signal. Therefore, it should not be a cause of alarm regarding the overall performance or
expected behavior of the system.

www.efinixinc.com 105

Sapphire RISC-V SoC Hardware and Software User Guide

smpDemo
This demo (smpDemo directory) illustrates how to use multiple cores to process multiple
encryption pat the same time in parallel. Each core is assigned an encryption algorithm with
an input keys (each core has a different key). Core 0 prints the final encrypted values after the
other cores complete the encryption. If a single core performed the encryption, it would take
four times more clock cycles to complete the process.

To run the smpDemo correctly, ensure your Sapphire SoC is configured with more than 1
core, or else you may encounter a build error. If your Sapphire SoC is configured as a multi-
core, the *_mc.launch scripts are generated by the Efinity RISC-V Embedded Software
IDE. Launch the *_mc.launch based on your configuration.

Click Apply and start the debugging by clicking Debug.

Note: You must enable the Standard debug interface in Sapphire SoC Configuration to debug the multi-
core.

The demo outputs the following messages to a terminal:

smpDemo with multiple cpu processing
synced!
processing clock cycles:24353

hart 0 encrypted output A:167C6CC6
hart 0 encrypted output B:465E6781
hart 1 encrypted output A:E39A3A87
hart 1 encrypted output B:70CF21D1
hart 2 encrypted output A:CBA365FF
hart 2 encrypted output B:003FDFA8
hart 3 encrypted output A:93D5278B
hart 3 encrypted output B:62F40A6F

www.efinixinc.com 106

Sapphire RISC-V SoC Hardware and Software User Guide

spiDemo Example
The SPI example (spiDemo directory) provides example code for reading the device ID and
JEDEC ID of the SPI flash device on the development board. The application displays the
written data on each address starting at 0x410000 and read the address from SPI flash.

Starting SPI Demo
Device ID : 00000039
Writing data to flash ..
Write address 00410000 := 00000000
Write address 00410001 := 00000001
Write address 00410002 := 00000002
Write address 00410003 := 00000003
Write address 00410004 := 00000004
Write address 00410005 := 00000005
Write address 00410006 := 00000006
Write address 00410007 := 00000007
Write address 00410008 := 00000008
Write address 00410009 := 00000009
Write address 0041000a := 0000000a
Write address 0041000b := 0000000b
Write address 0041000c := 0000000c
Write address 0041000d := 0000000d
Write address 0041000e := 0000000e
Write address 0041000f := 0000000f
Write address 00410010 := 00000010
Write address 00410011 := 00000011
Write address 00410012 := 00000012
Write address 00410013 := 00000013
Write address 00410014 := 00000014
Write address 00410015 := 00000015
Reading from flash ..
Read address 00410000 := 00000000
Read address 00410001 := 00000001
Read address 00410002 := 00000002
Read address 00410003 := 00000003
Read address 00410004 := 00000004
Read address 00410005 := 00000005
Read address 00410006 := 00000006
Read address 00410007 := 00000007
Read address 00410008 := 00000008
Read address 00410009 := 00000009
Read address 0041000a := 0000000a
Read address 0041000b := 0000000b
Read address 0041000c := 0000000c
Read address 0041000d := 0000000d
Read address 0041000e := 0000000e
Read address 0041000f := 0000000f
Read address 00410010 := 00000010
Read address 00410011 := 00000011
Read address 00410012 := 00000012
Read address 00410013 := 00000013
Read address 00410014 := 00000014
Read address 00410015 := 00000015
Succesfully Ran Demo

uartEchoDemo
This demo (uartEchoDemo directory) shows how to use the UART to print messages on
a terminal. The characters you type on a keyboard are echoed back to the terminal from the
SoC and printed on the terminal.

uart echo demo !
start typing on terminal to send character...
echo character:l
echo character:k
echo character:m

www.efinixinc.com 107

Sapphire RISC-V SoC Hardware and Software User Guide

UartInterruptDemo Example
The UartInterruptDemo example shows how to use a UART interrupt to indicate task
completion when sending or receiving data over a UART. The UART can trigger a interrupt
when data is available in the UART receiver FIFO or when the UART transmitter FIFO is
empty. In this example, when you type a character in a UART terminal, the data goes to the
UART receiver and fills up FIFO buffer. This action interrupts the processor and forces the
processor to execute an interrupt/priority routine that allows the UART to read from the
buffer and send a message back to the terminal.

The application displays messages on a UART terminal:

RX FIFO not empty interrupt
RX FIFO not empty interrupt
RX FIFO not empty interrupt

userInterruptDemo Example
This demo (userInterruptDemo directory) shows how to handle a user interrupt that
accepts an interrupt signal from user logic. In this demo, ten seconds after the Sapphire SoC
comes out of reset, the user interrupt gets a trigger from the external module. Operation
jumps from the main routine to the interrupt routine. When the interrupt code finishes
executing, it jumps back to the main routine.

The application displays the messages on a UART terminal:

User Interrupt Demo, waiting for user interrupt...
Entered User Interrupt A Routine

userTimerDemo
This demo (userTimerDemo directory) shows how to use the user timer and its interrupt
function. This demo configures the user timer and its prescaler setting, which you use to
further scale down the frequency used by the timer's counter. When the timer's counter
reaches the targeted tick value, it generates an interrupt signal to interrupt the controller to
let the SoC jump from the main routine to the interrupt routine.

user timer 0 demo !
user timer 0 interrupt routine
user timer 0 interrupt routine
user timer 0 interrupt routine
user timer 0 interrupt routine

www.efinixinc.com 108

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 11

Third-party Debugger

With the RISC-V standard debug enabled, you can debug using other customized debuggers
compliant with the standard. Therefore, Efinix has included sample debug scripts for some
external debuggers tested working with Sapphire SoC.

The debug scripts are in the embedded_sw/<SoC module>/bsp/efinix/
EfxSapphireSoc/lauterbach_trace32 directory. The directory contains debug scripts for
the Lauterbach's TRACE32 debugger.

Note: The Lauterbach demo supports soft JTAG only.

www.efinixinc.com 109

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 12

Watchdog Timer
Contents:

• Introduction
• Functional Description
• Setting Limits for Both Counters

www.efinixinc.com 110

Sapphire RISC-V SoC Hardware and Software User Guide

Introduction
The watchdog timer is a safety feature used to monitor a system's proper functioning. Its
main purpose is to automatically recover or reset the system in case of software malfunctions
or unexpected behavior. This helps to prevent the system from getting hung or entering an
unsafe state. The watchdog timer continuously counts towards a preset limit. The software
should periodically reset the watchdog timer before reaching the preset limit. If the software
fails to reset the watchdog timer because of unexpected issues, the watchdog timer triggers
interrupt and a panic signal when it reaches the preset limit.

Functional Description
The watchdog timer in Sapphire SoC has a prescaler and two counters, offers a 2-stage
interrupt/panic.

Figure 51: Sapphire SoC Watchdog Timer Clock Diagram

Prescaler Counter 0

Counter 1

system_watchdog
_hardPanic

PLICPeripheral
Clock

Watchdog Timer

Sapphire High-performance SoC

The watchdog timer has two counters, counter 0 and counter 1. Both counters run
simultaneously and each counter has its own limit. When the software resets the watchdog
timer, both counters reset too. If the watchdog timer does not reset,

• When counter 0 has reached its limit:

1. The watchdog timer sends an interrupt to the PLIC, which is triggered as an external
interrupt in the software.

2. During the interrupt routine, you can try to recover the software or prepare for a
proper shutdown or reset.

• When counter 1 has reached its limit:

1. The watchdog timer asserts the top level pin, system_watchdog_hardPanic.
2. You can use the signal from this pin to implement their reset or recovery logic for the

system.

www.efinixinc.com 111

Sapphire RISC-V SoC Hardware and Software User Guide

Setting Limits for Both Counters
Use Case: Counter 1 is designed to reach its limit later than counter 0, so that it gives ample
time for recovery or preparation for shutdown in the interrupt routine.

Figure 52: Setting Limits for Counter 0 and Counter 1
x y

time 0

number of prescaled cycles number of prescaled cycles

Counter 0 reaches limit
(trigger interrupt)

Counter 1 reaches limit
(assert top level pin)

In this case,

Limit of counter 0 = x

Limit of counter 1 = x + y

www.efinixinc.com 112

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 13

Using a UART Module
Contents:

• Using the On-board UART (Titanium)
• Set Up a USB-to-UART Module (Trion)
• Open a Terminal
• Enable Telnet on Windows

A number of the software examples display messages on a UART terminal. If you are using a
Titanium development board, you can simply connect a USB cable to the board and to your
computer. For Trion development boards, you need to use a USB-to-UART converter.

Using the On-board UART (Titanium)
The Titanium Ti60 F225 Development Board has a USB-to-UART converter connected to
the Ti60's GPIOL_01 and GPIOL_02 pins. The Titanium Ti180 J484 Development Board
has a USB-to-UART converter connected to the Ti180's GPIOR_67 and GPIOR_68 pins.
To use the UART, simply connect a USB cable to the FTDI USB connector on the targeted
development board and to your computer.

Note: The board has an FTDI chip to bridge communication from the USB connector. FTDI interface 2
on Ti60 and FTDI interface 0 on Ti180 communicate with the on-board UART. You do not need to install
a driver for this interface because when you connect the Titanium Ti60 F225 Development Board or
Titanium Ti180 J484 Development Board to your computer, Windows automatically installs a driver for it.

Finding the COM Port (Windows)
1. Type Device Manager in the Windows search box.
2. Expand Ports (COM & LPT) to find out which COM port Windows assigned to the

UART module. You should see 2 devices listed as USB Serial Port (COMn) where n is the
assigned port number. Note the COM number for the first device; that is the UART.

Finding the COM Port (Linux)
In a terminal, type the command:

ls /dev/ttyUSB*

The terminal displays a list of attached devices.

/dev/ttyUSB0 /dev/ttyUSB1 /dev/ttyUSB2 /dev/ttyUSB3

The UART is /dev/ttyUSB2.

www.efinixinc.com 113

Sapphire RISC-V SoC Hardware and Software User Guide

Set Up a USB-to-UART Module (Trion)
The Trion® T120 BGA324 Development Board does not have a USB-to-UART converter,
therefore, you need to use a separate USB-to-UART converter module. A number of modules
are available from various vendors; any USB-to-UART module should work.

Figure 53: Connect the UART Module to PMOD Connector J12

J12 (PMOD)

GPIOT_RXN21
Ground

UART
to USB
Module

J13 (PMOD)J15 (Ethernet)

RX

Ground
TX

GPIOT_RXP20
123456

789101112
Ground

USB
Connector

Power
Switch

1. Connect the UART module to the PMOD port J12
• RX—GPIOT_RXP20, which is pin 1 on PMOD J12
• TX—GPIOT_RXN21, which is pin 2 on PMOD J12
• Ground—Use ground pin 5 or 11 on PMOD J12.

2. Plug the UART module into a USB port on your computer. The driver should install automatically if
needed.

Finding the COM Port (Windows)
1. Type Device Manager in the Windows search box.
2. Expand Ports (COM & LPT) to find out which COM port Windows assigned to the

UART module; it is listed as USB Serial Port (COMn) where n is the assigned port
number. Note the COM number.

Finding the COM Port (Linux)
In a terminal, type the command:

dmesg | grep ttyUSB

The terminal displays a series of messages about the attached devices.

usb <number>: <adapter> now attached to ttyUSB<number>

There are many USB-to-UART converter modules on the market. Some use an FTDI chip
which displays a message similar to:

usb 3-3: FTDI USB Serial Device converter now attached to ttyUSB0

However, the Trion® T120 BGA324 Development Board also has an FTDI chip and gives
the same message. So if you have both the UART module and the board attached at the same
time, you may receive three messages similar to:

usb 3-3: FTDI USB Serial Device converter now attached to ttyUSB0
usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB1
usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB2

In this case, the second 2 lines (marked by usb 3-2) are the development board and the first
line (usb 3-3) is the UART module.

www.efinixinc.com 114

Sapphire RISC-V SoC Hardware and Software User Guide

Open a Terminal
You can use any terminal program, such as Putty, termite, or the built-in terminal in the
Efinity RISC-V Embedded Software IDE, to connect to the UART. These instructions
explain how to use the built-in terminal while the others are similar.

1. In Efinity RISC-V Embedded Software IDE, choose Window > Show View >
Terminal. The Terminal tab opens.

TOpen a erminal
Disconnect Terminal Connection

2. Click the Open a Terminal button.
3. In the Launch Terminal dialog box, enter these settings:

Option Setting

Choose terminal Serial Terminal

Serial port COMn (Windows) or ttyUSBn (Linux)
where n is the port number for your UART module.

Baud rate 115200

Data size 8

Parity None

Stop bits 1

Encoding Default (ISO-8859-1)

4. Click OK. The terminal opens a connection to the UART.
5. Run your application. Messages are printed in the terminal.
6. When you are finished using the application, click the Disconnect Terminal Connection

button.

Enable Telnet on Windows
Windows does not have telnet turned on by default. Follow these instructions to enable it:

1. Type telnet in the Windows search box.
2. Click Turn Windows features on or off (Control panel). The Windows Features dialog

box opens.
3. Scroll down to Telnet Client and click the checkbox.
4. Click OK. Windows enables telnet.
5. Click Close.

www.efinixinc.com 115

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 14

Unified Printf
Contents:

• Bsp_print
• Bsp_printf
• Bsp_printf_full
• Semihosting Printing
• Preprocessor Directives

Prior to Efinity 2022.2, you need specific functions provided in the bsp.h to print various
kinds of data such as bsp_printHex, bsp_print, and bsp_printHexDigit. In Efinity 2022.2 or
later, Efinix introduces unified printf implementation that enables printf implementation that
resembles GNU C library, printf function. Unified printf also supports the legacy bsp_print
functions for backward compatibility.

Starting from Efinity 2022.2 onwards, there are 3 print or printf versions that are available for
users to print characters to the UART terminal:
• Bsp_print
• Bsp_printf
• Bsp_printf_full

www.efinixinc.com 116

Sapphire RISC-V SoC Hardware and Software User Guide

Bsp_print
Bsp_print is the legacy function that consists of various bsp_print* functions as listed:
• bsp_printHex—Print 4-byte Hexadecimal characters (example: 0 x 12345678)
• bsp_print—Print string with newline at the end
• bsp_printHexDigit —Print 1 digit of Hexadecimal value (example: 0 x A)
• bsp_printHexByte—Print 2 digit of Hexadecimal value (example: 0 x AB)
• bsp_printReg—Print string followed by 4-byte Hexadecimal characters
• bsp_putString—Print string without newline at the end
• bsp_putChar—Print an 8-bit character

Bsp_printf
Bsp_printf is a lite version of bsp_printf_full where it only supports a minimum number of
specifiers. Bsp_printf is located in bsp/efinix/EfxSapphireSoc/app/print.h. Bsp_printf is enabled
by default. An example of calling bsp_printf to print out a hex value of 0 x 10 is as follows:

bsp_printf(“Printing 0x10: %x”, 0x10)

It supports the following type:

1. Character (%c)
2. String (%s)
3. Decimal (%d)
4. Hexadecimal (%x)
5. Float (%f)

Note: You need to switch the Enable_Floating_Point_Support to 1 in the bsp.h to enable the floating
point supports. The Enable_Floating_Point_Support follows the FPU setting where it would be enabled by
default if the FPU is included in the SoC.

Bsp_printf_full
Bsp_printf_full is based on open-source Tiny Printf implementation. This printf function
supports most of the specifiers. Bsp_print_full is disabled by default. Bsp_printf_full can be
enabled by setting the ENABLE_BSP_PRINTF_FULL to 1 in the bsp.h file. An example of
calling bsp_printf_full to print out hex value of 0 x 10 is as follows:

bsp_printf_full(“Printing 0x10: %x”, 0x10)

The bsp_printf_full follows the following prototype:

%[flags][width][.precision][length]type

Note: By enabling ENABLE_BRIDGE_FULL_TO_LITE in the bsp.h file and the bsp_printf is disabled,
bsp_printf_full can be called with bsp_printf instead. This would be beneficial if your program is already
using the bsp_printf but requires additional specifiers support that is supported only in bsp_printf_full
function.

www.efinixinc.com 117

Sapphire RISC-V SoC Hardware and Software User Guide

Table 30: Supported Fomat Types

Type Description

d or i Signed decimal integer

u Unsigned decimal integer

b Unsigned binary

o Unsigned octal

x Unsigned hexadecimal integer (lowercase)

X Unsigned hexadecimal integer (uppercase)

f or F Decimal floating point

e or E Scientific-notation (exponential) floating point

g or G Scientific or decimal floating point

c Single character

s String of characters

P Pointer address

% A % followed by another % character output a
single %

Table 31: Supported Flags

Flag Description

- Left-justify within the given field width; Right justification is the default.

+ Forces to precede the result with a plus or minus sign (+ or -) even for
positive numbers. By default, only negative numbers are preceded
with a sign.

(space) If no sign is going to be written, a blank space is inserted before the
value.

Used with o, b, x or X specifiers; the value is preceeded by 0, 0b, 0x or
0X respectively for values other than zero.

