
Efinity® Software User Guide

UG-EFN-SOFTWARE-v16.1
June 2025
www.efinixinc.com

Copyright © 2025. All rights reserved. Efinix, the Efinix logo, the Titanium logo, the Topaz logo, Quantum, Trion, and Efinity are trademarks of Efinix,
Inc. All other trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

http://www.efinixinc.com

Efinity Software User Guide

Contents
Figures...v

Tables.. vii

Introduction...ix
New in v2025.1... x
Using an Existing Project with a New Software Version...xi
Where to Learn More..xi

Hardware and Software Requirements... xii

Chapter 1: Setting Up..15
Efinity Quick Start...15
Setting General Tool Preferences.. 16
Setting User and Project Directories... 16
Efinity Main Window..17

Chapter 2: Managing Projects...18
Project Editor.. 18
Project Tab...23
Referencing RTL Source Files...24
Using VHDL Libraries...25
Packaging Design Files... 26
Migrating a Project to another FPGA..27

Chapter 3: Running the Tool Flow.. 29
Run the Flow with the Dashboard Controls...29
Run the Flow from the Command Line.. 30
About Efinity® Synthesis.. 30
Netlist Tab..31
Netlist Viewer (Beta).. 32

Opening the Netlist Viewer... 33
Zooming.. 33
Highlighting and Marking.. 33
Viewing the Netlist Hierarchy.. 34
Finding Elements... 34
Viewing a User-Defined Element.. 35
Viewing an Element's Connectivity...35
Viewing the Action History...35

Viewing Messages and Logs.. 35
Result Tab.. 36
Viewing Place-and-Route Results...38
Efinity RISC-V Embedded Software IDE..40

Chapter 4: Using the IP Manager..41
Supported IP Cores by Family... 42
Using the IP Configuration Wizard..44
Generated Files.. 45
Instantiating IP in Your Project... 45
Managing IP in Your Project...46
IP Settings File.. 47
Getting Updated IP..47
Resolving IP Manager Issues..48

Chapter 5: Constraining Logic and Assigning Pins... 49
About the Interface Designer...50
Get Oriented...50
Using the Resource Assigner... 53
Resource View...53

www.efinixinc.com

Efinity Software User Guide

Importing and Exporting Assignments...54
Interface Scripting File..55
.csv File for GPIO Blocks.. 56

Scripting an Interface Design...56
Viewing the Package Pinout... 57

Selecting a Pin... 58
Browsing for Pins...59

Constraining Logic and Routing Manually (Beta)..60
Tiles..60
Working with Primitives.. 62
Enabling Manual Assignments.. 63
Assignment Rules.. 64
Creating a Location Assignment File..64
Constraining Routing Manually (Beta)..66

Chapter 6: Analyzing Timing...70

Chapter 7: Simulating..71
Simulation Models... 72
Changing the Default Testbench Names... 74
Simulate with the iVerilog Simulator...74

View Waveforms.. 75
Simulate with the ModelSim Simulator...75
Simulate with the NCSim Simulator.. 77
Simulate with the Aldec Active HDL or Riviera-PRO Simulator... 78

Chapter 8: Debugging...79
Profile Editor Perspective.. 80

Virtual I/O Debug Core.. 81
Logic Analyzer Debug Core.. 83

Debug Wizard...85
Debug Perspective...86

Logic Analyzer Perspective...87
Virtual I/O Perspective.. 88

Debugger Options...89
Using the mark_debug Synthesis Attribute... 90
Concurrent Debugging... 92
Resource Usage..92
Disable the Debug Core...92

Chapter 9: Debugging Transceivers..93
Launching the Transceiver Debugger...94
Using the Transceiver Debugger...94
Debugging with BIST.. 95
Sending Commands.. 96
Interpreting the Results... 97

Chapter 10: Configuring an FPGA.. 98
FPGA Configuration Modes... 98
Flash Programming Modes...99
About the Programmer GUI... 100

Edit the SPI Active Clock..102
Generate a Bitstream (Programming) File..103
About the BRAM Initial Content Updater.. 103

Updating the BRAM Initial Content..104
Using the Example Files...105
Command-Line Interface..106

Working with Bitstreams... 106
Edit the Bitstream Header..107
Bitstream Compression.. 107
Export to Raw Binary Format...107
Export to .svf Format...107
Convert to Intel Hex Format at the Command Line...108
Combine Bitstreams and Other Files... 108

www.efinixinc.com

Combine Bitstreams at the Command Line..109
SPI Programming..109

Program a Single Image...109
Program Multiple Images (CBSEL)..109
Program Multiple Images (Internal Reconfiguration)... 110
Program Multiple Images (Bitstream and Data)..111
Program a Daisy Chain...111

JTAG Programming... 112
Trion Family JTAG Device IDs... 112
Titanium Family JTAG Device IDs...112
Topaz Family JTAG Device IDs..113
Program a Single Image...113
Program Using a JTAG Chain..114
Program using a JTAG Bridge...115
JTAG Programming with FTDI Chip Hardware... 117
FDTI Programming at the Command Line.. 117

Using the Command-Line Programmer..120
Project-Based Programming Options... 121
Configuration Status Register.. 124
Verifying Configuration with the Programmer...126
Securing Titanium Bitstreams...127

Using the Efinity Bitstream Security Key Generator..129
Blowing Fuses with the SVF Player...131
Enabling Security for Your Project.. 132
JTAG Command Support with Security Enabled... 133
Encrypt or Sign Bitstreams from the Command Line.. 134
Workflow for Using Security Features.. 135
Verifying Security Settings..137

Chapter 11: Working with JTAG .svf Files.. 138
Using the Efinity SVF Player..138

Chapter 12: Working with Remote Hardware.. 140
Appendix: Installing USB Drivers..142

Installing the Linux USB Driver.. 142
Installing the Windows USB Driver... 143

Appendix: Program using a JTAG Bridge (Legacy).. 144
Appendix: Efinity Tools...145
Appendix: Efinity Project Files..147

Efinity Source Files for Version Control..147
Bitstream Generation...147
Debugger.. 148
Interface Designer..149

Unified Design Flow..151
IP... 152
Placement..154
Project.. 155
Routing...155
Synthesis.. 157

Appendix: Shortcuts..159
Appendix: Icon List... 160
Revision History.. 163

Efinity Software User Guide

Figures
Figure 1: Design Flow Overview... ix

Figure 2: General Tool Preferences... 16

Figure 3: Efinity Main Window... 17

Figure 4: Project Editor - Project Tab...18

Figure 5: Project Editor - Design Tab.. 19

Figure 6: Project Editor - Synthesis Tab.. 20

Figure 7: Project Editor - Place and Route Tab.. 22

Figure 8: Project Editor - Bitstream Generation Tab... 22

Figure 9: Project Editor - Debugger Tab.. 23

Figure 10: Project Tab..23

Figure 11: Opening IP Packager.. 26

Figure 12: Dashboard Controls..29

Figure 13: Using the Netlist Tab.. 31

Figure 14: Netlist Viewer... 32

Figure 15: Opening the Netlist Viewer... 33

Figure 16: Finding Elements...34

Figure 17: Using the Result Tab... 36

Figure 18: Floorplan Editor...39

Figure 19: RISC-V Selection Dialog Box... 40

Figure 20: Project Tab > IP Folder Context-Sensitive Menu...46

Figure 21: Conceptual View of Interface Blocks..50

Figure 22: Interface Designer...51

Figure 23: Resource Assigner...52

Figure 24: Resource View..54

Figure 25: Package Planner.. 57

Figure 26: Selected Pin... 58

Figure 27: Pin Quick View...58

Figure 28: Browsing for Pins...59

Figure 29: Tiles in the Floorplan Editor.. 61

Figure 30: Bevhavioral Simulation Example .do Macro.. 76

Figure 31: Post-Synthesis Simulation Example .do Macro.. 76

www.efinixinc.com

Figure 32: Debugger Profile Editor Perspective.. 80

Figure 33: Virtual I/O Core Block Diagram.. 81

Figure 34: Logic Analyzer Core Block Diagram...83

Figure 35: Debug Perspective GUI - Logic Analyzer...87

Figure 36: Virtual I/O Debugger..88

Figure 37: mark_debug Signals in the Debug Wizard..90

Figure 38: Efinity Transceiver Debugger...93

Figure 39: Transceiver BIST Loopback Types... 95

Figure 40: Transceiver Debugger BIST Tab..96

Figure 41: Programmer... 100

Figure 42: Using the Netlist Pane.. 103

Figure 43: BRAM Initial Content Updater...104

Figure 44: SPI Active Using JTAG Bridge Options..115

Figure 45: Setting Programming Options (Trion).. 123

Figure 46: Setting Programming Options (Titanium Topaz)...124

Figure 47: Bitstream Authentication..127

Figure 48: Bitstream Encryption...128

Figure 49: Disabling JTAG..128

Figure 50: Efinity Bitstream Security Key Generator... 129

Figure 51: SVF Player...131

Figure 52: Advanced Device Configuration Status Security Signals...137

Figure 53: SVF Player...139

Efinity Software User Guide

Tables
Table 1: Titanium FPGAs Supported in Efinity Software v2025.1 (or Patches)...ix