0 Left-pad fills the number with zeros (0) instead of space when
padding is specified (see width sub-specifier).

Table 32: Supported Width

Width Description

(number) Minimum number of characters to be printed. If the value to be
printed is shorter than this number, then the result is padded with
blank spaces. The value is not truncated even if the result is larger.

* The width is not specified in the string format, but as an additional
integer value argument preceding the argument that has to be
formatted.

www.efinixinc.com 118

Sapphire RISC-V SoC Hardware and Software User Guide

Table 33: Supported Precision

Pecision Description

.number For integer specifiers (d, i, o , u, x, X):
Precision specifies the minimum number of digits to be written. If the
value to be written is shorter than this number, the result is padded
with leading zeros.
The value is not truncated even if the result is longer.
A precision of zero (0) means that no character is written for the value
zero (0).
For f and F specifiers:
This is the number of digits to be printed after the decimal point. By
default, the minimum is 6 (six) and the maximum is 9 (nine).

.* The precision is not specified in the format string, but as an additional
integer value argument preceding the argument that has to be
formatted.

Table 34: Supported Length

Length %d, %i %u, %o, %x, %X

(none) int unsigned int

hh char unsigned char

h short int unsigned short int

l long int unsigned long int

ll long long int unsigned long long int (if
Printf_Support_Long_Long is
defined)

j intmax_t uintmax_t

z size_t size_t

t ptrdiff_t ptrdiff_t (if
Printf_Support_Ptrdiff_T is
defined)

Semihosting Printing
Semihosting is a powerful feature that enhances the development and debugging experience
when designing embedded software for your Sapphire SoC. Semihosting acts as a bridge
between your host machine and the Sapphire SoC. With semihosting, printing debug
messages is achievable without the need for additional peripherals like UART. This
is beneficial for designs with limited resources where the debug capabilities are not
compromised.

Efinix integrates the semihosting ability to the bsp_print* APIs. By enabling the
ENABLE_SEMIHOSTING_PRINT in bsp.h file, all printing APIs such as bsp_print,
bsp_printf, and bsp_printf_full is routed to the semihosting printing where the printout
appears in the Efinity RISC-V Embedded Software IDE console instead. No modifications are
required for your design source code.

Efinix provides an example design illustrating how to write and read through the semihosting
in semihostingDemo.

www.efinixinc.com 119

Sapphire RISC-V SoC Hardware and Software User Guide

Preprocessor Directives
Unified printf implementation uses preprocessor directives/switches located in the bsp.h to
allow customization of the printf function suited to your needs.

Table 35: Preprocessor Directives

Switch Description Default

ENABLE_BSP_PRINT Enable legacy bsp_print functions. Enabled

ENABLE_BSP_PRINTF Enable bsp_printf function. Enabled

ENABLE_BSP_PRINTF_FULL Enable bsp_printf_full function. Disabled

ENABLE_SEMIHOSTING_PRINT Enable semihosting printing. All
print functions is routed to the
console printout if enabled.

Disabled

ENABLE_FLOATING_POINT_
SUPPORT

Enable floating point printout
support.

Follows
FPU setting

ENABLE_FP_EXPONENTIAL_
SUPPORT

Enable floating point exponential
printout support.

Disabled

ENABLE_PTRDIFF_SUPPORT Enable pointer difference datatype
support.

Disabled

ENABLE_LONG_LONG_SUPPORT Enable long long datatype
support.

Disabled

ENABLE_BRIDGE_FULL_TO_LITE When enabled and bsp_printf is
disabled, the bsp_printf_full can
be called using bsp_printf.

Enabled

ENABLE_PRINTF_WARNING When enabled, warning is printed
out when the specifier type is not
supported.

Enabled

www.efinixinc.com 120

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 15

Using a Soft JTAG Core for Example Designs
Contents:

• Connect the FTDI Mini-Module

The Efinity® Debugger uses the hard JTAG TAP interface. Out of the box, the Sapphire SoC
example design also uses the hard JTAG TAP interface for OpenOCD. If you try to use the
same USB connection to the development board for both applications at the same time, they
will conflict. To solve this problem, you use a soft JTAG block to handle the OpenOCD
JTAG communication. With this method, you use an FTDI chip cable to connect the board
to your computer (the Efinity® Debugger uses the USB cable).

The simplest way to implement a soft JTAG interface is to use the IP Manager to output an
example design that enables the soft JTAG interface. The IP Manager automatically connects
the soft JTAG pins to PMOD J12 when you turn on the Soft Debug Tap option.

Note: Efinix does not recommend the FTDI Chip C232HM-DDHSL-0 programming cable due to the
possibility of the FPGA not being recognized or the potential for programming failures. You are encourage
to use FTDI chip FT2232H or FT4232H mini-module.

www.efinixinc.com 121

Sapphire RISC-V SoC Hardware and Software User Guide

Connect the FTDI Mini-Module
When you turn on the Enable Soft JTAG TAP option in the IP Configuration wizard, the
example design assigns the JTAG pins to resources in the interface design. Use the following
figures to connect the table to the JTAG pins. By default, the C232HM-DDHSL-0 JTAG is
targeted. Select your preferred JTAG cable in Debug and Linker Scripts Support under the
Debug tab in the IP Manager

Note: If you have not already done so, install the driver for the FTDI mini-module as described in
Installing USB Drivers on page 32.

Connecting to the Titanium Ti60 F225 Development Board

Figure 54: Connecting the FTDI Module or C232HM-DDHSL-0 Cable

USB
Connector

1

2

39

40 3638

MIPI and LVDS
Expansion Card

P2

Ti60 F225 Development Board

34 3032

Ground

TMS GPIOR_28

TDO GPIOR_27

TCK GPIOR_24TDI GPIOR_25

FTDI Module/Cable

Table 36: FTDI to Daughter Card Connections

Port Resource MIPI and LVDS Expansion
Daughter Card (P2) Pin

TCK GPIOR_24 32

TDI GPIOR_25 34

TDO GPIOR_27 38

TMS GPIOR_28 40

GND – 36

www.efinixinc.com 122

Sapphire RISC-V SoC Hardware and Software User Guide

Connecting to the Titanium Ti180 J484 Development Board

Figure 55: Connecting the FTDI Module or C232HM-DDHSL-0 Cable

USB
Connector

1

2

39

40 3638

MIPI and LVDS
Expansion Card

P1

Ti180 J484 Development Board

34 3032

Ground

TMS GPIOR_65

TDO GPIOR_66

TCK GPIOL_29TDI GPIOL_03

FTDI Module/Cable

37 35

Ground Pin can
either be 35 or 36

Table 37: FTDI to Daughter Card Connections

Port Resource MIPI and LVDS Expansion
Daughter Card (P1) Pin

TCK GPIOL_29 32

TDI GPIOL_03 34

TDO GPIOR_66 37

TMS GPIOR_65 39

GND – 35/36

www.efinixinc.com 123

Sapphire RISC-V SoC Hardware and Software User Guide

Connecting to the Trion® T120 BGA324 Development Board

Figure 56: Connecting the FTDI Module or C232HM-DDHSL-0 Cable

J12 (PMOD)

Ground

J13 (PMOD)J15 (Ethernet)

12346

789101112
Power
Switch

5

USB
Connector

TDI
GPIOT_RXN21

TDO
GPIOT_RXN22

TMS
GPIOT_RXN23

TCK
GPIOT_RXN20

FTDI Module/Cable

Table 38: FTDI to PMOD Connections

Port Resource PMOD (J12) Pin

TCK GPIOT_RXN20 7

TDI GPIOT_RXN21 8

TDO GPIOT_RXN22 9

TMS GPIOT_RXN23 10

GND – 5 or 11

Debugging in Efinity RISC-V Embedded Software IDE
1. Open your Efinity RISC-V Embedded Software IDE project.
2. Run or debug the software with the OpenOCD debugger using the default_softTap to

launch the configuration.
3. Refer to Debug with the OpenOCD Debugger on page 55 for complete instructions.
4. Open the Debugger to perform hardware debugging.

www.efinixinc.com 124

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 16

Migrating to the Sapphire SoC
Contents:

• Migrating to the Sapphire SoC v2.0 from a Previous Version
• Migrating Ruby, Jade, and Opal to the Sapphire SoC

Migrating to the Sapphire SoC v2.0 from a
Previous Version
The Sapphire SoC v2.0 available in the Efinity software v2021.2 has many new features
compared to previous versions, and the IP Configuration wizard and drivers are updated to
reflect these new features. Therefore, you cannot automatically migrate an existing design to
v2.0. If you want to migrate to v2.0, the following sections provide some guidelines.

Note: Efinix recommends that you use v2.0 for all new designs.

IP Configuration Wizard
The configuration options for the Sapphire SoC v2.0 support new features such as more
configurable caching, FPU, MMU, and a peripheral clock. Use the following settings to
create a v2.0 SoC that is similar to previous versions.

Table 39: IP Configuration Settings

Tab Option Setting Notes

Peripheral Clock DISABLE In v1.x, the APB3 peripherals are driven by the
system clock. In v2.0, set this option to DISABLE.

Custom Instruction DISABLE

Linux Memory
Management Unit

DISABLE

Floating-point Unit DISABLE

SOC

Atomic extension DISABLE

Not supported in v1.x

Data Cache Way 1

Data Cache Size 4 KB (v1.0)
1 KB, 2 KB,
4 KB, 8 KB,
16 KB, or

32 KB (v1.1)

Instruction Cache Way 1

Cache/
Memory

Instruction Cache Size 4 KB (v1.0)
1 KB, 2 KB,
4 KB, 8 KB,
16 KB, or

32 KB (v1.1)

In v1.0, the SoC has a fixed I$ and D$ cache way
(1 way) and size (4 KB).
In v1.1, the wizard supports 1 ways and 1 KB, 2
KB, 4 KB, 8 KB, 16 KB, or 32 KB

www.efinixinc.com 125

Sapphire RISC-V SoC Hardware and Software User Guide

Tab Option Setting Notes

External Memory AXI3
Interface

DISABLE (v1.0)
ENABLE or

DISABLE (v1.1)

In v1.x, an external memory interface is not
supported with a cacheless CPU

On-Chip RAM Size 1 KB, 2 KB,
4 KB, 8 KB,

16 KB, 32 KB,
64 KB, 128
KB, 256 KB,
or 512 KB

The v1.x SoC supports fewer sizes for On-Chip
RAM. Choose one of these options in v2.0 for
compatibility.

Target OpenOCD See v2.0
options

This option is not supported in v1.0.
This option is the same in v1.1 and v2.0.

Custom Target OpenOCD See v2.0
options

This option is not supported in v1.0.
This option is the same in v1.1 and v2.0.

Debug

OpenOCD Debug Mode Any This option is not supported in v1.x. However,
you can choose either option because it sets IDE
environment variables and does not affect the
SoC.

Debug Configuration
The default_softTap debug configuration file is updated in v2.0. Therefore, you cannot
use the default_softTap generated with v1.1 with v2.0. If you are using v2.0, you need
to remove the old default_softTap debug configuration from your Eclipse project and
import the v2.0 one. See Appendix: Import the Debug Configuration on page 199 for
instructions. Importing the Debug Configuration is not applicable if you are using Efinity
RISC-V Embedded Software IDE as the IDE generates the debug configuration during the
import project wizard.

Application Software
In v2.0, the there are several changes to the generated embedded software:

• SoC device names and definitions—The device names and definitions in the soc.h
file are updated. The v2.0 embedded software includes the file compability.h, which
converts the naming from v1.x to v2.0. Include compability.h at the top of your
software application code to convert the names. You can also reference the example
compabilityDemo in the /embedded_sw/<module name>/software/standalone
folder.

• Core timer driver—The machine timer is replaced with the Clint timer, which is a native
CPU timer. The software driver code is slightly different than the code for the machine
timer. To convert from the machine timer function to the Clint timer function, include
the compability.h and bsp.h at the top of your software application code.

Note: compatibilityDemo provides an example of how to use compability.h and bsp.h.

www.efinixinc.com 126

Sapphire RISC-V SoC Hardware and Software User Guide

Migrating Ruby, Jade, and Opal to the
Sapphire SoC
The Ruby, Jade, and Opal SoCs are end of life in the Efinity software v2022.1. The following
sections provide the parameters you should set in the Sapphire SoC IP Configuration wizard
to get the same functionality as Ruby, Jade, or Opal.

Ruby Configuration
Parameter Setting Address

Core Number 1

Frequency Configurable

Peripheral Clock No

Cache Yes

Custom Instruction No

Linux Memory
Management Unit

No

Floating-point unit No

SOC

Atomic Extension No

Data Cache Way 1

Data Cache Size 4KB

Instruction Cache
Way

1

Instruction Cache Size 4KB

External Memory
Interface

Yes

AXI Interface Type AXI3

External Memory
Data Width

128

External Memory
Address Size

3.5GB

On-Chip RAM Size Configurable 0xf9000000

Cache/Memory

Custom On-Chip
RAM Application

No

Soft Debug Tap Configurable

FPGA Tap Port Configurable

Target Board Configurable

Application Region
Size

-

Application Stack Size -

Debug

Application Debug
Mode

-

UART0 Yes 0xf8010000UART

UART0 Interrupt ID 1

www.efinixinc.com 127

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

UART1 Yes 0xf8011000

UART1 Interrupt ID 2

UART2 No

UART2 Interrupt ID -

SPI0 Yes 0xf8014000

SPI0 Interrupt ID 4

SPI1 Yes 0xf8015000

SPI1 Interrupt ID 5

SPI2 Yes 0xf8016000

SPI

SPI2 Interrupt ID 6

I2C0 Yes 0xf8018000

I2C0 Interrupt ID 8

I2C1 Yes 0xf8019000

I2C1 Interrupt ID 9

I2C2 Yes 0xf801A0000

I2C

I2C2 Interrupt ID 10

GPIO0 Yes 0xf8000000

GPIO0 Width 16

GPIO0 Interrupt ID 12, 13

GPIO1 No

GPIO1 Width -

GPIO

GPIO1 Interrupt ID -

APB3 Slave Size 64KB

APB0 Yes 0xf8800000

APB1 Yes 0xf8810000

APB2 No

APB3 No

APB3

APB4 No

AXI Slave Yes 0xfa000000

AXI Slave Size 16MB

AXI Master 0 Yes

AXI Master 0 Data
Width

32

AXI Master 1 -

AXI4

AXI Master 1 Data
Width

-

User Interrupt A Yes

User Interrupt A ID 25

User Interrupt

User Interrupt B No

www.efinixinc.com 128

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

User Interrupt B ID -

User Interrupt C No

User Interrupt C ID -

User Interrupt D No

User Interrupt D ID -

User Interrupt E No

User Interrupt E ID -

User Interrupt F No

User Interrupt F ID -

User Interrupt G No

User Interrupt G ID -

User Interrupt H No

User Interrupt H ID -

User Timer 0 No

User Timer 0 Counter
Width

-

User Timer 0
Prescaler Width

-

User Timer 0 Interrupt
ID

-

User Timer 1 No

User Timer 1 Counter
Width

-

User Timer 1
Prescaler Width

-

User Timer 1 Interrupt
ID

-

User Timer 2 No

User Timer 2 Counter
Width

-

User Timer 2
Prescaler Width

-

User Timer

User Timer 2 Interrupt
ID

-

www.efinixinc.com 129

Sapphire RISC-V SoC Hardware and Software User Guide

Jade Configuration
Parameter Setting Address

Core Number 1

Frequency Configurable

Peripheral Clock No

Cache Yes

Custom Instruction No

Linux Memory
Management Unit

No

Floating-point unit No

SOC

Atomic Extension No

Data Cache Way 1

Data Cache Size 4KB

Instruction Cache
Way

1

Instruction Cache Size 4KB

External Memory
Interface

No

AXI Interface Type -

External Memory
Data Width

-

External Memory
Address Size

-

On-Chip RAM Size Configurable 0xf9000000

Cache/Memory

Custom On-Chip
RAM Application

No

Soft Debug Tap Configurable

FPGA Tap Port Configurable

Target Board Configurable

Application Region
Size

-

Application Stack Size -

Debug

Application Debug
Mode

-

UART0 Yes 0xf8010000

UART0 Interrupt ID 1

UART1 No

UART1 Interrupt ID -

UART2 No

UART

UART2 Interrupt ID -

SPI0 Yes 0xf8014000SPI

SPI0 Interrupt ID 4

www.efinixinc.com 130

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

SPI1 Yes 0xf8015000

SPI1 Interrupt ID 5

SPI2 -

SPI2 Interrupt ID -

I2C0 Yes 0xf8018000

I2C0 Interrupt ID 8

I2C1 Yes 0xf8019000

I2C1 Interrupt ID 9

I2C2 No

I2C

I2C2 Interrupt ID -

GPIO0 Yes 0xf8000000

GPIO0 Width 16

GPIO0 Interrupt ID 12, 13

GPIO1 No

GPIO1 Width -

GPIO

GPIO1 Interrupt ID -

APB3 Slave Size 64KB

APB0 Yes 0xf8800000

APB1 No

APB2 No

APB3 No

APB3

APB4 No

AXI Slave No

AXI Slave Size -

AXI Master 0 -

AXI Master 0 Data
Width

-

AXI Master 1 -

AXI4

AXI Master 1 Data
Width

-

User Interrupt A Yes

User Interrupt A ID 25

User Interrupt B No

User Interrupt B ID -

User Interrupt C No

User Interrupt C ID -

User Interrupt D No

User Interrupt D ID -

User Interrupt

User Interrupt E No

www.efinixinc.com 131

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

User Interrupt E ID -

User Interrupt F No

User Interrupt F ID -

User Interrupt G No

User Interrupt G ID -

User Interrupt H No

User Interrupt H ID -

User Timer 0 No

User Timer 0 Counter
Width

-

User Timer 0
Prescaler Width

-

User Timer 0 Interrupt
ID

-

User Timer 1 No

User Timer 1 Counter
Width

-

User Timer 1
Prescaler Width

-

User Timer 1 Interrupt
ID

-

User Timer 2 No

User Timer 2 Counter
Width

-

User Timer 2
Prescaler Width

-

User Timer

User Timer 2 Interrupt
ID

-

Opal Configuration
Parameter Setting Address

Core Number 1

Frequency Configurable

Peripheral Clock No

Cache No

Custom Instruction -

Linux Memory
Management Unit

-

Floating-point unit -

SOC

Atomic Extension -

Data Cache Way -Cache/Memory

Data Cache Size -

www.efinixinc.com 132

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

Instruction Cache
Way

-

Instruction Cache Size -

External Memory
Interface

No

AXI Interface Type -

External Memory
Data Width

-

External Memory
Address Size

-

On-Chip RAM Size Configurable 0xf9000000

Custom On-Chip
RAM Application

No

Soft Debug Tap Configurable

FPGA Tap Port Configurable

Target Board Configurable

Application Region
Size

-

Application Stack Size -

Debug

Application Debug
Mode

-

UART0 Yes 0xf8010000

UART0 Interrupt ID 1

UART1 No

UART1 Interrupt ID -

UART2 No

UART

UART2 Interrupt ID -

SPI0 Yes 0xf8014000

SPI0 Interrupt ID 4

SPI1 No

SPI1 Interrupt ID -

SPI2 -

SPI

SPI2 Interrupt ID -

I2C0 Yes 0xf8018000

I2C0 Interrupt ID 8

I2C1 No

I2C1 Interrupt ID -

I2C2 No

I2C

I2C2 Interrupt ID -

GPIO0 Yes 0xf8000000GPIO

GPIO0 Width 8

www.efinixinc.com 133

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

GPIO0 Interrupt ID 12, 13

GPIO1 No

GPIO1 Width -

GPIO1 Interrupt ID -

APB3 Slave Size 64KB

APB0 Yes 0xf8800000

APB1 No

APB2 No

APB3 No

APB3

APB4 No

AXI Slave No

AXI Slave Size -

AXI Master 0 -

AXI Master 0 Data
Width

-

AXI Master 1 -

AXI4

AXI Master 1 Data
Width

-

User Interrupt A Yes

User Interrupt A ID 25

User Interrupt B No

User Interrupt B ID -

User Interrupt C No

User Interrupt C ID -

User Interrupt D No

User Interrupt D ID -

User Interrupt E No

User Interrupt E ID -

User Interrupt F No

User Interrupt F ID -

User Interrupt G No

User Interrupt G ID -

User Interrupt H No

User Interrupt

User Interrupt H ID -

User Timer 0 No

User Timer 0 Counter
Width

-

User Timer

User Timer 0
Prescaler Width

-

www.efinixinc.com 134

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

User Timer 0 Interrupt
ID

-

User Timer 1 No

User Timer 1 Counter
Width

-

User Timer 1
Prescaler Width

-

User Timer 1 Interrupt
ID

-

User Timer 2 No

User Timer 2 Counter
Width

-

User Timer 2
Prescaler Width

-

User Timer 2 Interrupt
ID

-

www.efinixinc.com 135

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 17

Troubleshooting
Contents:

• Error 0x80010135: Path too long (Windows)
• Installation Error (2350): Path too long (Windows)
• OpenOCD Error: timed out while waiting for target halted
• Memory Test
• OpenOCD error code (-1073741515)
• OpenOCD Error: no device found
• OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO
• OpenOCD Error: target 'fpga_spinal.cpu0' init failed
• Eclipse Fails to Launch with Exit Code 13
• Efinity Debugger Crashes when using OpenOCD
• Exception in thread "main"
• Unexpected CPUTAPID/JTAG Device ID

www.efinixinc.com 136

Sapphire RISC-V SoC Hardware and Software User Guide

Error 0x80010135: Path too long (Windows)
When you unzip the legacy RISC-V SDK on Windows, you may get the error message:

An unuexpected error is keeping you from copying the file. If you continue
to receive this error, you can use the error code to search for help with
this problem.

Error 0x80010135: Path too long

This error occurs if you try to unzip the SDK files into a deep folder hierarchy instead of one
that is close to the root level. Instead unzip to c:\riscv-sdk.

Installation Error (2350): Path too long
(Windows)
When you install the Efinity RISC-V Embedded software IDE on Windows, you may
encounter the error message:

The installer has encountered an unexpected error installing this package.
This may indicate a problem with this package. This error code is 2350.

This error may occur when installing the Efinity RISC-V Embedded software IDE in a deeply
nested directory on Windows. To avoid this issue, Efinix recommends installing the software
in a shorter path, such as C:\Efinity. This minimizes the risk of exceeding Windows' file path
length limitations.

OpenOCD Error: timed out while waiting for
target halted
The OpenOCD debugger console may display this error when:
• There is a bad contact between the FPGA header pins and the programming cable.
• The FPGA is not configured with a Sapphire SoC design.
• You may not have the correct PLL settings to work with the Sapphire SoC.
• Your computer does not have enough memory to run the program.
• You may use the wrong launch scripts to launch the debug.

To solve this problem:
• Make sure that all of the cables are securely connected to the board and your computer.
• Check the JTAG connection.

www.efinixinc.com 137

Sapphire RISC-V SoC Hardware and Software User Guide

Memory Test
Your user binary may not boot correctly if there is a memory corruption problem (that
is, the communication between the DDR hard controller and memory module is not
functioning). This issue can appear when booting using the SPI flash or OpenOCD debugger.
The following instructions provide a debugging flow to determine whether you system has
this problem. You use two command prompts or shells to perform the test:
• The first terminal opens an OpenOCD connection to the SoC.
• The second connects to the first terminal for performing the test.

Important: If you are using the OpenOCD debugger in Efinity RISC-V Embedded Software IDE, terminate
any debug processes before performing this test.

Set Up Terminal 1
To set up terminal 1, the flow varies on your IDE selection during the Sapphire SoC generation.

Efinity RISC-V Embedded Software IDE Selected

1. Open a Windows command prompt or Linux shell.
2. Change the directory to any of the example designs in your selected bsp location.

The default location for <efinity-riscv-ide installation path> would be C:\Efinity
\efinity-riscv-ide-2022.2.3 for windows and home/<user>/efinity/efinity-riscv-
ide-2022.2.3 for Linux.

Note: The 2022.2.3 in the installation path may be different based on your IDE
versions.

Windows:

<efinity-risc-v-ide installation path>\openocd\bin\openocd.exe -f ..\..\..
\bsp\efinix\EfxSapphireSoc\openocd\ftdi.cfg
-c "set CPU0_YAML ..\..\..\cpu0.yaml"
-f ..\..\..\bsp\efinix\EfxSapphireSoc\openocd\flash.cfg

Linux:

<efinity-risc-v-ide installation path>/openocd/bin/openocd -f ../../../bsp/
efinix/EfxSapphireSoc/openocd/ftdi.cfg
-c "set CPU0_YAML ../../../cpu0.yaml"
-f ../../../bsp/efinix/EfxSapphireSoc/openocd/flash.cfg

The OpenOCD server connects and begins listening on port 4444.

www.efinixinc.com 138

Sapphire RISC-V SoC Hardware and Software User Guide

Legacy Eclipse IDE Selected

1. Open a Windows command prompt or Linux shell.
2. Change to SDK_Windows or SDK_Ubuntu.
3. Execute the setup.bat (Windows) or setup.sh (Linux) script.
4. Change to the directory that has the cpu0.yaml file.
5. Type the following commands to set up the OpenOCD server:

Windows:

openocd.exe -f bsp\efinix\EfxSapphireSoc\openocd\ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxSapphireSoc\openocd\flash.cfg

Linux:

openocd -f bsp/efinix/EfxSapphireSoc/openocd/ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxSapphireSoc/openocd/flash.cfg

The OpenOCD server connects and begins listening on port 4444.

Set Up Terminal 2
1. Open a second command prompt or shell.
2. Enable telnet if it is not turned on. Turn on telnet (Windows)
3. Open a telnet host on port 4444 with the command telnet localhost 4444.
4. To test the on-chip RAM, use the mdw command to get the bootloader binary. Type

the command mdw <address> <number of 32-bit words> to display the content of the
memory space. For example: mdw 0xF900_0000 32.

5. To test the DRAM:
• Use the mww command to write to the memory space: mww <address> <data>. For

example: mww 0x00001000 16.
• Then, use the mdw command to write to the memory space: mdw <address>

<data>. For example: mdw 0x00001000 16. If the memory space has collapsed,
the console shows all 0s.

Close Terminals
When you finish:
• Type exit in terminal 2 to close the telnet session.
• Type Ctrl+C in terminal 1 to close the OpenOCD session.

Important: OpenOCD cannot be running in Efinity RISC-V Embedded Software IDE when you are using
it in a terminal. If you try to run both at the same time, the application will crash or hang. Always close the
terminals when you are done flashing the binary.

Reset the FPGA
Press the reset button on your development board:
• Trion® T120 BGA324 Development Board—SW2
• Titanium Ti60 F225 Development Board—SW3
• Titanium Ti180 J484 Development Board—SW1

www.efinixinc.com 139

Sapphire RISC-V SoC Hardware and Software User Guide

OpenOCD error code (-1073741515)
The OpenOCD debugger may fail with error code -1073741515 if your system does not
have the libusb0.dll installed. To fix this problem, install the DLL. This issue only affects
Windows systems.

OpenOCD Error: no device found
The FTDI driver included with the Sapphire SoC specifies the FTDI device VID and PID,
and board description. In some cases, an early revision of the Efinix development board may
have a different name than the one given in the driver file. If the board name does not match
the name in the driver, OpenOCD fails with an error similar to the following:

Error: no device found
Error: unable to open ftdi device with vid 0403, pid 6010, description 'Trion T20 Development
 Board', serial '*' at bus location '*'

To fix this problem, follow these steps with the development board attached to the computer:

1. Open the Efinity Programmer.
2. Click the Refresh USB Targets button to display the board name in the USB Target

drop-down list.
3. Make note of the board name.
4. In a text editor, open the ftdi.cfg (Trion) or ftdi_ti.cfg (Titanium) file in the /bsp/

efinix/EFXSapphireSoC/openocd directory.
5. Change the ftdi_device_desc setting to match your board name. For example,

use this code to change the name from Trion T20 Development Board to Trion T20
Developer Board:

interface ftdi
ftdi_device_desc "Trion T20 Developer Board"
#ftdi_device_desc "Trion T20 Development Board"
ftdi_vid_pid 0x0403 0x6010

6. Save the file.
7. Debug as usual in OpenOCD.

OpenOCD Error: failed to reset FTDI device:
LIBUSB_ERROR_IO
This error is typically caused because you have the wrong Windows USB driver for the
development board. If you have the wrong driver, you get an error similar to:

Error: failed to reset FTDI device: LIBUSB_ERROR_IO
Error: unable to open ftdi device with vid 0403, pid 6010, description
'Trion T20 Development Board', serial '*' at bus location '*'

www.efinixinc.com 140

Sapphire RISC-V SoC Hardware and Software User Guide

OpenOCD Error: target 'fpga_spinal.cpu0' init
failed
You may receive this error when trying to debug after creating your OpenOCD debug
configuration. The RISC-V IDE Console gives an error message similar to:

Error cpuConfigFile C:RiscVsoc_Jadesoc_jade_swcpu0.yaml not found
Error: target 'fpga_spinal.cpu0' init failed

This error occurs because the path to the cpu0.yaml file is incorrect, specifically the slashes
for the directory separators. You should use:
• a single forward slash (/)
• 2 backslashes (\\)

For example, either of the following are good:

C:\\RiscV\\soc_Jade\\soc_jade_sw\\cpu0.yaml
C:/RiscV/soc_Jade/soc_jade_sw/cpu0.yaml

Eclipse Fails to Launch with Exit Code 13
The Legacy Eclipse software requires a 64-bit version of the Java JRE. When you launch
Eclipse using a 32-bit version, you get an error that Java quits with exit code 13.

If you are downloading the JRE using a web browser from www.java.com, it defaults to
getting the 32-bit version. Instead, go to https://www.java.com/en/download/manual.jsp
to download the 64-bit version.

The Efinity RISC-V Embedded Software IDE does not require you to install Java JRE as it
contains its own Java Executable within its folder. This reduces the chances of failure caused
by the Java JRE versioning.

Efinity Debugger Crashes when using
OpenOCD
The Efinity® Debugger crashes if you try to use it for debugging while also using OpenOCD.
Both applications use the same USB connection to the development board, and conflict if you
use them at the same time. To avoid this issue:
• Do not use the two debuggers at the same time.
• Use an FTDI cable and a soft JTAG core for OpenOCD debugging. See Using a Soft

JTAG Core for Example Designs for details.

www.efinixinc.com 141

http://www.java.com
https://www.java.com/en/download/manual.jsp

Sapphire RISC-V SoC Hardware and Software User Guide

Exception in thread "main"
When you generate the SoC with a custom user application, you may receive messages similar
to the following when you compile your software application:

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: Index 29361152 out of bounds for
 length 1024
at spinal.lib.misc.HexTools$$anonfun$initRam$1.apply$mcVII
$sp(HexTools.scala:53)

This can happen when you have an SoC with external memory interface. The default linker
script targets the external memory region during application compilation. You should
compile your application to target on-chip RAM instead by following these steps:

1. Open the file <project>/embedded_sw/<module>/software/standalone/common/bsp.mk.
2. Change line 7 from

LDSCRIPT ?= ${BSP_PATH}/linker/default.ld

to

LDSCRIPT ?= ${BSP_PATH}/linker/default_i.ld

3. Recompile the application.

If these steps do not solve the issue, contact the Efinix support team via our forum in the
Support Center.

www.efinixinc.com 142

https://efinixinc.com/support/forum.php

Sapphire RISC-V SoC Hardware and Software User Guide

Unexpected CPUTAPID/JTAG Device ID
You may receive the following warnings in the Efinity RISC-V Embedded Software IDE
console when trying to debug a device other than the following development kits or devices:
• Trion T20 BGA256 Development Kit (T20BGA256)
• Trion® T120 BGA324 Development Kit (T120BGA324)
• Trion T120 BGA576 Development Kit (T120F576)
• Xyloni (T8BGA81)
• Titanium Ti60 F225 Development Kit (Ti60F225)
• Titanium Ti180 M484 Development Kit (Ti180M484)
• Titanium Ti180 J484 Development Kit (Ti180J484)

You will receive the warning if you have selected the wrong development kit. These warnings
do not cause any issues to launch the debugging process.

To resolve the unwanted warnings, follow these steps:

1. Go to Debug Configuration > Debugger > OpenOCD Setup > Config Options.
2. Type the following command line:

-c 'set CPUTAPID 0x<ID>'

where <ID> is the correct TAP ID of the connected device in Hexadecimal format.

Note: You may find your device's JTAG device ID in the "JTAG Programming" topic in the Efinity Software
User Guide.

www.efinixinc.com 143

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 18

API Reference
Contents:

• Control and Status Registers
• GPIO API Calls
• I2C API Calls
• I/O API Calls
• Core Local Interrupt Timer API Calls
• User Timer API Calls
• PLIC API Calls
• SPI API Calls
• SPI Flash Memory API Calls
• UART API Calls
• RISC-V API Calls
• Handling Interrupts

The following sections describe the API for the code in the driver directory.

Control and Status Registers

Note: Refer to Sapphire RISC-V SoC Data Sheet for the available Control and Status Registers (CSR).

csr_clear()

Usage csr_clear(csr, val)

Parameters [IN] csr CSR register
[IN] val CSR bit to clear. Set 1 on bit to clear.

Include driver/riscv.h

Description Clear a CSR.

Example
csr_clear(mie, MIE_MTIE | MIE_MEIE);
// Clear MTIE and MEIE bit in mie CSR

www.efinixinc.com 144

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=SAPPHIREDS

Sapphire RISC-V SoC Hardware and Software User Guide

csr_read()

Usage csr_read(csr)

Parameters [IN] csr CSR register

Returns [OUT] 32-bit CSR register data

Include driver/riscv.h

Description Read from a CSR.

Example
u32 mie = csr_read(mie);
// Read MIE CSR register data in mie variable

csr_read_clear()

Usage csr_read_clear(csr, val)

Parameters [IN] csr CSR register
[IN] val CSR bit to clear. Set 1 on bit to clear.

Returns [OUT] 32-bit CSR register data

Include driver/riscv.h

Description Read the entire CSR register and clear the specified bits indicated by the argument,
val.

csr_read_set()

Usage csr_read_set(csr, val)

Parameters [IN] csr CSR register
[IN] val CSR bit to set. Set 1 on bit to set.