Table 2: Topaz FPGAs Supported in Efinity Software v2025.1 (or Patches).. x

Table 3: Trion FPGAs Supported in Efinity Software v2025.1...x

Table 4: Machine Memory Requirements..xii

Table 5: Using Efinity and Ubuntu in VM or WSL..xiii

Table 6: Synthesis Project Settings...20

Table 7: Compilation Files and Reports..37

Table 8: Interface Designer Files..37

Table 9: IP Cores Supported by Family...42

Table 10: End of Life IP Cores by Family.. 44

Table 11: Example GPIO .csv File.. 56

Table 12: FPGA Tile Types.. 60

Table 13: Mapping Trion Primitives to Tiles and Sub-Blocks... 62

Table 14: Mapping Titanium and Topaz Primitives to Tiles and Sub-Blocks.. 62

Table 15: Mapping Primitives to Tiles... 63

Table 16: Core Primitive Simulation Models.. 72

Table 17: Interface Primitive Simulation Models..72

Table 18: Virtual I/O Core Ports... 81

Table 19: Logic Analyzer Core Ports..83

Table 20: Debugger Options..89

Table 21: Transceiver Debugger Commands...97

Table 22: FPGA Configuration Modes.. 98

Table 23: Flash Programming Modes..99

Table 24: Internal Oscillator Clock Settings... 102

Table 25: BRAM Initial Content Updater CLI Options...106

Table 26: Modes when Combining Images... 108

Table 27: Trion JTAG Device IDs... 112

Table 28: Titanium JTAG Device IDs...112

Table 29: Topaz JTAG Device IDs..113

Table 30: Project-Specific Programming Options..121

Table 31: Configuration Status Register... 125

www.efinixinc.com

Table 32: Efinity Tools Used for Securing Bitstreams..127

Table 33: Project Options for Security.. 132

Table 34: Allowed JTAG Commands with Security Enabled... 133

Table 35: AddSecurityTitanium.py Options..134

Table 36: USB Programming Connections... 142

Table 37: Efinity Tools..145

Table 38: Shortcuts...159

Table 39: Document Revision History... 163

Efinity Software User Guide

Introduction

The Efinity® software provides a complete tool flow for designing with Efinix® FPGAs and
cores. The graphical user interface (GUI) provides a visual way for you to set up projects,
run the software flow, view floorplan information, and build the interfaces that surround the
logic portion of your design. You use the command-line to perform simulation and automate
the flow using scripts.

Figure 1: Design Flow Overview

Create
Project

RTL
Simulation

Post-Map
Simulation

Command Line OnlyGUI or Command Line GUI Only

Synthesis Build
Interface

Place and
Route

Timing
Analysis

Program
FPGA

Debug

Table 1: Titanium FPGAs Supported in Efinity® Software v2025.1 (or Patches)(1)

FPGA Package Bitstream Timing Pinout

Ti35 F100, F100S3F2, F225, F256 Final Final

Ti60 W64, F100,
F100S3F2, F225, F256

Final Final

N441 – Preliminary Preliminary

N484 Preliminary Final

Ti85

N676 Preliminary Final

Ti90 J361, G400, J484, L484, G529 Final Final

Ti120 J361, G400, J484, L484, G529 Final Final

N441 – Preliminary Preliminary

N484 Preliminary Final

Ti135

N676 Preliminary Final

N484, C529, N1156 Final FinalTi165

N900 – Final Preliminary

J361, G400, J484,
L484, M484, G529

Final FinalTi180

J484D1 Final Final

N484, C529, N1156 Final FinalTi240

N900 – Final Preliminary

Ti375 N484, C529, N900, N1156 Final Final

(1) Refer to the release notes on the web site for the latest support. Software patches often enable new device support.

www.efinixinc.com ix

Efinity Software User Guide

Table 2: Topaz FPGAs Supported in Efinity® Software v2025.1 (or Patches)(2)

FPGA Package Bitstream Timing Pinout

Tz50 F100, F225, F256 Final Final

N484, N676 Preliminary FinalTz75, Tz100

N441 – Preliminary Preliminary

Tz110, Tz170 J361, J484, G400 Final Final

Tz200, Tz325 C529 Final Final

Table 3: Trion FPGAs Supported in Efinity® Software v2025.1

FPGA Package Bitstream Timing Pinout

T4 F49, F81 Final Final

T8 F49, F81, Q144 Final Final

T13 Q100F3, F169, F256 Final Final

T20 W80, Q100F3, F169,
Q144, F256, F324, F400

Final Final

F324, F400 Final FinalT35

F256 – Final Preliminary

T55, T85, T120 F324, F484, F576 Final Final

New in v2025.1
The Efinity® software v2025.1 has the following new features and enhancements:
• Improved runtime and memory usage:

— Titanium—30% runtime improvement, 50% memory reduction
— Trion—10% runtime improvement, 10% memory reduction

• New device support
— Ti85 and Ti135 in N441 packages
— Tz75 and Tz100 in N484 and N676 packages

• Unified netlist flow supports LVDS
• Unified simulation

— Supports all simple peripheral blocks: GPIO, HVIO, HSIO, PLL, clock multiplexer,
LVDS, MIPI lane, oscillator, and JTAG

— Supports the Trion DDR block (to simulate with the encrypted models, contact your
local Efinix sales representative)

• Debugging
— Synthesis support for tagging debugging probe points with mark_debug attribute
— Transceiver Debugger supports BIST mode

• Improved support for installation in a shared environment
• Programmer has significantly faster flash verification mode

(2) Refer to the release notes on the web site for the latest support. Software patches often enable new device support.

www.efinixinc.com x

Efinity Software User Guide

Using an Existing Project with a New Software
Version
If you are upgrading from an older Efinity version, previously generated compilation files
(such as old synthesis and place and route output files) may not be compatible with the new
version of Efinity software. If the old files are not compatible, the software will prompt you
to re-compile.

Important: When you open an existing project in a newer software version the Efinity software
updates the project files with version-specific modeling information; the project files are not backwards
compatible. Therefore, Efinix recommends that you make a backup of your project if you may want to
open it again in an previous software version.

Where to Learn More
The Efinity® software includes documentation as PDF user guides and on-line HTML help.
This documentation is provided with the software. You can also access the latest versions of
PDF documentation in the Support Center:

• Efinity Software User Guide
• Efinity Synthesis User Guide
• Efinity Timing Closure User Guide
• Efinity Software Installation User Guide
• Efinity Trion Tutorial
• Efinity Debugger Tutorial
• Topaz Interfaces User Guide
• Titanium Interfaces User Guide
• Trion Interfaces User Guide
• Efinity Interface Designer Python API
• Quantum® Trion Primitives User Guide
• Quantum® Titanium Primitives User Guide
• Quantum® Topaz Primitives User Guide

In addition to documentation, Efinix field application engineers have created a series of videos
to help you learn about aspects of the software. You can view these videos in the Support
Center.

www.efinixinc.com xi

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTDBG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TzINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TZPRIM

Efinity Software User Guide

Hardware and Software Requirements

General Requirements
• Efinity full release: 64-bit operating system, at least dual-core
• Your preferred text editor such as Notepad, gVim, Visual Studio
• Machine memory requirements (when compiling Efinity designs):

Table 4: Machine Memory Requirements
These requirements assume up to 16 threads, and include 4 GB for the operating system and
background applications.

Product Model Memory

T4, T8, T13, T20, T35 8 GBTrion

T55, T85, T120 12 GB

Ti35, Ti60, Ti85, Ti90, Ti120, Ti135, Ti180 8 GBTitanium

Ti165, Ti240, Ti375 12 GB

Tz50, Tz75, Tz100, Tz110, Tz170 8 GBTopaz

Tz200, Tz325 12 GB

Windows Requirements
• Efinity full release or Windows Standalone Programmer: Windows 10 or later, 64-bit

operating system
• Microsoft Visual C++ 2022 x64 runtime library (or latest version) redistributable

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?
view=msvc-170

• Zadig software to install USB drivers
see Installing the Windows USB Driver on page 143

• Java 64-bit runtime environment; required for configuring some IP cores in the IP
Manager (e.g., Sapphire SoC); available from:
— https://www.java.com/en/download/manual.jsp (Java 8)
— https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
— http://jdk.java.net/16/ (OpenJDK 16)

Note: You may also use other Java software platforms that are available in the
market.

Note: The path <drive>:\Windows\System32 must exist in %PATH% if you have a customized
environment variable.

Linux Requirements
Supported operating systems:

• Ubuntu v20.04 or later
• Red Hat Enterprise v8.8 or later

Additional software you need to install:

• Libraries:

www.efinixinc.com xii

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://www.java.com/en/download/manual.jsp
https://developers.redhat.com/products/openjdk/download
http://jdk.java.net/16/

Efinity Software User Guide

— Ubuntu v20.04(3)—apt install libxcb-cursor0
— Red Hat—yum install xcb-util-cursor

• Linux X11 or Wayland windowing system (for Efinity® GUI)
• Java 64-bit runtime environment (8 or higher), required for configuring some IP cores in

the IP Manager (e.g., Sapphire SoC). Follow the instructions on the Ubuntu web site or
Red Hat web site to install it. Your path environment variable should include the Java
executable.