Returns [OUT] 32-bit CSR register data

Include driver/riscv.h

Description Read the entire CSR register and set the specified bits indicated by the argument,
val.

csr_set()

Usage csr_set(csr, val)

Parameters [IN] csr CSR register
[IN] val CSR bit to set. Set 1 on bit to set.

Include driver/riscv.h

Description Set the specified bits indicated by the argument, val to the CSR.

www.efinixinc.com 145

Sapphire RISC-V SoC Hardware and Software User Guide

csr_swap()

Usage csr_swap(csr, val)

Parameters [IN] csr CSR register
[IN] val Value to swap into CSR register.

Returns [OUT] 32-bit CSR register data swapped out

Include driver/riscv.h

Description Swaps values in the CSR.

Example
u32 val = csr_swap(mtvec, 0x120);
// mtvec CSR will be set to 0 x 120 while the original mtval
// CSR value will be returned as val.

csr_write()

Usage csr_write(csr, val)

Parameters [IN] csr CSR register
[IN] val Value to write into CSR register.

Include driver/riscv.h

Description Write to a CSR.

Example
csr_write(mtvec, 0x100);
// Write 0 x 100 to mtvec CSR register

opcode_R()

Usage opcode_R(opcode, func3, func7, rs1, rs2)

Include driver/riscv.h

Description Define an opcode for the custom instruction.

Example
#define tea_l(rs1, rs2);
opcode_R(CUSTOM0, 0x00, 0x00, rs1, rs2);

www.efinixinc.com 146

Sapphire RISC-V SoC Hardware and Software User Guide

GPIO API Calls
gpio_getFilteringHit()

Usage gpio_getFilteringHit(reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Read the 32-bit I2C register filter hit with a call back function.

Example
if(gpio_getFilteringHit(I2C_CTRL) == 1);
// Check filter hit value, bit [7] from slave address,
// read =’1’ write =’0’

Note: gpio_getFilteringHit() is deprecated, use i2C_getFilteringHit() instead.

gpio_getFilteringStatus()

Usage gpio_getFilteringStatus(reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Read the 32-bit I2C register filter status with a call back function.

Example
if(gpio_getFilteringStatus (I2C_CTRL) == 1);
// Check filter hit status, bit [7] from slave address,
// read =’1’ write =’0

Note: gpio_getFilteringStatus() is deprecated, use i2C_getFilteringStatus() instead.

gpio_getInput()

Usage gpio_getInput(reg)

Parameters [IN] reg base address of specific GPIO

Returns [OUT] 32-bit GPIO input state

Include driver/gpio.h

Description Get input from a GPIO.

www.efinixinc.com 147

Sapphire RISC-V SoC Hardware and Software User Guide

gpio_getInterruptFlag()

Usage gpio_getInterruptFlag(reg)

Parameters [IN] reg base address of specific I2C

Returns [OUT] 32-bit I2C register interrupt flag

Include driver/i2c.h

Description Read the 32-bit I2C register interrupt flag with a call back function.

Example
Int flag = gpio_getInterruptFlag(I2C_CTRL) & I2C_INTERRUPT_DROP;
// Get Drop interrupt flag from Interrupt register
//[2] I2C_INTERRUPT_TX_DATA
//[3] I2C_INTERRUPT_TX_ACK
//[7] I2C_INTERRUPT_DROP
//[16] I2C_INTERRUPT_CLOCK_GEN_BUSY
//[17] I2C_INTERRUPT_FILTER

Note: gpio_getInterruptFlag() is deprecated, use i2C_getInterruptFlag() instead.

gpio_getMasterStatus()

Usage gpio_getMasterStatus(reg)

Parameters [IN] reg base address of specific I2C

Returns [OUT] 32-bit I2C register master status

Include driver/i2c.h

Description Read the 32-bit I2C register master status with a call back function.

Example
int status = gpio_getMasterStatus(I2C_CTRL) & I2C_MASTER_BUSY;
// Get master busy status from status register
[0]I2C_MASTER_BUSY
[4]I2C_MASTER_START
[5]I2C_MASTER_STOP
[6]I2C_MASTER_DROP

Note: gpio_getMasterStatus() is deprecated, use i2C_getMasterStatus() instead.

gpio_getOutput()

Usage gpio_getOutput(reg)

Parameters [IN] reg base address of specific GPIO

Returns [OUT] 32-bit GPIO output state

Include driver/gpio.h

Description Read the output pin.

gpio_getOutputEnable()

Usage gpio_getOutputEnable(reg)

Parameters [IN] reg base address of specific GPIO

Returns [OUT] 32-bit GPIO output enable setting

Include driver/gpio.h

Description Read GPIO output enable.

www.efinixinc.com 148

Sapphire RISC-V SoC Hardware and Software User Guide

gpio_setOutput()

Usage gpio_setOutput(reg, value)

Parameters [IN] reg base address of specific GPIO
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set GPIO as 1 or 0.

gpio_setOutputEnable()

Usage gpio_setOutputEnable(reg, value)

Parameters [IN] reg base address of specific GPIO
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set 1 to set GPIO bit as output. Set 0 to set GPIO bit as input.

gpio_setInterruptRiseEnable()

Usage gpio_setInterruptRiseEnable(reg, value)

Parameters [IN] reg base address of specific GPIO
[IN] value GPIO Rise Interrupt Enable bitwise

Include driver/gpio.h

Description Set 1 to set GPIO bit to interrupt when a rising edge is detected.

gpio_setInterruptFallEnable()

Usage gpio_setInterruptFallEnable(reg, value)

Parameters [IN] reg base address of specific GPIO
[IN] value GPIO Fall Interrupt Enable bitwise

Include driver/gpio.h

Description Set 1 to set GPIO bit to interrupt when a falling edge is detected.

gpio_setInterruptHighEnable()

Usage gpio_setInterruptHighEnable(reg, value)

Parameters [IN] reg base address of specific GPIO
[IN] value GPIO High Interrupt Enable bitwise

Include driver/gpio.h

Description Set 1 to set GPIO bit to interrupt when a high state is detected.

gpio_setInterruptLowEnable()

Usage gpio_setInterruptLowEnable(reg, value)

Parameters [IN] reg base address of specific GPIO
[IN] value GPIO Low Interrupt Enable bitwise

Include driver/gpio.h

Description Set 1 to set GPIO bit to interrupt when a low state is detected.

www.efinixinc.com 149

Sapphire RISC-V SoC Hardware and Software User Guide

I2C API Calls
i2c Config Struct

typedef struct{
 //Master/Slave mode
 //Number of cycle - 1 between each SDA/SCL sample
 u32 samplingClockDivider;
 //Number of cycle - 1 after which an inactive frame is considered dropped.
 u32 timeout;
 //Number of cycle - 1 SCL should be keept low (clock stretching)
 //after having feed the data to the SDA to ensure a correct
 //propagation to other devices
 u32 tsuDat;
 //Master mode
 //SCL low (cycle count -1)
 u32 tLow;
 //SCL high (cycle count -1)
 u32 tHigh;
 //Minimum time between the Stop/Drop -> Start transition
 u32 tBuf;
 } I2c_Config;

i2c_getFilteringHit()

Usage I2c_getFilteringHit(reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Returns [OUT] 2-bit output:
[0] indicates address hit for address setting 0.
[1] indicates address hit for address setting 1.

Description Read the 32-bit I2C register filter hit to register filter hit with a call back function.
Return 1 on a specific bit if the filter address is enabled and the address received
from the master is tallied with the target address settings for target address 0 (0 x
88) and target address 1 (0 x 8C). Used for slave mode.

Example
if(i2c_getFilteringHit(I2C_CTRL) == 1);
// Check if address 0 received is the expected address from master.

i2c_getFilteringStatus()

Usage I2c_getFilteringStatus(reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Returns [OUT] 1-bit output indicates the operation requested from master:
Return 1 indicates read operation requested.
Return 0 indicates write operation requested.

Description Read the operation requested from master. Used in slave mode.

Example
if(i2c_getFilteringStatus(I2C_CTRL) == 1);
// Check filter hit value, bit [7] from slave address,
// read =’1’ write =’0’

www.efinixinc.com 150

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_getInterruptFlag()

Usage I2c_getInterruptFlag(reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Returns [OUT] 32-bit interrupt flags:
[4] Start flag
[5] Restart flag
[6] End flag
[7] Drop flag
[15] Clock generation exit flag
[16] Clock generation enter flag
[17] Filter generation flag

Description Read the 32-bit I2C register interrupt flag.

Example
Int flag = i2c_getInterruptFlag(I2C_CTRL) & I2C_INTERRUPT_DROP;
// Get Drop interrupt flag from Interrupt register

i2c_getMasterStatus()

Usage I2c_getMasterStatus(reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Returns [OUT] 32-bit current master status:
[0] I2C controller busy
[4] Start sequence in progress/requested
[5] Stop sequence in progress/requested
[6] Drop sequence in progress/requested
[7] Recover sequence in progress/requested
[9] Sequence dropped when executing start sequence
[10] Sequence dropped when executing stop sequence
[11] Sequence dropped when executing recover sequence

Description Read the 32-bit I2C register current master status.

Example
int status = i2c_getMasterStatus(I2C_CTRL) & I2C_MASTER_BUSY;
// Get master busy status from status register

www.efinixinc.com 151

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_getSlaveStatus()

Usage I2c_getSlaveStatus(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Returns [OUT] 32-bit current slave status:
[0] Indicates the slave is in frame. Start sequence executed. Required stop or drop
sequence to exit from frame.
[1] Current state of SDA bus
[2] Current state of SCL bus

Description Read the I2C bus status. This function allows the software to obtain the current state
of the SDA and SCL bus.

i2c_getSlaveOverride()

Usage I2c_getSlaveOverride(u32 reg, u32 value)

Parameters [IN] reg base address of specific I2C
[IN] value I2C slave override value

Include driver/i2c.h

Returns [OUT] 32-bit slave override setting:
[1] SDA bus override setting
[2] SCL bus override setting

Description Manually controls the state of SDA and SCL. Setting of zero will forcefully pull the
bus low while setting of one will release the bus as the I2C bus is always in pull-up
condition.

i2c_applyConfig()

Usage void i2c_applyConfig(u32 reg, I2c_Config *config)

Parameters [IN] reg base address of specific I2C
[IN] config struct of I2C configuration

Include driver/i2c.h

Description Apply I2C configuration to register or for initial configuration.

i2c_clearInterruptFlag()

Usage void i2c_clearInterruptFlag(u32 reg, u32 value)

Parameters [IN] reg base address of specific I2C
[IN] value I2C interrupt flag to reset

Note: Refer to "Interrupt Clears Register: 0x0000_0024" in Sapphire RISC-
V SoC Data Sheet.

Include driver/i2c.h

Description Clear the I2C interrupt flag by setting the interrupt bit to 1.

www.efinixinc.com 152

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=SAPPHIREDS
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=SAPPHIREDS

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_disableInterrupt()

Usage void i2c_disableInterrupt(u32 reg, u32 value)

Parameters [IN] reg base address of specific I2C
[IN] value I2C interrupt register:
[0] I2C_INTERRUPT_RX_DATA
[1] I2C_INTERRUPT_RX_ACK
[2] I2C_INTERRUPT_TX_DATA
[3] I2C_INTERRUPT_TX_ACK
[4] I2C_INTERRUPT_START
[5] I2C_INTERRUPT_RESTART
[6] I2C_INTERRUPT_END
[7] I2C_INTERRUPT_DROP
[15] I2C_INTERRUPT_CLOCK_GEN_EXIT
[16] I2C_INTERRUPT_CLOCK_GEN_ENTER
[17] I2C_INTERRUPT_FILTER

Include driver/i2c.h

Description Disable I2C interrupt.

Example
i2c_disableInterrupt(I2C_CTRL, I2C_INTERRUPT_TX_ACK);
// Enable I2C interrupt with interrupt TX Ack

i2c_enableInterrupt()

Usage void i2c_enableInterrupt(u32 reg, u32 value)

Parameters [IN] reg base address of specific I2C
[IN] value I2C interrupt register:
[0] I2C_INTERRUPT_RX_DATA
[1] I2C_INTERRUPT_RX_ACK
[2] I2C_INTERRUPT_TX_DATA
[3] I2C_INTERRUPT_TX_ACK
[4] I2C_INTERRUPT_START
[5] I2C_INTERRUPT_RESTART
[6] I2C_INTERRUPT_END
[7] I2C_INTERRUPT_DROP
[15] I2C_INTERRUPT_CLOCK_GEN_EXIT
[16] I2C_INTERRUPT_CLOCK_GEN_ENTER
[17] I2C_INTERRUPT_FILTER

Include driver/i2c.h

Description Enable I2C interrupt.

Example
i2c_enableInterrupt(I2C_CTRL, I2C_INTERRUPT_FILTER |
 I2C_INTERRUPT_DROP);
// Enable I2C interrupt with interrupt filter and drop

www.efinixinc.com 153

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_filterEnable()

Usage void i2c_filterEnable(u32 reg, u32 filterId, u32 config)

Parameters [IN] reg base address of specific I2C
[IN] filterID filter configuration ID number
[IN] config struct of I2C configuration:
• [0] Filter address 0
• [1] Filter address 1

Include driver/i2c.h

Description Enable the filter configuration.

i2c_listenAck()

Usage void i2c_listenAck(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Listen acknowledge from the slave.

i2c_masterBusy()

Usage int i2c_masterBusy(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Returns [OUT] Integer master busy status (1-bit):
Returns 0 indicates Master is available
Returns 1 indicates Master is busy/in progress

Description Get the I2C busy status.

i2c_masterStatus()

Usage int i2c_masterStatus(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Returns [OUT] 32-bit current master status:
[0] I2C controller busy
[4] Start sequence in progress/requested
[5] Stop sequence in progress/requested
[6] Drop sequence in progress/requested
[7] Recover sequence in progress/requested
[9] Sequence dropped when executing start sequence
[10] Sequence dropped when executing stop sequence
[11] Sequence dropped when executing recover sequence

Description Get the I2C status.

www.efinixinc.com 154

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_masterDrop()

Usage void i2c_masterDrop(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Change the I2C master to the drop state.

Example i2c_masterDrop(I2C_CTRL);

i2c_masterStart()

Usage void i2c_masterStart(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Assert start condition.

i2c_masterRestart()

Usage void i2c_masterRestart(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Restart the I2C master by sending a start condition.

i2c_masterStartBlocking()

Usage void i2c_masterStartBlocking(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Asserts a start condition and wait for the master to start the process.

i2c_masterRestartBlocking()

Usage void i2c_masterRestartBlocking(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Restart the I2C master by sending a start condition. Wait for the master to start the
process.

i2c_masterStop()

Usage void i2c_masterStop(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Asserts a stop condition.

www.efinixinc.com 155

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_masterStopBlocking()

Usage void i2c_masterStartBlocking(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Asserts a stop condition and waits for the master to start the process.

i2c_masterStopWait()

Usage void i2c_masterStopWait(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Waits for the master to be available.

i2c_masterRecoverBlocking()

Usage void i2c_masterRecoverBlocking(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description To recover the slave, toggle the SCL bus until the slave releases the SDA bus,except
for a timeout. This function will retry 3 times. This function may be used as a backup
plan to ensure that the slave can be recovered if a transaction fails in between.

i2c_setFilterConfig()

Usage void i2c_setFilterConfig(u32 reg, u32 filterId, u32 value)

Parameters [IN] reg base address of specific I2C
[IN] filterID filter configuration ID number
[IN] value filter configuration register:
• [0] Filter address 0
• [1] Filter address 1
• [9:0] I2C slave address
• [14] I2C_FILTER_10BITS
• [15] I2C_FILTER_ENABLE

Include driver/i2c.h

Description Set the filter configuration for selected filter ID.

Example
i2c_setFilterConfig(I2C_CTRL, 0, 0x30 | I2C_FILTER_ENABLE);
// Enable filter with ID=0 slave addr = 0x30 default 7 bit filter

i2c_txAck()

Usage void i2c_txAck(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Transmit acknowledge.

www.efinixinc.com 156

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_txAckBlocking()

Usage void i2c_txAckBlocking(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Transmit knowledge and wait for it to complete.

i2c_txAckWait()

Usage void i2c_txAckWait(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Wait for an acknowledge to transmit.

i2c_txByte()

Usage void i2c_txByte(u32 reg, u8 byte)

Parameters [IN] reg base address of specific I2C
[IN] byte 8 bits data to send out

Include driver/i2c.h

Description Transfers one byte to the I2C slave.

i2c_txByteRepeat()

Usage void i2c_txByteRepeat(u32 reg, u8 byte)

Parameters [IN] reg base address of specific I2C
[IN] byte 8 bits data to send out

Include driver/i2c.h

Description Send a byte in repeat mode.

i2c_txNack()

Usage void i2c_txNack(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Transfers a NACK.

i2c_txNackRepeat()

Usage void i2c_txNackRepeat(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Send a NACK in repeat mode.

www.efinixinc.com 157

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_txNackBlocking()

Usage void i2c_ txNackBlocking(u32 reg)

Parameters [IN] reg base address of specific I2C

Include driver/i2c.h

Description Transfer a NACK and wait for the completion.

i2c_rxAck()

Usage int i2c_rxAck(u32 reg)

Parameters [IN] reg base address of specific I2C

Returns [OUT] 1 bit acknowledge

Include driver/i2c.h

Description Receive an acknowledge from the I2C slave.

i2c_rxData()

Usage u32 i2c_rxData(u32 reg)

Parameters [IN] reg base address of specific I2C

Returns [OUT] 1 byte data from I2C slave

Include driver/i2c.h

Description Receive one byte data from I2C slave.

i2c_rxNack()

Usage int i2c_rxNack(u32 reg)

Parameters [IN] reg base address of specific I2C

Returns [OUT] 1 bit no acknowledge. Return 1 if NACK is received.

Include driver/i2c.h

Description Receive no acknowledge from the I2C slave.

i2c_writeData_b()

Usage void i2c_writeData_b(u32 reg, u8 slaveAddr, u8 regAddr, u8
*data, u32 length)

Parameters [IN] reg base address of specific I2C
[IN] slaveAddr 8-bit slave address (left shift 1-bit)
[IN] regAddr 8-bit register address
[IN] data 8-bit write data pointer
[IN] length number of byte of data to be transmitted

Include driver/i2c.h

Description Write a number of data with 8-bit register address.

www.efinixinc.com 158

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_writeData_w()

Usage void i2c_writeData_w(u32 reg, u8 slaveAddr, u16 regAddr, u8
*data, u32 length)

Parameters [IN] reg base address of specific I2C
[IN] slaveAddr 8-bit slave address (left shift 1-bit)
[IN] regAddr 8-bit register address
[IN] data 8-bit write data pointer
[IN] length number of byte of data to be transmitted

Include driver/i2c.h

Description Write a number of data with 16-bit register address.

i2c_readData_b()

Usage void i2c_readData_b(u32 reg, u8 slaveAddr, u8 regAddr, u8
*data, u32 length)

Parameters [IN] reg base address of specific I2C
[IN] slaveAddr 8-bit slave address (left shift 1-bit)
[IN] regAddr 8-bit register address
[IN] data 8-bit read data pointer
[IN] length number of byte of data to be transmitted

Include driver/i2c.h

Description Read a number of data with 8-bit register address.

i2c_readData_w()

Usage void i2c_readData_w(u32 reg, u8 slaveAddr, u16 regAddr, u8
*data, u32 length)

Parameters [IN] reg base address of specific I2C
[IN] slaveAddr 8-bit slave address (left shift 1-bit)
[IN] regAddr 16-bit register address
[IN] data 8-bit read data pointer
[IN] length number of byte of data to be transmitted

Include driver/i2c.h

Description Read a number of data with 16-bit register address.

www.efinixinc.com 159

Sapphire RISC-V SoC Hardware and Software User Guide

I/O API Calls
read_u8()

Usage u8 read_u8(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Returns [OUT] 8-bit data

Description Read 8-bit data from the specified address.

read_u16()

Usage u16 read_u16(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Returns [OUT] 16-bit data

Description Read 16-bit data from the specified address.

read_u32()

Usage u32 read_u32(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Returns [OUT] 32-bit data

Description Read 32-bit data from the specified address.

write_u8()

Usage void write_u8(u8 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 8 bits unsigned data to the specified address.

write_u16()

Usage void write_u16(u16 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 16 bits unsigned data to the specified address.

www.efinixinc.com 160

Sapphire RISC-V SoC Hardware and Software User Guide

write_u32()

Usage void write_u32(u32 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 32 bits unsigned data to the specified address.

write_u32_ad()

Usage void write_u32_ad(u32 address, u32 data)

Include driver/io.h

Parameters [IN] address SoC address
[IN] data SoC address data

Description Write 32 bits unsigned data to the specified address.

www.efinixinc.com 161

Sapphire RISC-V SoC Hardware and Software User Guide

Core Local Interrupt Timer API Calls
clint_setCmp()

Usage void clint_setCmp(u32 p, u64 cmp, u32 hart_id)

Include driver/clint.h

Parameters [IN] p CLINT base address
[IN] cmp timer compare register
[IN] hart_id HART ID, 0 to 3

Description Set a timer value to trigger an interrupt when the value is reached.

clint_getTime()

Usage u64 clint_getTime(u32 p)

Include driver/clint.h

Parameters [IN] p CLINT base address

Returns [OUT] Current core timer value

Description Gets the timer value.

clint_uDelay()

Usage u64 clint_uDelay(u32 usec, u32 hz, u32 reg)

Include driver/clint.h

Parameters [IN] usec microseconds
[IN] hz core frequency
[IN] reg CLINT base address

Description Delay for certain duration in microsecond with CLINT.

Example
#define bsp_uDelay(usec);
clint_uDelay(usec, SYSTEM_CLINT_HZ, SYSTEM_CLINT_CTRL);

www.efinixinc.com 162

Sapphire RISC-V SoC Hardware and Software User Guide

User Timer API Calls
prescaler_setValue()

Usage void prescaler_setValue(u32 reg, u32 value)

Include driver/prescaler.h

Parameters [IN] reg user timer base address
[IN] value prescaler value

Description Set the user timer prescaler value.

timer_setConfig()

Usage void timer_setConfig(u32 reg, u32 value)

Include driver/timer.h

Parameters [IN] reg user timer base address
[IN] value user timer configuration value:
[0] Set timer to run without prescaler
[1] Set timer to run with prescaler
[16] Set if timer need to restart after timer limit reach

Description Set the user timer configuration.

timer_setLimit()

Usage void timer_setLimit(u32 reg, u32 value)

Include driver/timer.h

Parameters [IN] reg user timer base address
[IN] value user timer configuration value

Description Set the limit value for the timer to generate an interrupt.

timer_getValue()

Usage u32 timer_getValue(u32 reg)

Include driver/timer.h

Parameters [IN] reg user timer base address

Returns [OUT] 32-bit Timer value

Description Get the timer value.

timer_clearValue()

Usage void timer_clearValue(u32 reg)

Include driver/timer.h

Parameters [IN] reg user timer base address

Description Clear the timer value by setting it to 0.

www.efinixinc.com 163

Sapphire RISC-V SoC Hardware and Software User Guide

PLIC API Calls
plic_set_priority()

Usage void plic_set_priority(u32 plic, u32 gateway, u32 priority)

Include driver/plic.h

Parameters [IN] plic PLIC base address
[IN] gateway interrupt type. Gateway is the interrupt number for a particular
peripheral when configuring the Sapphire SoC. The gateway for all peripherals are
available in soc.h, i.e., SYSTEM_PLIC_TIMER_INTERRUPTS_0.
[IN] priority interrupt priority. Priority can be set within a range of 0 to 3.

Description Set the interrupt priority.

plic_get_priority()

Usage u32 plic_get_priority(u32 plic, u32 gateway)

Include driver/plic.h

Parameters [IN] plic PLIC base address
[IN] gateway interrupt type

Returns [OUT] 32-bit priority

Description Get the interrupt priority.

plic_set_enable()

Usage void plic_set_enable(u32 plic, u32 target, u32 gateway, u32
enable)

Include driver/plic.h

Parameters [IN] plic PLIC base address
[IN] target HART number
[IN] gateway interrupt type
[IN] enable Enable interrupt for the particular gateway on the selected target.

Description Set the interrupt enable.

plic_set_threshold()

Usage void plic_set_threshold(u32 plic, u32 target, u32 threshold)

Include driver/plic.h

Parameters [IN] plic PLIC base address
[IN] target HART number
[IN] threshold HART interrupt threshold

Description Set the threshold of a particular HART to accept interrupt source.

Example
plic_set_threshold(BSP_PLIC, BSP_PLIC_CPU_0, 0);
// cpu 0 accept all interrupts with priority above 0

www.efinixinc.com 164

Sapphire RISC-V SoC Hardware and Software User Guide

plic_claim()

Usage u32 plic_claim(u32 plic, u32 target)

Include driver/plic.h

Parameters [IN] plic PLIC base address
[IN] target HART number

Description Claim the PLIC interrupt for specific HART.

plic_release()

Usage void plic_release(u32 plic, u32 target, u32 gateway)

Include driver/plic.h

Parameters [IN] plic PLIC base address
[IN] target HART number
[IN] gateway interrupt type

Description Release the PLIC interrupt for specific HART.

www.efinixinc.com 165

Sapphire RISC-V SoC Hardware and Software User Guide

SPI API Calls
SPI Config Struct

typedef struct{
 u32 cpol; // Clock polarity during idle state setting
 u32 cpha; // Clock phase setting
 u32 mode; // SPI Mode setting
 u32 clkDivider; // Clock divider setting on SCL generation
 u32 ssSetup; // Clock cycle between activated chip-select and first rising-edge of SCLK
 u32 ssHold; // Clock cycle between last falling-edge and deactivated chip-select is
 //activated.
 u32 ssDisable; // Clock cycle delay before the next chip select can be activated
 } Spi_Config;

spi_applyConfig()

Usage void spi_applyConfig(u32 reg, Spi_Config *config)

Include driver/spi.h

Parameters [IN] reg SPI base address
[IN] config struct of the SPI configuration

Description Applies the SPI configuration to a register for initial configuration.

spi_cmdAvailability()

Usage u32 spi_cmdAvailability(u32 reg)

Include driver/spi.h

Parameters [IN] reg SPI base address

Returns [OUT] SPI TX FIFO availability (16 bits)

Description Reads the number of bytes for TX FIFO availability (up to 256 bytes).

spi_diselect()

Usage void spi_diselect(u32 reg, u32 slaveId)

Include driver/spi.h

Parameters [IN] reg SPI base address
[IN] slaveId ID for the slave

Description De-asserts the selected SPI (SS) pin based on the slaveId. SlaveId range from 0 up to
(SPI Chip Select Width) -1. SPI 0 only have 1 chip select.

spi_read()

Usage u8 spi_read(u32 reg)

Include driver/spi.h

Parameters [IN] reg SPI base address

Returns [OUT] One byte of data

Description Receives one byte from the SPI slave.

www.efinixinc.com 166

Sapphire RISC-V SoC Hardware and Software User Guide

spi_read32()

Usage u32 spi_read32(u32 reg)

Include driver/spi.h

Parameters [IN] reg SPI base address

Returns [OUT] Data (up to 16 bits)

Description Receives up to 16 bits of data from the SPI slave.

spi_rspOccupancy()

Usage u32 spi_rspOccupancy(u32 reg)

Include driver/spi.h

Parameters [IN] reg SPI base address

Returns [OUT] SPI RX FIFO occupancy (16 bits)

Description Read the number of bytes for RX FIFO occupancy.

spi_select()

Usage void spi_select(u32 reg, u32slaveId)

Include driver/spi.h

Parameters [IN] reg SPI base address
[IN] slaveId ID for the slave

Description Asserts the SPI select (SS) pin on the selected slave.

spi_write()

Usage void spi_write(u32reg, u8 data)

Include driver/spi.h

Parameters [IN] reg SPI base address
[IN] data 8 bits of data to send out

Description Transfers one byte to the SPI slave.

spi_write32()

Usage void spi_write32(u32 reg, u32 data)

Include driver/spi.h

Parameters [IN] reg SPI base address
[IN] data up to 16 bits of data to send out

Description Transfers up to 16 bits to the SPI slave.

www.efinixinc.com 167

Sapphire RISC-V SoC Hardware and Software User Guide

spi_writeRead()

Usage u8 spi_writeRead(u32 reg, u8 data)

Include driver/spi.h

Parameters [IN] reg SPI base address
[IN] data 8 bits of data to send out

Returns [OUT] One byte of data

Description Transfers one byte to the SPI slave and receives one byte from the SPI slave.

spi_writeRead32()

Usage u32 spi_writeRead32(u32 reg, u32 data)

Include driver/spi.h

Parameters [IN] reg SPI base address
[IN] data up to 16 bits of data to send out

Returns [OUT] Up to 16 bits of data

Description Transfers up to 16 bits of data to the SPI slave and receives up to 16 bits of data from
the SPI slave.

www.efinixinc.com 168

Sapphire RISC-V SoC Hardware and Software User Guide

SPI Flash Memory API Calls
spiFlash_f2m_()

Usage void spiFlash_f2m_(u32 spi, u32 flashAddress, u32
memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] flashAddress flash device start address
[IN] memoryAddress RAM memory start address
[IN] size programming address size

Description Copy data from the flash device to memory.

spiFlash_f2m()

Usage void spiFlash_f2m(u32 spi, u32 cs, u32 flashAddress, u32
memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] cs chip select/slaveID
[IN] flashAddress flash device start address
[IN] memoryAddress RAM memory start address

Description Copy data from the flash device to memory with chip select control.

spiFlash_f2m_withGpioCs()

Usage void spiFlash_f2m_withGpioCs(u32 spi, Gpio_Reg *gpio, u32 cs,
u32 flashAddress, u32 memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] gpio GPIO base address
[IN] cs chip select/slaveID
[IN] flashAddress flash device start address
[IN] memoryAddress RAM memory start address
[IN] size programming address size

Description Flash device from the SPI master with GPIO chip select.

www.efinixinc.com 169

Sapphire RISC-V SoC Hardware and Software User Guide

spiFlash_diselect()

Usage void spiFlash_diselect(u32 spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] cs chip select/slaveID

Description De-asserts the SPI flash device from the master chip select.

spiFlash_diselect_withGpioCs()

Usage void spiFlash_diselect_withGpioCs(u32 gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] gpio GPIO base address
[IN] cs chip select/slaveID

Description De-asserts the SPI flash device from the master with the GPIO chip select.

spiFlash_init_()

Usage void spiFlash_init_(u32 spi)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address

Description Initialize the SPI reg struct with the following default settings:
spiCfg.cpol = 0;
spiCfg.cpha = 0;
spiCfg.mode = 0;
spiCfg.clkDivider = 2;
spiCfg.ssSetup = 2;
spiCfg.ssHold = 2;
spiCfg.ssDisable = 2;

spiFlash_init()

Usage void spiFlash_init(u32 spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] cs chip select/slaveID

Description Initialize the SPI reg struct with chip select de-asserted with the following default
settings:
spiCfg.cpol = 0;
spiCfg.cpha = 0;
spiCfg.mode = 0;
spiCfg.clkDivider = 2;
spiCfg.ssSetup = 2;
spiCfg.ssHold = 2;
spiCfg.ssDisable = 2;

www.efinixinc.com 170

Sapphire RISC-V SoC Hardware and Software User Guide

spiFlash_init_withGpioCs()

Usage void spiFlash_init_withGpioCs(u32 spi, u32 gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] gpio GPIO base address
[IN] cs chip select/slaveID

Description Initialize the SPI reg struct with GPIO chip select de-asserted with the following
default settings:
spiCfg.cpol = 0;
spiCfg.cpha = 0;
spiCfg.mode = 0;
spiCfg.clkDivider = 2;
spiCfg.ssSetup = 2;
spiCfg.ssHold = 2;
spiCfg.ssDisable = 2;

spiFlash_read_id_()

Usage u8 spiFlash_read_id_(u32 spi)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address

Returns [OUT] 8-bit SPI flash ID

Description Read the ID from the flash.

spiFlash_read_id()

Usage u8 spiFlash_read_id(u32 spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] cs chip select/slaveID

Returns [OUT] 8-bit SPI flash ID

Description Read the ID from the flash with chip select.

spiFlash_select()

Usage void spiFlash_select(u32 spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] cs chip select/slaveID

Description Select the SPI flash device with chip select.

www.efinixinc.com 171

Sapphire RISC-V SoC Hardware and Software User Guide

spiFlash_select_withGpioCs()

Usage spiFlash_select_withGpioCs(u32 gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] gpio GPIO base address
[IN] cs chip select/slaveID

Description Select the SPI flash device with the GPIO chip select.

spiFlash_software_reset()

Usage void spiFlash_software_reset(u32 spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] cs chip select/slaveID

Description Reset the SPI flash with chip select.

spiFlash_wake_()

Usage void spiFlash_wake_(u32 spi)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address

Description Release power down from the SPI master.

spiFlash_wake()

Usage void spiFlash_wake(u32 spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] cs chip select/slaveID

Description Release power down from the SPI master with chip select.

spiFlash_wake_withGpioCs()

Usage void spiFlash_wake_withGpioCs(u32 spi, u32 gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi SPI base address
[IN] gpio GPIO base address
[IN] cs chip select/slaveID

Description Release power down from the SPI master with the GPIO chip select.

www.efinixinc.com 172

Sapphire RISC-V SoC Hardware and Software User Guide

UART API Calls
UART Config Struct

typedef struct{
enum UartDataLength dataLength;
enum UartParity parity;
enum UartStop stop;
u32 clockDivider;
} Uart_Config;

uart_applyConfig()

Usage void uart_applyConfig(u32 reg, Uart_Config *config)

Include driver/uart.h

Parameters [IN] reg UART base address
[IN] config struct of the UART configuration

Description Applies the UART configuration to to a register for initial configuration.

uart_TX_emptyInterruptEna()

Usage void uart_TX_emptyInterruptEna(u32 reg, char Ena)

Include driver/uart.h

Parameters [IN] reg UART base address
[IN] ena Enable interrupt

Description Enable the TX FIFO empty interrupt.

uart_RX_NotemptyInterruptEna()

Usage void uart_RX_NotemptyInterruptEna(u32 reg, char Ena)

Include driver/uart.h

Parameters [IN] reg UART base address
[IN] ena Enable interrupt

Description Enable the RX FIFO not empty interrupt.

uart_read()

Usage char uart_read(u32reg)

Include driver/uart.h

Parameters [IN] reg UART base address

Returns [OUT] reg character that is read

Description Reads a character from the UART slave.

www.efinixinc.com 173

Sapphire RISC-V SoC Hardware and Software User Guide

uart_readOccupancy()

Usage u32 uart_readOccupancy(u32reg)

Include driver/uart.h

Parameters [IN] reg UART base address

Returns [OUT] reg FIFO occupancy

Description Read the number of bytes in the RX FIFO up to 128 bytes.

uart_status_read()

Usage u32 uart_status_read(u32 reg)

Include driver/uart.h

Parameters [IN] reg UART base address

Returns [OUT] 32-bit status register from the UART

Description Refers to UART Status Register: 0x0000_0004 in the Sapphire Datasheet.

uart_status_write()

Usage void uart_status_write(u32 reg, char data)

Include driver/uart.h

Parameters [IN] reg UART base address
[IN] data input data for the UART status.