• Udev device manager for Efinix USB programming cable
see Installing the Linux USB Driver on page 142

Running the Efinity software on Ubuntu in a virtual machine or using Windows WSL
requires these additional libraries:

Table 5: Using Efinity and Ubuntu in VM or WSL

Platform Ubuntu
Version

Required Libraries

20.04 sudo apt install libxcb-cursor0 libnss3 libasound2 libxkbfile1 -yVM

22.04
24.04

No additional libraries required.(3)

20.04 sudo apt update
sudo apt install libxcb-cursor0 libnss3 libasound2 libxkbfile1
sudo apt install libxcb-xinerama0 libxcb-icccm4 libxcb-image0 libxcb-
keysyms1 libxcb-render-util0 libxcb-shape0 libxkbcommon-x11-0 libegl1
libxdamage1(5)

22.04 sudo apt update
apt install libxcb-cursor0 libnss3 libasound2 libxkbfile1

WSL v2.3,
v2.4(4)

24.04 sudo apt update
sudo apt install libxcb-cursor0 libnss3 libasound2t64 libxkbfile1
sudo apt install libxcb-xinerama0 libxcb-icccm4 libxcb-image0 libxcb-
keysyms1 libxcb-render-util0 libxcb-shape0 libxkbcommon-x11-0(5)

Note: Efinix recommends increasing the memory reservation for your WSL2 machine to avoid degraded
performance or out of memory situations. Refer to https://learn.microsoft.com/en-us/windows/wsl/wsl-
config#wslconfig.

(3) The official LTS images for v22.04 and v24.04 include the libxcb-cursor0 library by default.
(4) For the Bitstream Security Key Generator and JTAG SVF Player, you need to set an environment variable. See Table 1.
(5) You can also use the the command sudo apt install qtwayland5, however, it installs more libraries than you need, which

may not be desired.

www.efinixinc.com xiii

https://ubuntu.com/tutorials/install-jre#2-installing-openjdk-jre
https://docs.redhat.com/en/documentation/red_hat_build_of_openjdk/8/html/installing_and_using_red_hat_build_of_openjdk_8_for_rhel/assembly_installing-openjdk-8-on-red-hat-enterprise-linux_openjdk#installing-jdk11-on-rhel-using-archive_openjdk
https://learn.microsoft.com/en-us/windows/wsl/wsl-config#wslconfig
https://learn.microsoft.com/en-us/windows/wsl/wsl-config#wslconfig

Efinity Software User Guide

Installing iVerilog
Icarus Verilog (iVerilog) is a free Verilog simulation tool you can use to compile and simulate
Verilog HDL source code. The software is available as source code or as pre-compiled
binaries.

Windows installation:

To download the simulator: bleyer.org/icarus

Note: The latest versions of iVerilog are bundled with the GTKWave software, so you only need to
download 1 file to get both tools. Refer to the bleyer.org/icarus website for more information.

To download the simulator source code: github.com/steveicarus/iverilog

Linux installation:

Refer to the Installation Guide for steps to obtain, compile and install Icarus Verilog:
steveicarus.github.io/iverilog/

Note: Efinix recommends iVerilog version 11.0 or later.

Installing GTKWave
GTKWave is an open-source tool that analyzes post-simulation dumpfiles and displays the
results in a graphical interface. It includes a waveform viewer and RTL source code navigator.
You can use GTKWave with the iVerilog simulator to analyze and debug your simulation
model, or to view any VCD waveform.

Windows installation:

You can read more at gtkwave.sourceforge.net.

Note: If you have downloaded and installed the iverilog setup file (bundled with GTKWave), you do not
need to install a separate standalone GTKWave.

To download and run the latest Windows version, follow these steps:

1. You can browse for the software files at gtkwave - Browse Files at Sourceforge.net. The
Windows files are situated lower down the page.

2. Unzip the downloaded file.
3. Optional:

You may need to add the path to GTKWave ($GTKWave_folder$\bin\) to your System
Variables path for the software to launch correctly.
4. Run the program by executing gtkwave.exe in the <install dir>/bin directory.

Linux installation:

Linux users can use the following commands:

sudo apt-get update
sudo apt-get install gtkwave

www.efinixinc.com xiv

https://bleyer.org/icarus/
https://bleyer.org/icarus/
https://github.com/steveicarus/iverilog
https://steveicarus.github.io/iverilog/
https://gtkwave.sourceforge.net/
https://sourceforge.net/projects/gtkwave/files/

Efinity Software User Guide

Chapter 1

Setting Up
Contents:

• Efinity Quick Start
• Setting General Tool Preferences
• Setting User and Project Directories
• Efinity Main Window

Efinity Quick Start
To launch the Efinity graphical user interface (GUI), double-click the Efinity desktop icon.
To launch and use the Efinity tool from the command line, refer to the following sections.

Warning: Do not use non-English characters in the Efinity project paths.

Windows
Set up your environment and PATH:

bin\setup.bat

Launch the Efinity GUI from the command line:

bin\setup.bat --run

Run Efinity from the command line:

cd %EFINITY_HOME%\project\<project name> // Change to project directory
efx_run.bat <project name>.xml // Run Efinity

For command-line help:

efx_run.bat --help

Linux
Set up your environment and PATH:

source bin/setup.sh

Launch the Efinity GUI from the command line:

efinity

Run Efinity from the command line:

cd $EFINITY_HOME/project/<project name> // Change to project directory
efx_run.py <project name>.xml // Run Efinity

www.efinixinc.com 15

Efinity Software User Guide

For command-line help:

efx_run.py --help

Setting General Tool Preferences
Before you create a project, set general tool preferences to control the operation of the
software.

Figure 2: General Tool Preferences

Indicate which external text editor you want to use

Indicate the default root path for projects

When enabled, the software checks whether your software
is newer than the project you open
When enabled, the software uses the mime type to open
files in the default system application

When enabled, the software checks for updated IP cores

Turn on to use your specified editor when opening text files

Indicate the default user directory

Note: The external text editor defaults to gedit in Linux and Notepad in Windows. The Efinity software
also has a built-in Code Editor, which is best used for viewing code instead of as a full editor.
When you double-click a file in the Project tab or Result tab, the software opens the file in the Code Editor
(default) or your specified editor (if you turn on the Use user editor as default editor for all files option).

Setting User and Project Directories
Historically, the Efinity software saved all files, including project files, in the Efinity
installation directory by default. Beginning with the Efinity software v2025.1, the default
location is in your user directory:
• Linux—/home/<user name>/.efinity
• Windows—C:\Users\<user name>\.efinity

This change makes it easier to manage projects if you have multiple versions of Efinity
software installed. The .efinity directory is your default project directory and also stores log
files and .ini files for various tools (IP Manager, IP Packager, Interface Designer, Debugger,
Programmer, etc.).

To change the default location, choose File > Preferences. In the Preferences dialog box,
change the Top-level project path and User directory fields for the new path. The Efinity
software prompts you to restart the software after you change the path(s).

www.efinixinc.com 16

Efinity Software User Guide

Efinity Main Window
Use the controls in the Dashboard to run the tool flow, including synthesis, placement,
routing, and bitstream generation.

Figure 3: Efinity Main Window

www.efinixinc.com 17

Efinity Software User Guide

Chapter 2

Managing Projects
Contents:

• Project Editor
• Project Tab
• Referencing RTL Source Files
• Using VHDL Libraries
• Packaging Design Files
• Migrating a Project to another FPGA

Project Editor
You use the Project Editor to create or modify a project, add files to your project (such
as timing constraint files), and choose a device family and device. To create a new project,
choose File > Create Project or click the Create Project icon.

Project Tab
Use the Project tab to specify the project name, location, optional project description, device
family, device, and timing model. The project location defaults to <install directory>/
project/<project name>.

Figure 4: Project Editor - Project Tab

www.efinixinc.com 18

Efinity Software User Guide

Design Tab
Use the Design tab to add design and constraint files to your project. In Efinity® software
2024.2 and higher, you must specify a name for the Top Module/Entity. For new projects,
the Top Module/Entity name defaults to the project name. You can edit the Top Module/
Entity name without changing the project name.

For existing projects, changing the project name does not automatically update the Top
Module/Entity name. Therefore, if you want to change the top module or entity name, you
must edit it in Design tab > Top Module/Entity.

Important: The Top Module/Entity name cannot be left blank. If you do not enter a name or if you delete
the name, the software issues an error message when you try to save the change.

Figure 5: Project Editor - Design Tab

You can choose the top-level VHDL architecture, if desired.

You can set the default Verilog HDL, SystemVerilog, or VHDL version for the design files.

In Efinity® v2020.2 and higher, you can define VHDL libraries and add files to them. See
Using VHDL Libraries on page 25 for details.

Learn more: For more information about language support, refer to the Efinity Synthesis User Guide.

You can import an entire directory of files into your project or add them one at a time. When
you import files:
• Turn on Copy to Project to copy the imported files to your project directory. You

can choose whether to flatten (copy all files to project root directory) or preserve the
directory structure.

www.efinixinc.com 19

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH

Efinity Software User Guide

• If you do not copy the files to your project, specify whether to reference the files as full or
relative paths.

• Choose to import only design files or all files (which includes constraints).

Optionally, in the Constraint section you can specify a Synopsys Design Constraints (.sdc)
file for timing-driven compilation and an Interface Scripting File (.isf) that contains all of the
Python API commands to re-create your interface.

Learn more: Refer to Analyzing Timing on page 70 and the Efinity Timing Closure User Guide for
more information on timing analysis.

Synthesis Tab
Optional. The Efinity® software supports options to help you direct the synthesis flow. Use
the options on this tab to specify project-specific preferences. If you do not make any settings,
the tool uses the defaults.

Figure 6: Project Editor - Synthesis Tab

Table 6: Synthesis Project Settings

Setting Description

Work Directory Specify a custom directory or use the default (work_syn).

Generate post synthesis
netlist

Choose whether the software should create this netlist.
Default: On

Synthesis Options See "Synthesis Options" in the Efinity Synthesis User Guide.

www.efinixinc.com 20

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH

Efinity Software User Guide

Setting Description

Include Dir Specify directories to include in your project. If you use the IP Manager to add IP, the
ip/<module> directory is listed here. The software searches these locations when
you use include statements.