Description Write the UART status. Only TXInterruptEnable and RXInterruptEnable are writable.

uart_write()

Usage void uart_write(u32 reg, char data)

Include driver/uart.h

Parameters [IN] reg UART base address
[IN] data write a character

Description Write a character to the UART.

uart_writeHex()

Usage void uart_writeHex(u32 reg, int value)

Include driver/uart.h

Parameters [IN] reg UART base address
[IN] value number to send as UART character

Description Convert a number to a character and send it to the UART in hexadecimal.

uart_writeStr()

Usage void uart_writeStr(u32 reg, const char* str)

Include driver/uart.h

Parameters [IN] reg UART base address
[IN] str string to write

Description Write a string to the UART.

www.efinixinc.com 174

Sapphire RISC-V SoC Hardware and Software User Guide

uart_writeAvailability()

Usage u32 uart_writeAvailability(u32 reg)

Include driver/uart.h

Parameters [IN] reg UART base address

Returns [OUT] reg FIFO availability

Description Read the number of bytes in the TX FIFO up to 128 bytes.

RISC-V API Calls
data_cache_invalidate_all()

Usage void data_cache_invalidate_all(void)

Include driver/vexriscv.h

Description Invalidate whole data cache. Critical to ensure the data coherency between the
cache and the main memory.

data_cache_invalidate_address()

Usage void data_cache_invalidate_address(address)

Include driver/vexriscv.h

Description Invalidate the address data cache. Critical to ensure the data coherency between
the cache and the main memory.

instruction_cache_invalidate()

Usage void instruction_cache_invalidate(void)

Include driver/vexriscv.h

Description Invalidate the whole instruction cache. Critical to ensure the instruction coherency
between the cache and the main memory.

Note: For more information on the usage of the cache invalidation API, see iCacheFlushDemo and
dCacheFlushDemo.

www.efinixinc.com 175

Sapphire RISC-V SoC Hardware and Software User Guide

Handling Interrupts
There are two kinds of interrupts, trap vectors and PLIC interrupts, and you handle them
using different methods.

Figure 57: Types of Interrupts

Trap
Vector

Exceptions

Clint Timer

Machine External Interrupt

PLIC

I2C Interrupt

SPI Interrupt

UART Interrupt

User Timer Interrupt

External Interrupt

Sapphire
SoC

Trap

Machine Trap
Cause (mcause)

Interrupt Claim Registers

mcause
Register

Interrupt ID

Other Interrupt

www.efinixinc.com 176

Sapphire RISC-V SoC Hardware and Software User Guide

Trap Vectors
Trap vectors trap interrupts or exceptions from the system. Read the Machine Cause Register
(mcause) to identify which type of interrupt or exception fthe system is generating. Refer
to "Machine Cause Register (mcause): 0x342" in the data sheet for your SoC for a list of the
exceptions and interrupts used for trap vectors. The following flow chart explains how to
handle trap vectors.

For CAUSE_MACHINE_EXTERNAL, it will call the subroutine to process the PLIC level
interrupts.

Figure 58: Handling Trap Vectors

Call Trap

Read mcause

Is Interrupt? Call Exceptions()
yes

no

CAUSE_CLINT_TIMER? Call Timer()
yes

Call ExternalInterrupt()
yes

no

Call Exceptions() or
handle by user

no

CAUSE_MACHINE_EXTERNAL?

PLIC Interrupts
The PLIC collects external interrupts and is also used for
CAUSE_MACHINE_EXTERNAL cases. Read the interrupt claim registers (PLIC claim) to
identify the source of the external interrupt. Refer to Address Map on page 88 for a list of
the interrupt IDs.

Note: For the Sapphire SoC, the interrupt IDs are user configurable. Refer to the interrupt IDs that you set
in the IP Manager for each peripheral. The Address Map shows the default values.

www.efinixinc.com 177

Sapphire RISC-V SoC Hardware and Software User Guide

The following flow chart shows how the PLIC handles interrupts.The PLIC identifies the
interrupt ID and processes the corresponding interrupts.

Figure 59: Handling PLIC Interrupts

Call ExternalInterrupt()

Read PLIC Claim

Is Interrupt
Claimed?

Call I2C Interrupt()

no

yes

PLIC_SYSTEM_UART_INTERRUPT? Call UART Interrupt()
yes

Call SPI Interrupt()
yes

no

Call Exceptions()

no

PLIC_SYSTEM_SPI_INTERRUPT?

PLIC_SYSTEM_I2C_INTERRUPT? yes

no

Call Other PLIC Interrupt()
yes

no

Other PLIC Interrupt?

Release
Claimed Interrupt

Call User Timer Interrupt()
yes

no

www.efinixinc.com 178

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 19

Inline Assembly
Contents:

• Introduction
• Inline Assembly Syntax
• RISC-V Registers

Introduction
The inline assembly is a feature in programming languages like C and C++ that allows you
to embed assembly language code directly within your high-level code. This feature allows
you to write your assembly instructions in line with your C or C++ code, instead of having
to write and compile the assembly language file separately. This is useful in situations that
need fine-grained control over hardware resources or performing low-level operations that are
not easily expressed in higher-level languages. Typically, inline assembly can be useful if you
need to:
• Access hardware resources—Inline assembly allows you access to hardware resources that is

unaccessible or does not have suitable intrinsic function available in high-level language.
• Performance optimization—You may use inline assembly to design sections of code that are

time-critical and more optimized than high-level language.

CAUTION: Inline assembly is a powerful tool for low-level operations and optimization. However, inline
assembly can make your design harder to maintain. Therefore, you need to use it with caution and
sparingly.

Note: All inline assembly syntax explained in this user guide is based on GNU GCC v8.3.0, which is
the out-of-box toolchain used by Efinity RISC-V Embedded Software IDE. Refer to GNU GCC Online
Documentation for more information.

www.efinixinc.com 179

https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C
https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C

Sapphire RISC-V SoC Hardware and Software User Guide

Inline Assembly Syntax
The inline assembler has the following syntax:

asm<asm-qualifiers>
(
"assembly_instructions_string"
:"output_operand_list"
:"input_opearand_list"
:"clobbered_resource_list"
);

Table 40: Inline Assembly Syntax

Syntax Description

asm Indicates the start of the inline assembly block.

asm-qualifiers Optional qualifiers that you can use to specify various attributes of the inline
assembly, such as constraints, options, or flags, e.g., _volatile_

"assembly_instructions_string" Specify the actual assembly code as a string separated by /n. Each operation
can be a valid assembler instruction, or a data definition assembler directive
prefixed by an optional label. There can be no whitespace before the label, and
it must be followed by ":". For example:

asm _volatile_
(
"label:"
"nop/n"
"j label"
);

Note:
• The labels you define in the inline assembler statement is

categorized as local with reference to the respective statement.
• Use this to implement loops or conditional code.

:"output_operand_list" Defines the output operands of the assembly code. Output operands are used
to pass values from the assembly code back to the C/C++ code.
They are specified as a comma-separated list. The "output_operand_list"
typically consists of variables or registers where the results of the assembly
instructions will be stored.

:"input_operand_list" Defines the input operands of the assembly code. Input operands are used
to pass values from the C/C++ code to the assembly code. Like the output
operands, the "input_operand_list" is a comma-separated list of variables or
registers used as inputs to the assembly instructions.

:"clobbered_resource_list" Specifies clobbered resources, which are registers or memory locations that
may be modified by the assembly code but are not explicitly listed as input or
output operands. The "clobbered_resource_list" is also a comma-separated
list, and it informs the compiler that is should not rely on the values of these
resources after the inline assembly block. This is an optional part, and if there
are no clobbered resources, it can be left empty.

www.efinixinc.com 180

Sapphire RISC-V SoC Hardware and Software User Guide

Operands
An inline assembler statement can have one input and one output comma-separated list
of operands. Each operand consists of an optional symbolic name in brackets, a quoted
constraint, followed by a C expression parentheses.

Operand Syntax
The representation of an operand syntax is as follows:

[<symbolic-name>] "<modifiers><constraints>" (expr)

Example 1:

int Add (int term1, int term2)
{
 int sum;
 asm _volatile_
 (
 "add %0, %1, %2"
 : "=r" (sum)
 : "r" (term1), "r" (term2)
);
 return sum;
}

Table 41: Explanation of Example 1

C Function
Implementation

Description

Add() This function uses inline assembly to perform an addition operation.
Inputs two integer parameters, term1 and term2, and returns the result as a sum.

add %0, %1, %2 This is the assembly instruction. It adds two integer parameters, term1 and term2,
and stores the result in the output operand %0 (which corresponds to sum in this
case). %1 and %2 are placeholders for input operands, which are term1 and term2
respectively.

"=r" (sum) This is an output operand constraint. It tells the compiler that the assembly instruction
modifies the sum variable and should be stored in a general-purpose register (r).

"=r" (term1),
"=r" (term2)

These are input operand constraints. They specify that term1 and term2 should be
stored in registers (r) and are used as input to the assembly instruction.

You can omit any C function implementation by leaving it empty as shown by the following
example.

Example 2:

int matrix [M][N];
void MatrixPreloadNow (int row)
{
 asm _volatile_
 (
 "lw t0, 0(%0)"
 : //empty//
 : "r" (%matrix [row] [0])
);
}

The code in Example 2 loads the %0 data into temporary register, t0. The assembly only
provides the input constraint and provides nothing to the output constraint. The pointer uses
the data from &matrix[row][0].

www.efinixinc.com 181

Sapphire RISC-V SoC Hardware and Software User Guide

Operand References
The placeholders, %0, %1, etc., are known as operand references or substitution operands.
These placeholders represent input and output operands within the inline asembly code.
The numbers inside the placeholders correspond to the sequence of operands specified in the
constraints. The following is the example of its usage.

Example 3:

int Add (int term1, int term2)
{
 int sum;
 asm _volatile_
 (
 "add %0, %1, %2"
 : "=r" (sum)
 : "r" (term1), "r" (term2)
);
 return sum;
}

In the Add function from Example 3, %0 is used to represent the output operands, which is
the integer, sum. The %1 represents the input operand, term1 while %2 represents the input
operand, term2.

Input Operands
The characteristics of input operands are as follows:

The input operands cannot have any constraint modifiers, but they can have any valid C
expression if the type of the expression fits the register.

The C expression is evaluated just before any of the assembler instructions in the inline
assembler statement and assigned to the constraint, for example a register.

Output Operands
The characteristics of output operands are as follows:

• Output operands must have “=” as a constraint modifier and the C expression must be a l-
value and specify writable location. For example, “=r” for a write-only general-purpose
register.

• The constraint is assigned to the evaluated C expression (as a l-value) immediately after the
last assembler instruction in the inline assembler statement.

• Input operands are assumed to be consumed before output is produced.
• The compiler may use the same register for an input and output operand.
• To prohibit this, prefix the output constraint with “&” to make it an early clobber

resource. For example, “=&r”.

The above characteristics ensure that the output operand is allocated to a different register
from the input operands.

www.efinixinc.com 182

Sapphire RISC-V SoC Hardware and Software User Guide

Input/Output Operands
The characteristics of input/output operands are as follows:

• An operand that should be used both for input and output must be listed as an output
operand and have the “+” modifier.

• The C expression must be a l-value and specify a writable location.
• The location is read immediately before any assembler instructions, and is written right

after the last assembler instruction.

Example of using a read-write operand:

Example 4:

int Double (int value)
{
 asm _volatile_
 (
 "add %0, %0, %0"
 : "+r" (value)
);
 return value;
}

In Example 4, the input value is placed in a general-purpose register. After the assembler
statement, the result from the add instruction is placed in the same register and return the
result.

Operand Constraints
A constraint is a string full of letters, each of which describes one kind of operand that is
permitted.

Table 42: Inline Assembler Operand Constraints

Constraint Syntax Description

A An address that is held in a general-purpose register.

m Memory.

r Uses a general-purpose integer register for the expression: x1-x31

i A 32-bit integer.

l An I-type 12-bit signed integer.

J The constant integer zero.

K A 5-bit unsigned integer for CSR instructions.

f Uses a general-purpose floating-point register.

register_name Uses this specific register for the expression.

digit • The input must be in the same location as the output operand digit.
• If a digit is used together with letters within the same alternative, then the digit

should come last.

Note: For the full lists of operand constraints, refer to the GNU GCC documentation.

www.efinixinc.com 183

https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Simple-Constraints.html#Simple-Constraints

Sapphire RISC-V SoC Hardware and Software User Guide

Operand Constraint Modifiers
The constraint modifiers can be used together with a constraint to modify its meaning. The
modifier should put in the first character of the constraint string. The following table lists the
supported constraint modifiers:

Table 43: Supported Constraint Modifiers

Modifier Syntax Description

+ Read-write operand.

= Write-only operand: the previous value is discarded and replaced by new
data.

& This operand is an earlyclobber operand, which is written to before the
instruction has processed all the input operands.

Note: The compiler can only handle one commutative (constraint) pair in an assembly. The compiler may
fail if you use more than one commutative pair.

Clobbered Resources
The characteristics of clobbered resources are as follows:

• An inline assembler statement can contain a list of clobbered resources.
• The clobbered registers that can be thrashed need to be specified in the assembly

statement.
• By optimizing the GCC, you can specify or check for the clobbered registers.
• Any value that resides in a clobbered resource and that is needed after the inline assembly

statement is reloaded.

Note: Clobbered resources is used as input or output operands.

Example of using clobbered resources:

Example 5:

int Add0x10000 (int term)
{
 int sum;
 asm _volatile_
 (
 "lui s0, 0x10\n"
 "add %0, %1, s0"
 : "=r" (sum)
 : "r" (term)
 : "s0"
);
 return sum;
}

The following table lists the valid clobbered resources:

Table 44: Lists of Valid Clobbered Resources

Clobber Description

x1-x3, a0-a7, s0-s11, t0-t6 General-purpose integer registers.

f0-f31, fa0-fa7, fs0-fs11, ft0-ft11 General-purpose floating-point registers.

Memory To be used if the instructions modify any memory. This avoids keeping
memory values cached in registers across the inline assembler statement.

www.efinixinc.com 184

Sapphire RISC-V SoC Hardware and Software User Guide

Example of using clobbered memory:

Example 6:

void Store (unsigned long*location, unsigned long value)
{
 asm _volatile_
 (
 "sw %1, 0(%0)"
 :
 : "=r" (location), "r" (value)
 : "memory"
);
}

RISC-V Registers
RISC-V has the following 32-bit registers:
• 32 general-purpose registers
• A program counter (PC)

A 32 general-purpose registers have the following assigned functions:
• x0 is hard-wired to 0 and can be used as a target register for any instructions where the

result must be discarded.
• x0 can also be used as a source of zero (0) if needed.
• x1-x31 are general-purpose registers. The 32-bit integers they hold are interpreted,

depending on the instruction.

A PC has the following assigned functions and characteristics:
• PC points to the next instruction to be executed.
• The PC cannot be written or read using load/store instructions.

www.efinixinc.com 185

Sapphire RISC-V SoC Hardware and Software User Guide

The following figure shows the 32 general-purpose registers in a RISC-V ISA(6) CPU.

Figure 60: RISC-V Base Unprivileged Integer Register State
XLEN-1 0

x0 / zero

x1
x2
x3
x4
x5
x6
x7
x8
x9

x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28
x29
x30
x31

XLEN-1 0
pc

XLEN

XLEN

(6) ISA: Instruction Set Architecture

www.efinixinc.com 186

Sapphire RISC-V SoC Hardware and Software User Guide

Calling Convention for RISC-V Registers
The symbolic name in the table is the name used by the RISC-V register when applying the
inline assembly in the design.

Table 45: Symbolic Names in RISC-V General Purpose Registers

Register Name Symbolic Name Description

x0 Zero Hardwired zero register, always read as zero (0), and writes are ignored.

x1 Ra Return address register, used to store the return address.

x2 Sp Stack pointer register, used to point to the top of the call stack.

x3 Gp Global pointer register, used to addressing global data.

x4 Tp Thread pointer, used for addressing thread-local data.

x5 t0 Temporary register/alternate link register, used for general temporary
storage.

x6-x7 t1-t2 Temporary registers, used for general temporary storage.

x8 s0/fp Saved register/frame pointer, often used to establish and maintain stack
frames.

x9 s1 Saved register, used for saving and restoring values across function calls.

x10-x11 a0-a1 Function argument registers/return value register.

x12-x17 a2-a7 Function argument registers.

x18-x27 s2-s11 Saved registers, used for saving and restoring values across function
calls.

x28-x31 t3-t6 Temporary registers, often used for general temporary storage.

Note: Ensure correct registers are used when designing your program to avoid any data corruption.

Efinix provides an example design that focuses on the implementation of these inline
assembly features for RISC-V Sapphire SoC core. You can refer to the InlineAsmDemo
example design which is generated alongside with the Sapphire SoC core.

www.efinixinc.com 187

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Required Software for Eclipse
(RISC-V SDK)

These instructions are for reference if you are using open-source Eclipse IDE provided with
RISC-V SDK.

RISC-V SDK
Eclipse MCU—Open-source Java-based development environment that uses plug-ins to
extend and customize its functionality. The GNU MCU Eclipse plug-in lets you develop
applications for ARM and RISC-V cores.
Version: 2020-09 (4.17.0)
Disk space required: 433 MB (Windows), 433 MB (Linux)

xPack GNU RISC-V Embedded GCC—Open-source, prebuilt toolchain from the xPack
Project.
Version: 8.3.0-2.3
Disk space required: 1.53 GB (Windows), 1.5 GB (Linux)

OpenOCD Debugger—The open-source Open On-Chip Debugger (OpenOCD) software
includes configuration files for many debug adapters, chips, and boards. Many versions of
OpenOCD are available. The Efinix RISC-V flow requires a custom version of OpenOCD
that includes the VexRiscv 32-bit RISC-V processor.
Version: 20200421
Disk space required: 9.4 MB (Windows), 7.4 MB (Linux)

GNU MCU Eclipse Windows Build Tool (Windows Only)—This open-source Windows-
specific package helps to manage build projects and includes GNU make.
Version: 4.2.1-2-win32-x64
Disk space required: 4.99 MB

Java JRE
Open-source Java 64-bit runtime environment; required for Eclipse.
Version: 8 Update 241
https://www.java.com/en/download/manual.jsp (Java 8 official release)
https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
http://jdk.java.net/16/ (OpenJDK 16)

www.efinixinc.com 188

https://www.java.com/en/download/manual.jsp
https://developers.redhat.com/products/openjdk/download
http://jdk.java.net/16/

Sapphire RISC-V SoC Hardware and Software User Guide

Install the RISC-V SDK
To install the SDK:

1. Download the file riscv_sdk_windows-v<version>.zip or riscv_sdk_ubuntu-
v<version>.zip from the Support Center.

2. Create a directory for the SDK, such as c:\riscv-sdk (Windows) or home/my_name/
riscv-sdk (Linux).

3. Unzip the file into the directory you created. The complete SDK is distributed as
compressed files. You do not need to run an installer.

Windows directory structure:

• SDK_Windows
— eclipse—Eclipse application.
— GNU MCU Eclipse—Windows build tools.
— openocd—OpenOCD debugger.
— riscv-xpack-toolchain_8.3.0-2.3_windows—GCC compiler.
— run_eclipse.bat—Batch file that sets variables and launches Eclipse.
— setup.bat—Batch file to set variables for running OpenOCD on the command line to

flash the binary.

Ubuntu directory structure:

• SDK_Ubuntu<version>
— eclipse—Eclipse application.
— openocd—OpenOCD debugger.
— riscv-xpack-toolchain_8.3.0-2.3_linux—GCC compiler.
— run_eclipse.sh—Shell file that sets variables and launches Eclipse.
— setup.sh—Shell file to set variables for running OpenOCD on the command line to

flash the binary.

Install the Java JRE
To install the JRE:

1. Download the 64-bit version of the JRE or JDK for your operating system from
https://www.java.com/en/download/manual.jsp (Java 8 official release)
https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
http://jdk.java.net/16/ (OpenJDK 16)

2. Follow the installation instructions on the web site to install the JRE.

Note: You need a 64-bit version of the Java JRE. When you launch Eclipse using a 32-bit version, you get
an error that Java quits with exit code 13.

www.efinixinc.com 189

https://www.java.com/en/download/manual.jsp
https://developers.redhat.com/products/openjdk/download
http://jdk.java.net/16/

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Launch Eclipse (RISC-V SDK)
These instructions are for reference if you are using open-source Eclipse IDE provided with
RISC-V SDK.

The RISC-V SDK includes the run_eclipse.bat file (Windows) or run_eclipse.sh file
(Linux) that adds executables to your path, sets up envonment variables for the Sapphire BSP,
and launches Eclipse. Always use this executable to launch Eclipse; do not launch Eclipse
directly.

When you first start working with the Sapphire SoC, you need to configure your Eclipse
workspace and environment. Setting up a global development environment for your
workspace means you can store all of your Sapphire software code in the same place and you
can set global environment variables that apply to all software projects in your workspace.

You should use a unique workspace for your Sapphire SoC projects. Efinix recommends
using the embedded_sw/<SoC module> directory as the workspace directory.

Note: With IP Manager, you can generate multiple SoCs with different options. Using the
embedded_sw/<SoC module> directory as your workspace means that you can explore more than one
SoC by simply switching workspaces.

Follow these steps to launch Eclipse and set up your workspace:

1. Launch Eclipse using the run_eclipse.bat file (Windows) or run_eclipse.sh file.
2. If this is the first time you are running Eclipse, create a new workspace that points to

the embedded_sw/<SoC module> directory. Otherwise, choose File > Switch
Workspace > Other to choose an existing workspace directory and click Launch.

www.efinixinc.com 190

Sapphire RISC-V SoC Hardware and Software User Guide

Set Global Environment Variables
OpenOCD uses two environment variables, DEBUG and DEBUG_OG. It is simplest to set
them as global environment variables for all projects in your workspace. Then, you can
adjust them as needed for individual projects.

Note: When you configure the SoC in the IP Manager, you can choose whether to turn on debug mode
by default or not. When you generate the SoC, the setting is saved in the /embedded_sw/bsp/efinix/
EfxSapphireSoc/include/soc.mk file. If you want to change the debug mode, you can change the setting in
the IP Configuration wizard and re-generate the SoC, or use the following instructions to add the variables
to your project and change them there.

Choose Window > Preferences to open the Preferences window and perform the following
steps.

1. In the left navigation menu, expand C/C++ > Build.
2. Click C/C++ > Build > Environment.
3. Click Add and add the following environment variables:

Variable Value Description

DEBUG no Enables or disables debug mode.
no: Debugging is turned off
yes: Debugging is enabled

DEBUG_OG no Enables or disables optimization during debugging.
Use an uppercase letter O not a zero.

4. Click Apply and Close.

www.efinixinc.com 191

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Create and Build a Software Project
(RISC-V SDK)

After you set up your Eclipse workspace, you are ready to create a new project and build it.
These instructions walk you through the process using the axiDemo example project from
the software directory.

Create a New Project
In this step you create a new project from the axiDemo code example.

1. Launch Eclipse.
2. Select the Sapphire workspace if it is not open by default.
3. Make sure you are in the C/C++ perspective.
Import the axiDemo example:
4. Choose File > New > Makefile Project with Existing Code.
5. Click Browse next to Existing Code Location.
6. Browse to the software/standalone/axiDemo directory and click Select Folder.
7. Select <none> in the Toolchain for Indexer Settings box.
8. Click Finish.

The axiDemo project folder displays in the Project Explorer. The folder has the makefile
and main.c source code as well as launch scripts for the OpenOCD Debugger.

Import Project Settings (Optional)
Efinix provides a C/C++ project settings file that defines the include paths and symbols for
the C code. Importing these settings into your project lets you explore and jump through the
code easily.

Note: You are not required to import the project settings to build. These settings simply make it easier for
you to write and debug code.

To import the settings:

1. Choose File > Import to open the Import wizard.
2. Expand C/C++.
3. Choose C/C++ > C/C++ Project Settings.
4. Click Next.
5. Click Browse next to the Settings file box.
6. Browse to one of the following files and click Open:

Option Description

Windows embedded_sw\<SoC module>\config\project_settings_soc.xml

Linux embedded_sw/<SoC module>/config_linux/project_settings_soc.xml

7. In the Select Project box, select the project name(s) for which you want to import the
settings.

www.efinixinc.com 192

Sapphire RISC-V SoC Hardware and Software User Guide

8. Click Finish.

Eclipse creates a new folder in your project named Includes, which contains all of the files
the project uses.

After you import the settings, clean your project (Project > Clean) and then build (Project
> Build Project). The build process indexes all of the files so they are linked in your project.

Enable Debugging
If you chose OpenOCD Debug Mode > Turn On by default when you configured the
SoC, debugging is turned on and you can skip the instructions in this topic.

If you chose OpenOCD Debug Mode > Turn Off by default when you configured the
SoC, debugging is turned off. Add the environment variables as described in Set Global
Environment Variables on page 191 and then change the variables as needed.

• To run the program for normal operation, keep DEBUG set to no.
• To debug with the OpenOCD debugger, set DEBUG to yes.

In debug mode, the program suspends operation after loading so that you can set breakpoints
or perform debug tasks.

To change the debug settings for your project, right-click the project name axiDemo in the
Project Explorer and choose Properties from the pop-up menu.

1. Expand C/C++ Build.
2. Click C/C++ Build > Environment.
3. Click the Debug variable.
4. Click Edit.
5. Change the Value to yes.
6. Click OK.
7. Click Apply and Close.

Important: When you change the debug value for a project you previously built, you must clean the
project (Project > Clean) before building again. Otherwise, Eclipse gives a message in the Console that
there is Nothing to be done for 'all'

Build
Choose Project > Build Project or click the Build Project toolbar button.

The makefile builds the project and generates these files in the build directory:
• axiDemo.asm—Assembly language file for the firmware.
• axiDemo.bin—Download this file to the flash device on your board using OpenOCD.

When you turn the board on, the SoC loads the application into the RISC-V processor
and executes it.

• axiDemo.elf—Use this file when debugging with the OpenOCD debugger.
• axiDemo.hex—Hex file for the firmware. (Do not use it to program the FPGA.)
• axiDemo.map—Contains the SoC address map.

www.efinixinc.com 193

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Debug with the OpenOCD
Debugger (RISC-V SDK)

These instructions are for reference if you are using an earlier software version. With the
development board programmed and the software built, you are ready to configure the
OpenOCD debugger and perform debugging. These instructions use the axiDemo example
to explain the steps required.

Launch the Debug Script
With the Efinity software v2022.1 and higher, debugging scripts are available for each
software example in the /embedded_sw/<module>/software/standalone/ directory and
are imported into your project when you create a new project from an existing makefile. You
can use these scripts to launch debug mode.

Table 46: Debug Configurations

Launch Script Description

axiDemo_trion.launch Debugging software on Trion® development boards.

axiDemo_ti.launch Debugging software on Titanium development boards

axiDemo_softTap.launch Debugging software on Trion or Titanium development
boards with the soft JTAG TAP interface. For example,
you would need to use the soft TAP if you want to use the
OpenOCD debugger and the Efinity® Debugger at the same
time. (See Using a Soft JTAG Core for Example Designs on
page 121.)

To debug the axiDemo project:

1. Right-click axiDemo > axiDemo_<family>.launch.
2. Choose Debug As > > axiDemo_<family>. Eclipse launches the OpenOCD

debugger for the project.
3. Click Debug.

www.efinixinc.com 194

Sapphire RISC-V SoC Hardware and Software User Guide

Debug
After you click Debug in the Debug Configuration window, the OpenOCD server starts,
connects to the target, starts the gdb client, downloads the application, and starts the
debugging session. Messages and a list of VexRiscv registers display in the Console. The
main.c file opens so you can debug each step.

1. Click the Resume button or press F8 to resume code operation. All of the LEDs on the
board blink continuously in unison.

2. Click Step Over (F6) to do a single step over one source instruction.
3. Click Step Into (F5) to do a single step into the next function called.
4. Click Step Return (F7) to do a single step out of the current function.
5. Double-click in the bar to the left of the source code to set a breakpoint. Double-click a

breakpoint to remove it.
6. Click the Registers tab to inspect the processor's registers.
7. Click the Memory tab to inspect the memory contents.
8. Click the Suspend button to stop the code operation.
9. When you finish debugging, click Terminate to disconnect the OpenOCD debugger.

Figure 61: Perform Debugging

Learn more: For more information on debugging with Eclipse, refer to Running and debugging projects
in the Eclipse documentation.

www.efinixinc.com 195

https://help.eclipse.org/2020-03/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Ftasks%2Fcdt_t_debug_prog.htm

Sapphire RISC-V SoC Hardware and Software User Guide

Debug - Multiple Cores
By default, the OpenOCD debugger always targets the first core, core 0, when debugging. If
your SoC has multiple cores, you can do standalone debugging with a core other than core 0.
This debug method uses the openocdServer debug launch scripts, which are available in the
software/standalone/openocdServer directory. The general procedure is:

1. Create an SoC with more than 1 core.
2. Create a new project in Eclipse for your software code.
3. Create a new project for the openocdServer files.
4. Start the OpenOCD server.

a) Right-click openocdServer > openocdServer_<family>.launch.
b) Choose Debug As > > openocdServer_<family>.

5. Modify the debug configuration for your application to use the OpenOCD server:

a) Right-click <project folder> > Debug As > Debug Configurations.
b) Choose GDB OpenOCD Debugging > <launch script> (e.g., axiDemo_trion).
c) Click the Debugger tab.
d) Turn off Start OpenOCD locally.
e) Under Remote Target, change the Port number for the core yiou are using (the

default is 3333 for core 0).
• 3333: Core 0
• 3334: Core 1
• 3335: Core 2
• 3336: Core 3

6. Click Debug. Eclipse enters debug mode targeting the CPU that you specified with the
port number.

www.efinixinc.com 196

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 62: Modify Debug Configuration for another Core

www.efinixinc.com 197

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Re-Generate the Memory
Initialization Files Manually

With the Efinity software v2022.1 and higher, you do not need to re-generate these files
manually. These instructions are for reference if you are using an earlier software version.

To re-generate the memory initialization files manually using the binGen.py helper script.
You find this script in the <project>/embedded_sw/<SoC module>/tool directory.

Windows:

Open a command prompt and type these commands:

${EFINITY_HOME}/bin/setup.bat
python3 binGen.py -b bootloader.bin -s <RAM size> -f <FPU>

Linux:

Open a terminal and type these commands:

source ${EFINITY_HOME}/bin/setup.sh
python3 binGen.py -b bootloader.bin -s <RAM size> -f <FPU>

where:
• <RAM size> is the on-chip RAM size you want to use.
• <FPU> indicates whether the floating-point unit is enabled for the SoC. 1: floating-point

is enabled, 0: disabled.

This command generates the new memory initialization files. Copy these files into the same
directory as your project .xml file, replacing the existing files.

Compile your design.

www.efinixinc.com 198

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Import the Debug Configuration
With the Efinity software v2022.1 and higher, you do not need to import the debug
configuration. These instructions are for reference if you are using an earlier software version
with legacy Eclipse IDE.

To simplify the debugging steps, the Sapphire SoC includes debug configurations that you
import. There are several configuration files, depending on which board you use.

Table 47: Debug Configurations

Debug
Configuration

Use for

default Debugging software on Trion® development boards.

default_ti Debugging software on Titanium development boards.

default_softTap Debugging software on Trion or Titanium development boards with the soft JTAG
TAP interface. For example, you would need to use the soft TAP if you want to use the
OpenOCD debugger and the Efinity® Debugger at the same time. (See Using a Soft JTAG
Core for Example Designs on page 121.)

To import a debug configuration and use it to launch a debug session:

1. Launch Eclipse by running the run_eclipse.bat file (Windows) or run_eclipse.sh
(Linux).

2. Select a workspace (if you have not set one as a default).
3. Open the axiDemo project or select it under C/C++ Projects.
4. Right-click the axiDemo project name and choose Import.
5. In the Import dialog box, choose Run/Debug > Launch Configurations.
6. Click Next. The Import Launch Configurations dialog box opens.
7. Browse to the following directory and click OK:

Option Description

Windows embedded_sw\<SoC module>\config

Linux embedded_sw/<SoC module>/config_linux

8. Check the box next to config (Windows) or config_linux (Linux).
9. Click Finish.
10. Right-click the axiDemo project name and choose Debug As > Debug Configurations.
11. Enter axiDemo in the Project box.
12. Enter build\axiDemo.elf in the C/C++ Application box.
13. Windows only: you need to change the path to the cpu0.yaml file:

a) Click the Debugger tab.
b) In the Config options box, change ${workspace_loc} to the full path to the

<SoC module> directory.

Note: For the cpu0.yaml path, make sure to use \\ as the directory separator
because the first slash escapes the second one. For example, use:
c:\\Efinity\\2021.2\\project\\<project name>\\embedded_sw\\<SoC module>
\\cpu0.yaml

www.efinixinc.com 199

Sapphire RISC-V SoC Hardware and Software User Guide

14. Click Debug.

Note: If Eclipse prompts you to switch to the Debug Perspective, click Switch.

www.efinixinc.com 200

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Copy a User Binary to the Flash
Device (2 Terminals)

To boot from a flash device, you need to copy the binary to the device. These instructions
describe how to use two command prompts or terminals to flash the user binary file.