Dynamic Parameter Use this area to add parameters and values that apply to the top-level module or
entity in your project. The value passed into the Dynamic Parameter field must be
the same format as that you would use for any variable in VHDL or Verilog HDL. For
example, string should be in quotation marks.

Verilog `define Macro Use this area to add `define macros to your project.
Some FPGA EDA tools automatically create a SYNTHESIS macro. If you want to use
the same behavior in the Efinity software, you need to create it here. For example,
click the Add Verilog `define Macro button and then enter SYNTHESIS in the NAME
field and 1 in the Value field. Then if you want to include simulation only code, use
this format:

`ifndef SYNTHESIS
$display(...)
... some other simulation directives ...
`endif

You can also use the translate_on and translate_off directives to accomplish similar
functionality.

Learn more: Refer to the Efinity Synthesis User Guide for more information on these options.

Place and Route Tab
Optional. The options on this tab let you specify project-specific preferences to help close
timing. If you do not make any settings, the tool uses the defaults.
• The optimization levels (--optimization_level) are settings that control both

placement and routing, targeting different metrics.
— CONGESTION optimization levels may help a congested design meet timing.
— TIMING optimization levels may help a non-congested design meet timing

requirements.
— POWER optimization levels may help reduce a design’s power consumption.

Often, the default settings are the best choice, as these options will not help all designs.
• The placer effort level (--placer_effort_level) is a way to control how much

runtime the placer uses when it tries to improve placement quality.
• The number of threads (--max-threads) controls how many thread that the placer

can launch. The default setting (-1) means that the placer uses the maximum number of
available processors.

www.efinixinc.com 21

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH

Efinity Software User Guide

• The --seed option introduces random noise in the placer. The seed is the value you set.

Figure 7: Project Editor - Place and Route Tab

Learn more: Refer to "Place and Route Options" in the Efinity Timing Closure User Guide for more details
on these options and how to optimize timing.

Bitstream Generation Tab
Optional. Use the options on this tab to specify project-specific preferences such as the
programming mode, daisy chaining, and memory initialization. If you do not make any
settings, the tool defaults to SPI active programming mode.

Figure 8: Project Editor - Bitstream Generation Tab

www.efinixinc.com 22

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

Learn more: Refer to Project-Based Programming Options on page 121 for more information on
bitstream and programming settings.

Debugger Tab
Optional. This tab is where you enable or disable a debug profile to auto-instantiate in your
design and set a working directory for debugging. These settings are used with the Debug
Wizard.

Figure 9: Project Editor - Debugger Tab

Learn more: Refer to Debugging on page 79 for more information.

Project Tab
The Project tab, which is located under the Dashboard, shows all of the files in your design.
Double-click a filename in the Project tab to open the file in the Efinity® Code Editor. To
open the file in another editor, right-click the file name and select your preferred text editor.
You can also choose to show the file in it's containing folder.

Tip: You can resize the Project tab. Grab the blank space between the Project tab and the Console and drag to
resize.

Figure 10: Project Tab

www.efinixinc.com 23

Efinity Software User Guide

You can right-click the folders in the Project tab to open a context-sensitive menu with
shortcut actions. For example, you can right-click Constraint > Add to browse for a
new .sdc file and add it. Refer to Managing IP in Your Project on page 46 for more
information on the IP context menus.

Referencing RTL Source Files
Instead of adding your RTL files to your project individually, you may want to reference
them. The Efinity software v2024.1 and higher lets you reference your design's source files in
a reference file list (.f). With this method, you can update the .f file once and have the changes
reflect for all projects that include the .f file.

Save the .f file in the same directory as your RTL source files. Then add the .f file to your
project.

The .f file is a text file. Add the source files one per line. Any directories should be relative to
the location of the .f file.

module1.v
module2.v
top.v

Add directories you want to include, The Efinity software searches the include directory for
files specified with the `include directive. The software can also find modules that are not
specified in the source file list. For example, the software can find module m1 specified in
m1.v if the file m1.v is located in a specified include directory.

+incdir+<include_directory>

You can also list another .f file:

-f module1.f
-f module2.f
top.v

You can specify the HDL version for the source file. For Verilog HDL files, the available
versions are: verilog_95, verilog_2k, sv_05, and sv_09. For VHDL files, the
available options are vhdl_1993, vhdl_2008, and vhdl_2019.

file1.v, t:verilog_2k
file2.vhd, t:vhdl_2019

To include a custom VHDL library, use this format:

file1.vhd, l:<custom library>

www.efinixinc.com 24

Efinity Software User Guide

Using VHDL Libraries
In the Efinity® software v2020.2 and higher, you can use VHDL libraries to organize and
reference commonly used packages and entities.

Create a Library
To create a library for your project:

1. Open the Project Editor.
2. Click the Design tab.
3. Add the design file(s) that have the packages you want to use. You can add multiple files.
4. Double click the cell under Library.
5. In the drop-down menu, choose Add New.
6. Enter the library name and click OK.

Note: In VHDL, the work library refers to the current library in the design. When
assigning a library name to a VHDL design file, you are encouraged not to use the
word work as the library name only (instead use a variable like name, example:
my_work). Doing so will cause an error in synthesis. Leave it blank (or default) if the
file is part of the current library in the design project.

7. (Optional) If you add more than one library file to your project, double-click in the
Library cell for each file and either choose the library name or add a new one.

Library names are saved across projects.

Add a File to a Library
You add a file to a library in the Project Editor > Design tab. Double-click the Library cell
for the file and choose the name from the drop-down list.

Reference a Library
You use the library and use VHDL language constructs to reference your new library.
The following simple code example shows a new library file for the package mylibrary:

Example: mylibrary.vhd

--! Use standard library
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

package mylibrary is
 --! factor width
 constant DF_WIDTH : integer := 12;
end package mylibrary;

After you add this file to your project and create a library for it, you can refer to the file in
your code:

Example: Referring to the Package

--! Use standard library
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

--! Use costum library
library mylibrary;
use mylibrary.mylibrary.all;

--! Multiplier entity brief description

www.efinixinc.com 25

Efinity Software User Guide

--! Detailed description of this
--! multiplier design element.
entity multiplier is
 port (
 a : in signed (DF_WIDTH-1 downto 0); --! Multiplier first factor
 b : in signed (DF_WIDTH-1 downto 0); --! Multiplier second factor
 result : out signed (2*DF_WIDTH-1 downto 0) --! Multiplier result
);
end entity;

Reference Trion and Titanium Primitive Libraries
The Efinity® software includes VHDL libraries for Trion and Titanium primitives. You use
the library and use VHDL language constructs to reference these libraries:

library efxphysicallib;
use efxphysicallib.efxcomponents.all;

Learn more: The following documents provide example code for these libraries:

Quantum Titanium Primitives User Guide
Quantum Trion Primitives User Guide

Packaging Design Files
The IP Packager is a tool that lets you "package" design file(s) as standalone IP for use in the
IP Manager. This feature is helpful for using the same code in multiple projects.

Note: The IP Packager is available in the Efinity software v2024.1 and higher.

To launch the IP Packager, right-click Project > Design and choose Package.

Figure 11: Opening IP Packager

1

2

To open the IP Packager:

Learn more: For instructions on using IP Packager, refer to the Efinity IP Packager User Guide.

www.efinixinc.com 26

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-IP-PACKAGER

Efinity Software User Guide

Migrating a Project to another FPGA
You choose an FPGA when you create your project. But later, you may want to migrate
your project to a different FPGA. The new FPGA you select may not have the same features
as the existing one, and some resources may not have the same names. So when you choose a
new FPGA in the Project Editor, the Efinity® software automatically performs a design check
in the background to help you migrate the design. You see a message at the bottom of the
main window that the software is checking for migration issues.

Note: Trion and Titanium FPGAs have different configuration settings. Therefore, when migrating designs
from the Trion family to the Titanium family, the software resets any incompatible configuration settings to
the default.

The software generates a detailed log of the interface changes it makes during the migration
and saves it into the <project>/work_pt directory.

Automatic Migration
If the new FPGA you choose is similar to the existing one (for example, you want to change
from the T13 in the BGA256 to the T20 in the BGA256), the software can migrate all the
assignments automatically and gives a message that migration completed successfully. You do
not need to do anything else.

If the two FPGAs have different interface resources (GPIO, PLLs, etc.) but they are pin and
package compatible, the software migrates the assignments automatically. The user design
instances will be preserved but some resources may be automatically reassigned.

Migrate Design Wizard
If the software cannot migrate automatically, it launches the Migrate Design wizard. This
wizard helps you decide how to handle the changes. In the first pane, the wizard:
• Shows the issues it found, for example, GPIO feature differences.
• Asks if you want to create a new interface design or update your current one.
• Lets you back up your existing interface design so you can go back to it if needed.

In the second pane, the wizard shows the assignments that have problems. If you decide to
continue migration, the wizard opens the Interface Designer so you can fix the problems.
You can also cancel to stop migration.

Note: If you cancel migration and keep the new FPGA setting, the Migrate Design wizard opens again the
next time you run the Interface Designer.

Note: For help understanding the messages, refer to the "Design Check" topics in the Titanium Interfaces
User Guide. These topics describe the messages the Interface Designer generates and gives suggestions
on how to fix errors and warnings.

The outcome of design migration depends on the FPGAs involved because each FPGA has
its own unique interface and resources, and each interface block supports specific features.
Therefore, migrating the design from one FPGA to another is limited to the interface block
support available in the destination FPGA.

Migrating a design from one family to another requires manual modification in the post-
migrated design. Different families have different architectures, and therefore different
features. However, the software tries to preserve the instances that have already been created
if the interface block is supported in both FPGAs despite having a different feature set. In this
case, some of the configuration settings may be reset to the default in the migrated design.

The possible outcomes for instances when migrating a design are:

www.efinixinc.com 27

Efinity Software User Guide

• The instance is retained but resource assignments are removed.
— In most cases, the interface block instance is preserved but the assigned resource is

removed because the resource does not exist in the destination FPGA or you are
migrating between families.

— The instance is retained but the feature set is different. Refer to the migration log
in the wizard to understand the differences. For example, when migrating from
Trion FPGAs to Titanium FPGAs, the GPIO instances are preserved but different,
additional, or incompatible features are set to the default.

• The instance is removed.
— If the new FPGA does not support the interface block, the block is removed. For

example, migrating a T20F324 design with LVDS RX instantiated to the T8F81 (which
does not support LVDS RX) results in the LVDS RX instance being removed.

— If the new FPGA has the same block but the block's features are completely different,
the block is removed. For example, migrating a T120F576 design with DDR
instantiated to the Ti180G529 (which supports DDR but with a completely different
configuration) results in the DDR instance being removed.

The Device Setting stores information related to I/O banks and FPGA settings. In Titanium
FPGAs, it also includes the Clock/Control configuration.

Device Settings are migrated as part of the design migration process. The outcome of the
migration depends on the setting compatibility between the FPGAs. If the setting is not
compatible, it is reset to the default value for the destination FPGA.

• I/O Bank configuration is migrated if the setting is valid or applicable in the destination
FPGA. For example, if Bank 1A exists in the destination FPGA, the voltage indicated for
this bank is migrated if the destination FPGA Bank 1A supports the voltage value. If the
destination FPGA Bank 1A does not support the voltage, Bank 1A in the migrated design
is reset to the default voltage.

• Clock/Control configuration does not exist in Trion FPGAs. Therefore, you cannot
migrate any settings between Trion and Titanium FPGAs.

www.efinixinc.com 28

Efinity Software User Guide

Chapter 3

Running the Tool Flow
Contents:

• Run the Flow with the Dashboard Controls
• Run the Flow from the Command Line
• About Efinity Synthesis
• Netlist Tab
• Netlist Viewer (Beta)
• Viewing Messages and Logs
• Result Tab
• Viewing Place-and-Route Results
• Efinity RISC-V Embedded Software IDE

The Efinity software supports GUI and command line tool flows.

Run the Flow with the Dashboard Controls
The Dashboard controls the software flow, which operates in two modes: automated and
manual. Toggle automated and manual flows using the toggle button.

Note: The automated flow is on by default.

• Automated flow—Use automated mode to run the full flow from start to finish.
Additionally, you can start the flow from any point and run it to the end. For example,
after completing the full flow you can restart the automated flow at the placer stage and
run the flow to the end.

• Manual flow—Disable the automated flow to run each stage manually.

When a stage completes, a marker indicates whether the stage completed successfully, with
warnings, or with errors. You can stop and restart the flow at any point.

Figure 12: Dashboard Controls

Toggle Automated/
Manual Flow

Start Synthesis
Start Placement

Start Routing

Stop Flow
Generate Bitstream

Toggle Dashboard

www.efinixinc.com 29

Efinity Software User Guide

Run the Flow from the Command Line
You can run the software flow from the command line using the efx_run.py Python 3 script.
This script is available in the scripts directory.

Compilation commands:

• --flow compile performs synthesis, place and route, and generates a bitstream hex file
(default)

• --flow map performs synthesis
• --flow pnr performs place and route
• --flow full runs the full flow, including RTL and post-synthesis simulation
• --flow interface generates the interface constraint files

• --flow sta_tclsh enters the Tcl Console

Simulation only commands:

• --flow rtlsim performs RTL simulation on the design’s source files
• --flow mapsim performs simulation with the post-synthesis netlist file

Programming commands:

• --flow pgm creates the bitstream hex file used to configure the device
• --flow program programs the target device

Tip: Use --help to display the command-line help and additional options.
The Console supports color output. See Console on page 35.

The following example command runs the complete flow on the helloworld design:

Example: Run Complete Flow from Command Line
Linux:

> efx_run.py helloworld.xml --flow full

Windows:

> efx_run.bat helloworld.xml --flow full

About Efinity® Synthesis
The first stage after you complete your RTL design is synthesis. During synthesis, the
compiler takes your design and turns it into a gate-level netlist. The software supports
synthesis options and attributes so you can optimize your design.

The software supports the synthesizable subset of the following languages:
• SystemVerilog and Verilog HDL
• VHDL
• Mixed languages (any combination of the above)

Learn more: Refer to the Efinity Synthesis User Guide for more information on synthesis options ans
attributes as well as design guidelines.

www.efinixinc.com 30

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH

Efinity Software User Guide

Netlist Tab
The Netlist tab, which is under the Dashboard, shows the design hierarchy and helps
you browse through the elaborated design and synthesized netlist. You can only view the
synthesized netlist after you have performed synthesis. You can right-click the items in the
Netlist tab to open a context-sensitive menu with shortcut actions.

Tip: You can resize the Netlist tab. Grab the blank space between the Netlist tab and the Console and drag to
resize.

Figure 13: Using the Netlist Tab

Perform Analysis

Perform
Elaboration

Synthesize

www.efinixinc.com 31

Efinity Software User Guide

Netlist Viewer (Beta)
The Netlist Viewer tool displays and analyzes your design's netlist, including all components
and their connections (nodes and nets). You use the Netlist Viewer to examine an elaborated
netlist visually. (The Netlist Viewer does not support post-mapping netlists in the Efinity
software v2023.1.)

Important: The Netlist Viewer is beta in the Efinity software v2023.1.

With the Netlist Viewer you can:

• Visualize and analyze netlists in a graphical format
• Understand the connections between components
• Identify potential issues in your design

Note: The Netlist Viewer is supported in the Efinity software v2023.1 and higher.

Figure 14: Netlist Viewer

World view
Fit the whole schematic in the viewer pane
Zoom out
Zoom in
Go to the next action
Go to the previous action
Close
Show/hide Netlist Hierarchy pane

www.efinixinc.com 32

Efinity Software User Guide

Opening the Netlist Viewer
1. If you have not already done so, synthesize your design or choose Netlist > Elaborate

All to generate the elaborated netlist for your design.
2. Click Netlist > Elaborated > Show Elaborated Netlist in Viewer or choose Tools >

Show Elaborated Netlist in Viewer.

Important: If the design is large and flattened, the Netlist Viewer will take a long time to load. This
performance problem is a known issue for the beta.

Figure 15: Opening the Netlist Viewer

Click to open the
Netlist Viewer

Zooming
There are several ways to zoom in or out:
• Use the toolbar buttons.
• Use the mouse to click and drag:

— Drag down to the right to draw a box around the area you want to zoom in on.
— Drag up to the right to zoom out or drag down to the left to zoom in. The zoom level

is dependent on the length of the line you draw. A pop-up indicator shows the zoom
level represented by the line length, e.g., zoom -1.0 or zoom +0.5.

— Drag up and to the left to fit the whole design in the viewer (zoom fit).
• Right-click in the viewer. In the pop-up menu, choose View > <option> to zoom in,

out, or fit.
• If you are zoomed in and want to see where you are, open the World View.

— Choose View > World View.
— Click the World View button.
— Right-click in the viewer and choose View > World View from the pop-up menu.

Note: You can also highlight or mark design elements and then zoom to them. See Highlighting and
Marking on page 33.

Highlighting and Marking
For large netlists, you may want to use a visual indicator or marker to keep track of where
specific design elements are located in the viewer. The Netlist Viewer has two ways to put an
indicator onto an element: highlighting and marking,

• Highlighting adds a colored line around the element.

www.efinixinc.com 33

Efinity Software User Guide

• Marking adds a colored dot in the center of the element and on each port connected to the
element.

Note: The software does not save the highlights or marks; they are discarded when you close the Netlist
Viewer. (This feature is planned for a future version.)

You can adjust the zoom to fit the highlighted or marked items in the view. Right-click in the
viewer and choose View > Fit highlighted or View > Fit marked.

Viewing the Netlist Hierarchy
The Netlist hierarchy pane shows the instances, ports, and nets of the current module. You
can browse through the list or use the filter to find specific elements.

You can toggle the Hierarchy pane's visibility by clicking the Show/Hide Netlist Hierarchy
icon.

Finding Elements
For large netlists, it can be difficult to browse elements with the Netlist Hierarchy. Instead
you can use the Find function to search for elements by name or with a regular expression.
You can choose whether to search instances, ports, nets, or a combination.

1. Choose Edit > Find to open the Find dialog box.
2. Enter the search criteria.
3. Click OK.
4. The Search Result pane opens and displays the results. Click on an element name to see it

in the viewer.

Note: For buses, you need to click on the bus name not the signal name to see it in
the viewer.

Figure 16: Finding Elements

Click an element to see
it in the viewer

Find dialog box

www.efinixinc.com 34

Efinity Software User Guide

Viewing a User-Defined Element
The viewer colors manually instantiated primitives blue (instead of orange). Double-click on
the element to view the internal structure of the primitive.