Note: If you want to store the binary in the same flash device that holds the FPGA bitstream, refer to Copy
a User Binary to Flash (Efinity Programmer) on page 83 instead.

You use two command prompts or terminals:
• The first terminal opens an OpenOCD connection to the SoC.
• The second connects to the first terminal to write to the flash.

Important: If you are using the OpenOCD debugger in Eclipse, terminate any debug processes before
attempting to flash the memory.

Set Up Terminal 1
To set up terminal 1, the flow varies on your IDE selection during the Sapphire SoC generation.

Efinity RISC-V Embedded Software IDE Selected

1. Open a Windows command prompt or Linux shell.
2. Change the directory to any of the example designs in your selected bsp location.

The default location for <efinity-riscv-ide installation path> would be C:\Efinity
\efinity-riscv-ide-2022.2.3 for windows and home/<user>/efinity/efinity-riscv-
ide-2022.2.3 for Linux.

Note: The 2022.2.3 in the installation path may be different based on your IDE
versions.

Windows:

<efinity-risc-v-ide installation path>\openocd\bin\openocd.exe -f ..\..\..
\bsp\efinix\EfxSapphireSoc\openocd\ftdi.cfg
-c "set CPU0_YAML ..\..\..\cpu0.yaml"
-f ..\..\..\bsp\efinix\EfxSapphireSoc\openocd\flash.cfg

Linux:

<efinity-risc-v-ide installation path>/openocd/bin/openocd -f ../../../bsp/
efinix/EfxSapphireSoc/openocd/ftdi.cfg
-c "set CPU0_YAML ../../../cpu0.yaml"
-f ../../../bsp/efinix/EfxSapphireSoc/openocd/flash.cfg

The OpenOCD server connects and begins listening on port 4444.

www.efinixinc.com 201

Sapphire RISC-V SoC Hardware and Software User Guide

Legacy Eclipse IDE Selected

1. Open a Windows command prompt or Linux shell.
2. Change to SDK_Windows or SDK_Ubuntu.
3. Execute the setup.bat (Windows) or setup.sh (Linux) script.
4. Change to the directory that has the cpu0.yaml file.
5. Type the following commands to set up the OpenOCD server:

Windows:

openocd.exe -f bsp\efinix\EfxSapphireSoc\openocd\ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxSapphireSoc\openocd\flash.cfg

Linux:

openocd -f bsp/efinix/EfxSapphireSoc/openocd/ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxSapphireSoc/openocd/flash.cfg

The OpenOCD server connects and begins listening on port 4444.

Set Up Terminal 2
1. Open a second command prompt or shell.
2. Enable telnet if it is not turned on. Turn on telnet (Windows)
3. Open a telnet local host on port 4444 with the command telnet localhost 4444.
4. In the OpenOCD shell or command prompt, use the following command to flash the user

binary file:

flash write_image erase unlock <path>/<filename>.bin 0x380000

Where <path> is the full, absolute path to the .bin file.

Note: For Windows, use \\ as the directory separators.

Close Terminals
When you finish:
• Type exit in terminal 2 to close the telnet session.
• Type Ctrl+C in terminal 1 to close the OpenOCD session.

Important: OpenOCD cannot be running in Efinity RISC-V Embedded Software IDE when you are using
it in a terminal. If you try to run both at the same time, the application will crash or hang. Always close the
terminals when you are done flashing the binary.

Reset the FPGA
Press the reset button on your development board:
• Trion® T120 BGA324 Development Board—SW2
• Titanium Ti60 F225 Development Board—SW3
• Titanium Ti180 J484 Development Board—SW1

www.efinixinc.com 202

Sapphire RISC-V SoC Hardware and Software User Guide

Revision History

Table 48: Revision History

Date Version Description

June 2025 7.3 Added sub-topic Move Project to Other Location or Machine in IDE
Launcher from Efinity. (DOC-2542)
Updated table List of Files Structure Changes and added table List of
Reallocation File in List of Restructured BSP Files.

May 2025 7.2 Added Topaz device. (DOC-2461)
Added note in Table 13: Sapphire Base Address Tab Parameters on page
22.
Updated Modify the Bootloader Software to Enable Multi-Data Lines.
Included Topaz Tz170 J484 into About the Example Design.
Added sub-topic IDE Launcher from Efinity.
Added note in Create a New Project and Import Sample Projects.
Added directory in table BSP Files.
Added subtopic List of Restructured BSP Files.
In Example Software, removed compatibilityDemo,
freertosUartInterruptDemo, openocdServer, spiReadFlash,
and spiWriteFlash, and freertosDemo2 in FreeRTOS. Replaced
coreTimerInterrupt Demo with clintTimerInterruptDemo. Updated content
for dCacheFlushDemo, spiDemo, Download the FreeRTOS.

March 2025 7.1 Added Installation Error (2350): Path too long (Windows) in the
Troubleshooting section. (DOC-1979)

December 2024 7.0 Updated table Sapphire SoC Tab Parameter, Sapphire Cache/Memory
Tab Parameter, Sapphire UART Tab Parameters, and Sapphire SPI Tab
Parameters. Added Sapphire Watchdog Timer Parameters. (DOC-2098)
Removed note in chapter Create, Import, and Build a Software Project.
Added Watchdog Timer chapter.

June 2024 6.1 Added in D-Cache in table Sapphire SoC Tab Parameters. (DOC-1790)
Added in option 32 for GPIO n Bit Width in table Sapphire GPIO Tab
Parameters.
Updated Simulate chapter.
Updated Create a New Project and Import Sample Projects topic.

December 2023 6.0 Added in Lite option in Customizing the Sapphire SoC. (DOC-1533)
Added semihostngDemo in Example Software.
Added in Semihosting Printing section in Unified Printf.
Added ENABLE_SEMIHOSTING_PRINT in Preprocessor Directives.

October 2023 5.4 Added steps and notes in Modify the Bootloader Software to Extend the
External Memory Size, Modify the Bootloader Software without External
Memory Enabled. Created new section Modify the Bootloader Software to
Enable Multi-Data Lines. (DOC-1471)
Added new example software inlineASMDemo.
Added new topic Inline Assembly.
Corrected wording of images with prints/messages in software examples.
(DOC-1419)

www.efinixinc.com 203

Sapphire RISC-V SoC Hardware and Software User Guide

Date Version Description

August 2023 5.3 Updated and added new API Reference: (DOC-1379)
–Control and Status Registers
–GPIO API Calls
–I2C API Calls
–Core Local Interrupt Timer API Calls
–User Timer API Calls
–PLIC API Calls
–SPI API Calls
–SPI Flash Memory API Calls
–UART API Calls
–RISC-V API Calls (new)
Added footnote in Sapphire Debug Tab Parameters table.
Added new section: Launching OpenOCD for Your Own Board and
Updating OpenOCD Configuration for External FTDI Cable in Target Your
Own Board topic.
Added new topic: Updating Bootloader with Efinity BRAM Initial Content
Updater under Modify the Bootloader topic.
Added new section: i2cMasterDemo Design.
Replaced new content in i2cSlaveDemo Design section.
Replaced the section Warning when Debug with softTap with Unexpected
CPUTAPID/JTAG Device ID.

June 2023 5.2 Updated address from 0xF900_0000 to 0xF900_0C00 in line 4 and add a
new line in Notes of Boot Sequence Case B. (DOC-1181)
Added new paragraph after Default Address Map, Interrupt ID, and
Cached Channels table in Address Map topic. (DOC-1199)
Updated the following sections: (DOC-1253)
–Customizing the Sapphire SoC
–Example Design Implementation table
–Launch the Debug Script
–Debug Daisy Chain
–Example Software
–API Reference
Added new topic: Other Customize Debugger
Added in new sub-topics:
–Debug - Single Core and Debug - SMP
–dCacheFlushDemo, iCacheFlushDemo, and 12CEepromDemo
–i2C_getSlaveStatus(), i2C_getSlaveOverride(), and
i2C_masterRecoverBlocking()
Change Ti180M484 to Ti180J484.

January 2023 5.1 Updated On-Chip RAM of 512KB in the figure titled Sapphire Memory
Space. (DOC-

www.efinixinc.com 204

Sapphire RISC-V SoC Hardware and Software User Guide

Date Version Description

December 2022 5.0 Moved topics Required Software for Eclipse, Launch Eclipse, Create and
Build a Software Project, and Debug with the OpenOCD Debugger to
Appendix. (DOC-981)
Changed topic title, Connect the FTDI Cable → Connect the FTDI Mini-
Module and FTDI cable → FTDI mini-module
Added new main topics:
–Launch Efinity RISC-V Embedded Software IDE
–Create and Build a Software Project
–Debug with the OpenOCD Debugger
–Unified Printf
Added new sub-topics:
–Efinity RISC-V Embedded Software IDE
–Install the Efinity RISC-V Embedded Software IDE
–SoC Configuration Guideline
–Sapphire SoC IDE Backward Compatibility
–Launching the Efinity RISC-V Embedded Software IDE.
–Optimization Settings
–Import Sample Projects
–Debug - Daisy Chain
–Peripheral Register View
–CSR Register View
–FreeRTOS View
–QEMU Emulator
–Bsp_print
–Bsp_printf
–Bsp_printf_full
–Preprocessor Directives
–Warning when Debug with softTap
Updated on sub-topics Open a Terminal, Connect the FTDI Cable,
OpenOCD Error: timed out while waiting for target halted, Memory Test,
Eclipse Fails to Launch with Exit Code 13, and API Reference.
Updated Appendix: Copy a User Binary to the Flash Device (2 Terminals)
and Import the Debug Configuration.

November 2022 4.2 Corrected boot sequence cases A and B. (DOC-932)

September 2022 4.1 Updates for the Ti180 M484 development board.

September 2022 4.0 Updated the instructions for debugging with OpenOCD. You now use
launch scripts.
Added information on the possible boot sequence scenarios.
Enhanced the information on the address map.
Added description for debugging with multiple cores.
Added new SPI API functions.
Added instructions on migrating from Ruby, Jade, and Opal to Sapphire.
Updated IP Manager configuration options.
Updated instructions on launching Eclipse.
Updated Installing USB drivers topics.

June 2022 3.2 When finding the COM port in Windows, look for the first COM port listed
under Ports (COM & LPT). (DOC-811)
The VexRiscv core used in the Sapphire SoC has six pipeline stages.

www.efinixinc.com 205

Sapphire RISC-V SoC Hardware and Software User Guide

Date Version Description

March 2022 3.1 Fixed typo in Connect the FTDI Cable topic. (DOC-731)

December 2021 3.0 Updated the SDK version numbers.
Updated the IP Manager Configuration Wizard description for new
configuration options.
Added instructions for using the Ti60 F225 Development Board and
example design.
Updated instructions for Eclipse global environment variables.
Explained new Efinity Programmer feature for programming a flash device
with a combined user bitstream and application binary.
Updated register map.
Updated the API Reference for new driver support.

October 2021 2.1 Corrected incomplete instructions for copying a user binary to flash.
(DOC-576)

October 2021 2.0 IP Manager options changed for the updated Sapphire wizard. (DOC-544)
Updated the address map. (DOC-544)
Updated the example design description for the new features in the
design. (DOC-544)
New simulation instructions. (DOC-544)
New instructions for changing the bootloader RAM size. (DOC-544)
Changed the EfxApb3Example, EfxAxi4Example, and userInterruptDemo
example descriptions. (DOC-544)
Changed the TX pin number for the instructions on setting up a USB-to-
UART module. (DOC-544)
When using the Soft Debug Tap option, the IP Manager connects the pins
for you. (DOC-544)
Described the pins needed to connect an FTDI cable to the
Trion® T120 BGA324 Development Board when using the Soft Debug Tap
option. (DOC-544)

August 2021 1.1 Corrected typo in example design name in topics describing Eclipse and
OpenOCD (EfxAxi4Example instead of EfxAxiExample). (DOC-517)

July 2021 1.0 Initial release.

www.efinixinc.com 206

	Contents
	Introduction
	VexRiscv RISC-V Core
	Efinity® RISC-V Embedded Software IDE
	Required Software
	Required Hardware

	1. Install Software and SoC
	Install the Efinity Software
	Install the Efinity RISC-V Embedded Software IDE

	2. IP Manager
	Customizing the Sapphire SoC
	SoC Configuration Guideline
	Modify the Bootloader
	Updating Bootloader with Efinity BRAM Initial Content Updater

	3. Program the Board with the Sapphire RTL Design
	About the Example Design
	Enable the On-Board 10 MHz Oscillator (T120 BGA324 Board)
	Enable the LPDDR4x Memory (Ti180 J484 Board)
	Installing USB Drivers
	Program the Development Board

	4. Simulate
	5. Launch Efinity RISC-V Embedded Software IDE
	Sapphire SoC IDE Backward Compatibility
	Launching the Efinity RISC-V Embedded Software IDE
	IDE Launcher from Efinity
	Optimization Settings

	6. Create, Import, and Build a Software Project
	Create a New Project
	Import Sample Projects
	Build

	7. Debug with the OpenOCD Debugger
	Launch the Debug Script
	Debug
	Debug - Multiple Cores
	Debug - Single Core
	Debug - SMP

	Debug - Daisy Chain
	Peripheral Register View
	CSR Register View
	FreeRTOS View
	QEMU Emulator

	8. Boot Sequence
	Boot Sequence: Case A
	Boot Sequence: Case B
	Boot Sequence: Case C
	Booting Multiple Cores

	9. Create Your Own RTL Design
	Target another FPGA
	Target another Efinix Board
	Target Your Own Board
	Create a Custom AXI4 Slave Peripheral
	Create a Custom APB3 Peripheral
	Use another DDR DRAM Module (Trion Only)
	Use the I2C Interface for DDR Calibration
	Remove Unused Peripherals from the RTL Design

	10. Create Your Own Software
	Deploying an Application Binary
	Boot from a Flash Device
	Boot from the OpenOCD Debugger
	Copy a User Binary to Flash (Efinity Programmer)

	About the Board Specific Package
	List of Restructured BSP Files
	Address Map
	Example Software
	Axi4Demo Design
	apb3Demo
	clintTimerInterruptDemo
	coremark
	customInstructionDemo
	dCacheFlushDemo
	dhrystone Example
	FreeRTOS Examples
	fpuDemo
	gpioDemo
	iCacheFlushDemo
	inlineAsmDemo
	i2cDemo Example
	i2cEepromDemo
	i2cMasterDemo Design
	i2cSlaveDemo Design
	memTest Example
	nestedInterruptDemo
	semihostingDemo
	smpDemo
	spiDemo Example
	uartEchoDemo
	UartInterruptDemo Example
	userInterruptDemo Example
	userTimerDemo

	11. Third-party Debugger
	12. Watchdog Timer
	Introduction
	Functional Description
	Setting Limits for Both Counters

	13. Using a UART Module
	Using the On-board UART (Titanium)
	Set Up a USB-to-UART Module (Trion)
	Open a Terminal
	Enable Telnet on Windows

	14. Unified Printf
	Bsp_print
	Bsp_printf
	Bsp_printf_full
	Semihosting Printing
	Preprocessor Directives

	15. Using a Soft JTAG Core for Example Designs
	Connect the FTDI Mini-Module

	16. Migrating to the Sapphire SoC
	Migrating to the Sapphire SoC v2.0 from a Previous Version
	Migrating Ruby, Jade, and Opal to the Sapphire SoC

	17. Troubleshooting
	Error 0x80010135: Path too long (Windows)
	Installation Error (2350): Path too long (Windows)
	OpenOCD Error: timed out while waiting for target halted
	Memory Test
	OpenOCD error code (-1073741515)
	OpenOCD Error: no device found
	OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO
	OpenOCD Error: target 'fpga_spinal.cpu0' init failed
	Eclipse Fails to Launch with Exit Code 13
	Efinity Debugger Crashes when using OpenOCD
	Exception in thread "main"
	Unexpected CPUTAPID/JTAG Device ID

	18. API Reference
	Control and Status Registers
	GPIO API Calls
	I2C API Calls
	I/O API Calls
	Core Local Interrupt Timer API Calls
	User Timer API Calls
	PLIC API Calls
	SPI API Calls
	SPI Flash Memory API Calls
	UART API Calls
	RISC-V API Calls
	Handling Interrupts

	19. Inline Assembly
	Introduction
	Inline Assembly Syntax
	Operands

	RISC-V Registers

	Appendix: Required Software for Eclipse (RISC-V SDK)
	Install the RISC-V SDK
	Install the Java JRE

	Appendix: Launch Eclipse (RISC-V SDK)
	Set Global Environment Variables

	Appendix: Create and Build a Software Project (RISC-V SDK)
	Create a New Project
	Import Project Settings (Optional)
	Enable Debugging
	Build

	Appendix: Debug with the OpenOCD Debugger (RISC-V SDK)
	Launch the Debug Script
	Debug
	Debug - Multiple Cores

	Appendix: Re-Generate the Memory Initialization Files Manually
	Appendix: Import the Debug Configuration
	Appendix: Copy a User Binary to the Flash Device (2 Terminals)
	Revision History