Note: You cannot view the internal structure for encrypted elements. If you mouse over a blue element
and the cursor changes to a hand, you can double-click to view it. If the cursor does not change, the
element is encrypted.

Viewing an Element's Connectivity
You can see all of the nets that connect to a specific element.

1. Right-click the element.
2. Choose Show Connectivity. The viewer colors all of the nets connected to the element in

blue.

Viewing the Action History
As you work in the Netlist Viewer, it saves a history of all your actions. Then, you can
go backwards in the history to remove actions and forward in the history to perform
them again. This feature can be useful to see a previous state when you are marking and
highlighting elements.

Viewing Messages and Logs
The Efinity software has several methods for viewing messages and log entries that result
from the compilation flow.

Console
The Console provides verbose messages and reports for all aspects of the tool flow.
Additionally, it functions as the Tcl message console when you turn on the Tcl Command
Console.

• You can clear the Console and remove all messages.
• You can prevent the Console from scrolling when the tool issues new messages.
• You can enable/disable text and background color (Efinity software v2024.1 and higher).

The Console supports output in color. Info, warning, and error messages are highlighed in
different colors (blue, purple, and red, respectively). To turn color on or off, use Accessibility
> Console Color. You can also turn on a dark mode for the Console background using
Accessibility > Console Dark Theme.

If you are running the Efinity software at the command line, the output is also in color by
default. Use these environment variables to control the output color:
• Use color—EFINITY_COLOR_PRINTING=1
• Do not use color—EFINITY_COLOR_PRINTING=0

Tip: It can be hard to find specific messages in the Console as they scroll by. Instead, use the Message Browser or
Log Browser to see specific messages like warnings and errors. Additionally, you can use the Search button in the
Console to jump to a specific string.

Message Browser
The Message Browser gives synthesis-specific messages that result when you elaborate the
netlist.

www.efinixinc.com 35

Efinity Software User Guide

Timing Browser
The Timing Browser shows the critical paths in your design. Refer to Analyzing Timing on
page 70 for more details.

Log Browser
The Log Browser gives you a way to sort and browse through all of the messages resulting
from the compilation flow. It shows some of the same content as the Console (the Console
is more verbose). You can filter by where the message appeared in the flow (synthesis,
placement, routing, programming) and the type of message (info, warning, or error). The Log
Browser lets you search messages using keywords or regular expressions.

Result Tab
The Result tab, which is under the Dashboard, shows all of the reports and files that result
from compilation. Double-click on any file to view it in the Code Editor. Additionally, it
shows a summary table of the resources used. You can right-click the items in the Result tab
to open a context-sensitive menu with shortcut actions. If you double-click a filename, the
file opens in the Code Editor (default) or the editor you set in your Efinity preferences (see
Setting General Tool Preferences on page 16).

Figure 17: Using the Result Tab

The numbers of inputs and outputs in the Core Resource section represent the
connections between the core and the periphery; they are not package pins. See
<project>.place.rpt on page 154 for more details.

Tip: In Efinity® v2020.2 and higher you can resize the Result tab. Grab the blank space between the Result tab and
the Console and drag to resize.

www.efinixinc.com 36

Efinity Software User Guide

Table 7: Compilation Files and Reports
The software generates these files when you run the flow.

Category File Description

<project>.map.v Post-mapping netlist file for simulation.

<project>.map.core.v Post-mapping core netlist file for simulation with the unified
design flow.

<project>.map.peri.v Post-mapping interface netlist file for simulation with the unified
design flow.

<project>.map.rpt Synthesis report file; gives a summary of the resources your
design uses.

<project>.map.out Messages output to the Console during synthesis; includes any
synthesis warnings or errors.

Synthesis

<project>.res.csv Provides the resource usage for all of the modules in the
design.

<project>.place Detailed placement report.

<project>.place.rpt Resource summary report.

Placement

<project>.place.out Messages output to the Console during placement.

<project>.pnr.rpt Provides the resource summary for inputs, outputs, clocks, LEs,
memory, and multipliers (Trion) or DSP Blocks (Titanium and
Topaz).

<project>.route.rpt Routing report.

<project>.timing.rpt Static timing analysis report.

Routing

<project>.route.out Messages output to the Console during routing.

<project>.hex Use this file to program in SPI active or passive mode.

<project>.bit Use this file for JTAG programming.

Bitstream

<project>.pgm.out Messages output to the Console during bitstream generation.

Table 8: Interface Designer Files
The Interface Designer generates these files when you click the Generate Interface Output Files button and when
you do a full compile.

File Description

<project>.interface.csv Constrains the FPGA design pins used in the interface between the core
and the periphery.

<project>.pt.rpt Interface Design report file with details of the blocks used, I/O banks,
global connections, clock region usage, GPIO and dual-function
configuration pins used, etc.

<project>.pinout.rpt Has the board design pinout with pin number, signal name, pin name, I/O
bank, etc. in a nicely formatted text file format.

<project>.pinout.csv Pinout report file formatted as .csv.

<project>.pt_timing.rpt Timing report for the Trion®, Topaz, and Titanium interface logic.

<project>.pt.sdc Template SDC file to constrain the FPGA design pins based on the
interface configuration.

<project>_or.ini Contains option register information the Programmer uses.

<project>_template.v Template Verilog HDL file defining the FPGA design pins based on the
interface configuration.

www.efinixinc.com 37

Efinity Software User Guide

File Description

<project>.unified.isf ISF file that creates design instances and set their properties based on the
interface logic discovered by synthesis in the unified design flow.

<project>.auto_asg.isf ISF file with interface logic automatically assigned to resources in the
unified design flow.

<project>.peri_rtl.v Interface netlist file (blocks inferred by synthesis) for simulation in the
unified design flow.

<project>.peri_pt.v Interface netlist file (blocks from Interface Designer) for simulation in the
unified design flow.

Viewing Place-and-Route Results
You view place-and-route results in the Console pane, in the Result pane, and in the
Floorplan Editor.

• The Console displays messages generated during compilation. For example, if the design
has too many I/O pins to fit in the target device, compilation will stop and the Console
will show the error message.

• The Result pane shows the output and report files for each stage in the flow. Additionally,
the Report pane displays a table of the interface resources the design uses; if your design
has a debug core, it also shows a table of resources used by the debugger.

Note: Double-click on a file name to open it in the Efinity Code Editor.

• After you have run a project through synthesis, placement, and routing, you can open the
Floorplan Editor tool to see a representation of the tiles in the FPGA and the placement
of logic, memory, I/O, and other blocks. Click the Floorplan Editor icon in the main
toolbar to open the Floorplan Editor.

www.efinixinc.com 38

Efinity Software User Guide

Tip: Detach the Floorplan Editor tool from the main Efinity window for better viewing.

Figure 18: Floorplan Editor

Tiles

Click on a Block to Show Information (Unused Blocks Are Empty)

Net Tracer Follows
the Path through
the Floorplan

The World View Orients You in the Floorplan

Note: If you have disabled auto-loading, you cannot view place-and-route results in the Floorplan Editor
or Timing Browser, or use the Tcl console. To enable these tools, click the Load Place and Route Data
button in the main window. Refer to Auto-Load Place-and-Route Data for details.

Learn more: Refer to the Efinity Trion Tutorial for more information on how to use the Floorplan Editor.

www.efinixinc.com 39

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL

Efinity Software User Guide

Efinity RISC-V Embedded Software IDE
The Efinity RISC-V Embedded Software IDE is an Eclipse-based Integrated Development
Environment (IDE) powered by Ashling's RiscFree™ IDE. The IDE is a separate package that
you can download from the Supprot Center.

In the Efinity software v2025.1 and higher you can launch the IDE from within the Efinity
GUI. Click the Open RISC-V IDE button in the main toolbar to open the RISC-V Selection
dialog box.

Figure 19: RISC-V Selection Dialog Box

The dialog box shows the IDE versions you have installed, and it looks in your project for
any available BSPs. If you want to use one that is not listed, click Select to browse for a
different IDE version or BSP.

www.efinixinc.com 40

Efinity Software User Guide

Chapter 4

Using the IP Manager
Contents:

• Supported IP Cores by Family
• Using the IP Configuration Wizard
• Generated Files
• Instantiating IP in Your Project
• Managing IP in Your Project
• IP Settings File
• Getting Updated IP
• Resolving IP Manager Issues

The Efinity® IP Manager is an interactive wizard that helps you customize and generate
Efinix® IP cores. The IP Manager performs validation checks on the parameters you set to
ensure that your selections are valid. When you generate the IP core, you can optionally
generate an example design targeting an Efinix development board and/or a testbench. This
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
core with different parameters, or the same IP core for different projects.

Note: Not all Efinix IP cores include an example design or a testbench.

The IP Manager is included with the Efinity software v2020.2 and higher.

The IP Manager consists of:
• IP Catalog—Provides a catalog of IP cores you can select. Open the IP Catalog using the

toolbar button or using Tools > Open IP Catalog.
• IP Configuration—Wizard to customize IP core parameters, select IP core deliverables,

review the IP core settings, and generate the custom variation.
• IP Editor—Helps you manage IP, add IP, and import IP into your project.

Tip: Refer to Resolving IP Manager Issues on page 48 if you get an RPC server error when launching the IP
Manager.

www.efinixinc.com 41

Efinity Software User Guide

Supported IP Cores by Family
Not all IP cores work with all Titanium or Trion FPGAs. For example, IP cores that connect
to DDR DRAM memory will not work with FPGA that does not have a hard DDR DRAM
interface. The following table shows which IP is supported in which FPGA.

Note: Refer to the FPGA Selector Guide for more information about supported blocks in each FPGA
package.

Table 9: IP Cores Supported by Family
Refer to the IP core user guide for the IP version history.

Trion Titanium TopazIP Core

Supported Not
Supported

Supported Not
Supported

Supported Not
Supported

AXI Infrastructures

AXI Data FIFO All All All

AXI Interconnect All All All

AXI4-Stream Switch All All All

Arithmetic

CORDIC All All All

Divider All All All

Integer Square Root All All All

Bridges and Adaptors

ABP Interconnect All All All

APB3 to AXI4 Lite
Converter

All All All

Data Pipeline All All All

Direct Memory Access All All All

Ethernet

Triple Speed Ethernet
MAC

All All All

10G Ethernet MAC All Ti85, Ti135,
Ti165, Ti240,

Ti375

All others Tz75, Tz100,
Tz200,
Tz325

All others

Foundation IP

PLL Dynamic
Reconfiguration

All Ti85, Ti135,
Ti165, Ti240,

Ti375

All others Tz75, Tz100,
Tz200,
Tz325

All others

Trion PLL Auto-Reset All others T4F49,
T4F81,
T8F49,
T8F81

All All

Memory

BRAM Wrapper All All All

www.efinixinc.com 42

Efinity Software User Guide

Trion Titanium TopazIP Core

Supported Not
Supported

Supported Not
Supported

Supported Not
Supported

FIFO All All All

Memory Controllers

ASMI SPI Flash Controller All All All

DDR Hard Memory
Controller-Reset

T20, T35,
T55, T85,

T120

T4, T8, T13 All All

DDR3 Soft Controller All All All

HyperRAM Controller All All All

JTAG to SPI Flash All All All

SDRAM Controller All All All

SD Host Controller All All All

Trion DDR Calibration and
Debug

T20
(BGA324

and
BGA400

only), T35,
T55, T85,

T120 FPGAs

T4, T8, T13 All All

MIPI

MIPI 2.5G CSI-2 RX
Controller
MIPI 2.5G CSI-2 TX
Controller

All Ti90, Ti120,
Ti180

Ti35, Ti60 Tz110,
Tz170

Tz50

MIPI D-PHY BIDIR RX
Controller
MIPI D-PHY BIDIR TX
Controller

All All All

MIPI CSI-2 RX Controller
MIPI CSI-2 TX Controller

All All All

MIPI D-PHY RX Controller
MIPI D-PHY TX Controller

All All All

MIPI DSI RX Controller
MIPI DSI TX Controller

All All All

Processors and Peripherals

Sapphire SoC All
except T4

T4 All

Sapphire High-
Performance SoC

Ti165, Ti240,
Ti375

Tz200,
Tz325

Serial Interface Protocols

I2C All All All

UART All All All

www.efinixinc.com 43

Efinity Software User Guide

Table 10: End of Life IP Cores by Family

Trion TitaniumIP Core End of Life
in Version

Replaced By

Supported Not
Supported

Supported Not
Supported

JTAG SPI
Flash Loader

2025.1 JTAG Bridge All All

Jade SoC 2022.1 Sapphire SoC T8, T13, T20,
T35, T55,
T85, T120

T4 All

Opal SoC 2022.1 Sapphire SoC All except T4 T4 All

Ruby SoC 2022.1 Sapphire SoC T35, T55,
T85, T120

T4, T8,
T13, T20

All

DDR Hard
Memory
Controller-
Calibration

2022.1 DDR Hard
Memory
Controller-
Calibration
and Reset

T20, T35, T55,
T85, T120

T4, T8, T13 All

DDR Hard
Memory
Controller-
Calibration
and Reset

2024.2 Trion DDR
Calibration
and Debug

T20, T35, T55,
T85, T120

T4, T8, T13 All

FIFO (Legacy) 2021.1 FIFO All All

Using the IP Configuration Wizard
The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose an IP core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note: You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed information
on the options, refer to the IP core's user guide or on-line help.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example
design targeting an Efinix® development board and/or testbench. For SoCs, you can also
optionally generate embedded software example code. These options are turned on by
default.

6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.
8. In the Review configuration generation dialog box, click Generate. The Console in the

Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

www.efinixinc.com 44

Efinity Software User Guide

Generated Files
The IP Manager generates these files and directories:
• <module name>_define.vh—Contains the customized parameters.
• <module name>_tmpl.v—Verilog HDL instantiation template.
• <module name>_tmpl.vhd—VHDL instantiation template.
• <module name>.v—IP source code.
• settings.json—Configuration file.
• <kit name>_devkit—Has generated RTL, example design, and Efinity® project targeting

a specific development board.
• Testbench—Contains generated RTL and testbench files.

Note: For encrypted IP, the ModelSim software version of 2022.4 or later is
required for successful simulation. For other simulators, the latest version is
required.

Instantiating IP in Your Project
The IP Manager creates these template files in the <project>/ip/<module name> directory:
• <module name>.v_tmpl.sv is the Verilog HDL module.
• <module name>.v_tmpl.vhd is the VHDL component declaration and instantiation

template.

To use the IP, copy and paste the code from the template file into your design and update the
signal names to instantiate the IP.

Important: When you generate the IP, the software automatically adds the module file (<module
name>.v) to your project and lists it in the IP folder in the Project pane. Do not add the <module name>.v
file manually (for example, by adding it using the Project Editor); otherwise the Efinity® software will issue
errors during compilation.

IP Manager adds generated
IP to the IP folder (and

your project) automatically

Do not manually add
IP to the Design folder

www.efinixinc.com 45

Efinity Software User Guide

Managing IP in Your Project
You can manage your project's IP in the Project pane under the Dashboard. When you right-
click the IP folder, the software shows a context-sensitive menu with these options:
• IP Editor—Launches the IP Editor window, which shows the IP instances in your

project. You can use this window to add additional IP to your project or to import IP.
You import IP using a settings.json file, see IP Settings File on page 47 for details.

• New IP—Launches the IP Catalog.
• Import IP—Import an existing IP core using a settings file.
• Check Upgrades—Checks the Efinity® directory structure to see if there are any updates

to the IP (for example, from a software patch). The Efinity® software checks for available
upgrades by default. You can change this setting in the Preferences window. See Setting
General Tool Preferences on page 16.

Icon Meaning

The IP core is up to date.

There is an optional update to the IP core. Efinix recommends that you launch
the IP Configuration wizard for the core to make any changes and then re-
generate the deliverables.

There is a required update to the IP core. You must launch the IP
Configuration wizard for the core to make any changes and then re-generate
the deliverables.

Figure 20: Project Tab > IP Folder Context-Sensitive Menu

Importing IP
To make it easier for you to re-use IP, you can import a configured IP core. Import the IP by:

www.efinixinc.com 46

Efinity Software User Guide

1. Right-clicking the IP folder in the Project tab and choosing Import IP or clicking the
Import an IP button in the IP Editor.

2. Browse for the settings.json file of an existing IP core you want to import.
3. The IP Manager launches the IP Configuration window.
4. Enter a name in the Module Name box.
5. (Optional) Change any of the IP settings (for example, you might not want to generate

the example designs).
6. Click Generate.

The software generates the imported IP core and adds it to your project.

Managing an IP Core
When you right click the IP core name under the IP folder, the software shows a context-
sensitive menu with these options:
• Open Folder—Opens the folder containing the IP deliverables.
• Configure—Launches the IP Configuration wizard. You can make any changes to the IP

parameters and then re-generate it.
• Generate—Generates the IP deliverables.
• Remove—Remove the IP core and delete all deliverables from your project directory.
• Open Documentation—Launches the help for the IP core.

IP Settings File
When you generate an IP core, the IP Manager creates a settings.json file. This file contains
all of the parameter settings for the customized IP.

You can use this settings file to create another instance of the core with the same settings, or
you can modify it to create another core with slightly different settings. For example, you can
quickly create FIFOs of varying depths by re-using an existing settings.json file.

To create another, modified, instance of the IP core:

1. Right-click the IP folder in the Project pane.
2. Choose Import IP from the pop-up menu.

Note: You can also import IP in the IP Editor window.

3. Browse to the settings.json file for the IP core you want to use as a starting point and
click Open. The IP Configuration wizard opens.

4. Enter the module name for the IP core.
5. Configure the IP core as usual and generate the IP.

Getting Updated IP
Starting with v2020.2, IP is typically delivered with the Efinity® software:
• IP is included and installed as part of the Efinity® software.
• Updated IP with new features is distributed as patches to the Efinity® software.
• Bug fixes (if any) to the IP cores is distributed as patches to the Efinity® software.

New IP cores may be released as beta versions (.zip file) in the Support Center before being
rolled into the next major Efinity® release.

www.efinixinc.com 47

Efinity Software User Guide

Resolving IP Manager Issues
When you launch the Efinity software, it creates two server instances on localhost for the IP
Manager. The IP Manager uses these server instances for inter-process communications. These
server instances use randomly chosen port numbers based on preset upper and lower bounds.
The server instances are:
• IPM_Server = 127.0.0.1:<port number>
• RPC_Server= 127.0.0.1:<port number>

If your computer has closed the default port ranges (for example, your IT department has
closed ports for security reasons), the two RPC server instances cannot connect to localhost
and the software issues the message IP Manager RPC Server Not Connected.

To resolve this issue you need to:

1. Talk to your IT department about opening ports for the IP Manager.
2. Set specific default ports for the software to use instead of a range (so the IT department

only has to open 2 ports).

The software defaults to using the port range 49152 – 65535 because these ports are dynamic,
private, or ephemeral ports. They are open for any application to use and are not reserved by
the Internet Assigned Numbers Authority (IANA).

To change the default port range to specific ports:

1. In a text editor, open the app_session.ini file, which is located in the Efinity bin
directory (<install directory>/bin). The contents are:

[config]
ipm_server_port_lower_bound = 49152
ipm_server_port_upper_bound = 65535
efxg_rpc_port_lower_bound = 49152
efxg_rpc_port_upper_bound = 65535

2. Change the configuration to use a single port by changing the upper and lower bound
numbers. The software selects ports using the scheme port_lower_bound <= port_number
< port_upper_bound. Therefore, set the lower bound as the port you want to use and the
upper nound as the next higher number; the software uses the lower bound number for
the port setting. For example:

[config]
ipm_server_port_lower_bound = 53123
ipm_server_port_upper_bound = 53124
Software uses port number 53123

efxg_rpc_port_lower_bound = 49153
efxg_rpc_port_upper_bound = 49154
Software uses port number 49153

3. Save the app_session.ini file and then re-launch the Efinity software.

www.efinixinc.com 48

Efinity Software User Guide

Chapter 5

Constraining Logic and Assigning Pins
Contents:

• About the Interface Designer
• Get Oriented
• Using the Resource Assigner
• Resource View
• Importing and Exporting Assignments
• Scripting an Interface Design
• Viewing the Package Pinout
• Constraining Logic and Routing Manually (Beta)

The tools in the Efinity® main window help you design the logic portion of your design. You
use the Interface Designer to constrain logic and assign pins to the blocks in the periphery.
In the Interface Designer, you connect the signals from your logic design to the pins in the
device interface blocks, and then output a constraint file. During compilation, the Efinity®

software uses the constraint file to constrain your design to the interface blocks.

Learn more: The Efinity Trion Tutorial gives step-by-step instructions on using the Interface Designer with
an example helloworld design.
The Titanium Interfaces User Guide and Trion Interfaces User Guide provide instructions on how to use
the Interface Designer to configure each block as well as technical details about the interface.
The Efinity Interface Designer Python API describes how to create an interface design using scripting.

www.efinixinc.com 49

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI

Efinity Software User Guide

About the Interface Designer
Trion®, Topaz, and Titanium FPGAs wrap a Quantum®-accelerated core with a periphery
that sends signals out to the device pins. The core contains the logic, embedded memory, and
multipliers. The device periphery includes blocks such as GPIO pins, LVDS, MIPI, DDR,
and PLLs.

The tools in the Efinity® main window help you design the logic portion of your design. You
use the Efinity Interface Designer to build the peripheral portion of your design.

Figure 21: Conceptual View of Interface Blocks

Em
be

dd
ed

 M
em

or
y

Mu
ltip

lie
r

Note: The number and locations of blocks
are shown for illustration purposes only.
The actual number and position depends
on the device.

Interface Blocks:
Use the Efinity Interface Designer to create and
define these blocks and to connect them to
your RTL design via the signal interface.

Programmable Core Fabric:
Create your RTL design for the core fabric
using Efinity design tools.

Signal Interface:
Connects the core fabric to the interface blocks

Get Oriented
The Interface Designer has four main sections:

• Design Explorer—Provides a list view of the interface blocks you have in your design
organized by block type. It also includes device-wide settings for the I/O banks and
configuration options. Select a block to display it's summary and editor.

• Block Summary—Displays the current settings for the selected block.
• Block Editor—Provides options and settings for the selected block. The editor may have

more than one tab, depending on the block.
• Resource Assigner—Provides an easy, tabular method for assigning resources. View by

instance (default) or resource.

www.efinixinc.com 50

Efinity Software User Guide

Figure 22: Interface Designer

When you first open the Interface Designer for your project, the Design Explorer shows the
Device Settings folder (with default settings) and empty folders for the interface blocks your
chosen device supports. You need to add blocks as required for your design.

www.efinixinc.com 51

Efinity Software User Guide

Figure 23: Resource Assigner

www.efinixinc.com 52

Efinity Software User Guide

Using the Resource Assigner
Resource Assigner Switch View Clear Selected

Resource
Clear All Resources

Show/Hide Filter Reset Filter

The Resource Assigner provides a tabular view of all GPIO resources in your chosen FPGA
and information about them, such as whether they are used, the I/O bank, pad, and package
pin, and the instance assigned to the resource.
• The GPIO: Instance View shows all GPIO instances in your project.
• The GPIO: Resource View shows all GPIO, LVDS, and MIPI RX or TX lane resources

and the resources to which you assigned them.

Note: In the Efinity® software v2021.1, you can only view the resources used for LVDS and MIPI lanes in
the Resource Assigner. You cannot change or assign resources in this view.

To assign a resource:

1. Open the Resource Assigner by clicking the Show/Hide Resource Assigner button. The
software opens to the Instance View, which lists all instances in the design.

Note: Click Switch View to toggle between instance view and resource view.

2. In instance view, you can assign pins or resources to the instance. Double-click in the
table cell for the item you want to assign. The software displays a drop-down list of
available selections.

3. Select an unused resource, instance, or pin.

Note: If you select a used resource, instance, or pin, the software makes the new
assignment, which replaces the previous assignment.

4. Press Enter.

Note: When LVDS resources are used for both LVDS and GPIO within the same bank, they must be
separated by 2 unused pairs of LVDS pins to avoid any unwanted interference. The Efinity software issues
an error if you do not leave this separation. Refer to Table 1.

Note: Titanium: When using HSIO pins as GPIO, make sure to leave at least 1 pair of unassigned HSIO
pins between any GPIO and HSIO pins in the same bank. This separation reduces noise. The Efinity
software issues an error if you do not leave this separation.

Resource View
When assigning GPIO, sometimes you want to know which resource can be used as a global
clock, global control, or other special function. You can look it up in the pin table for the
FPGA and package you are targeting, but an easier way is to use the Resource View in the
Resource Assigner.

1. Click the Switch View button to open the Resource View.
2. Double-click in the filter box above the Alt Conn column and choose the connection

type, for example, GCLK.

www.efinixinc.com 53

Efinity Software User Guide

Figure 24: Resource View

Importing and Exporting Assignments
Although it is nice to use a GUI for adding blocks, in some cases it may be easier to use
another format. The Interface Designer lets you import and export assignments using an
Interface Scripting File (.isf) or comma separated values (.csv) file.

When the software reads an imported .isf, it processes the entire imported file and shows any
issues it found. The import only fails for catastrophic errors. The software:
• Creates new instances defined in the file that do not already exist in the GUI
• Overwrites assignments for existing instances with settings from the file
• Does not delete instances that are in the GUI but were not defined in the file

When the software reads an imported .csv file, it compares the imported assignments to the
original assignments and reports any issues. If the software finds warnings, it displays them
but allows you to finish the import. If it finds errors, it will not finish the import. When
importing, the software:
• Deletes instances that you removed
• Creates newly defined instances
• Replaces instances you renamed with the new name

With the Efinity software v2025.1 and higher you can add an .isf to your project in the
Project Editor > Design tab.

Learn more: For help understanding messages, refer to the "Design Check" topics in the interfaces user
guides. These topics describe the messages the Interface Designer generates and gives suggestions on
how to fix errors and warnings.

www.efinixinc.com 54

Efinity Software User Guide

Interface Scripting File
The Interface Scripting File (.isf) contains all of the Python API commands to re-create your
interface. You can export your design to an .isf, manipulate the file, and then re-import it
back into the Efinity® software. Additionally, you can write your own .isf if desired.

In addition to using the API, you can export and import an .isf in the Interface Designer
GUI. Click the Import GPIO or Export GPIO buttons and choose Interface Scripting File
(.isf) under Format.

Example: Example Interface Scripting File

Efinity Interface Configuration
Version: 2020.M.138
Date: 2020-06-26 14:22
#
Copyright (C) 2017 - 2020 Efinix Inc. All rights reserved.
#
Device: T8F81
Package: 81-ball FBGA (final)
Project: pt_demo
Configuration mode: active (x1)
Timing Model: C2 (final)

Create instance
design.create_output_gpio("Fled",3,0)
design.create_inout_gpio("Sled",3,0)
design.create_output_gpio("Oled",3,0)
design.create_clockout_gpio("Oclk_out")
design.create_pll_input_clock_gpio("pll_clkin")
design.create_global_control_gpio("resetn")

Set property, non-defaults
design.set_property("Fled","OUT_REG","REG")
design.set_property("Fled","OUT_CLK_PIN","Fclk")
design.set_property("Sled[0]","IN_PIN","")
design.set_property("Sled[0]","OUT_PIN","Sled[0]")
design.set_property("Sled[1]","IN_PIN","")
design.set_property("Sled[1]","OUT_PIN","Sled[1]")
design.set_property("Sled[2]","IN_PIN","")
design.set_property("Sled[2]","OUT_PIN","Sled[2]")
design.set_property("Sled[3]","IN_PIN","")
design.set_property("Sled[3]","OUT_PIN","Sled[3]")
design.set_property("Oclk_out","OUT_CLK_PIN","Oclk")

Set resource assignment
design.assign_pkg_pin("Fled[0]","J2")
design.assign_pkg_pin("Fled[1]","C2")
design.assign_pkg_pin("Fled[2]","F8")
design.assign_pkg_pin("Fled[3]","D8")
design.assign_pkg_pin("Sled[0]","E6")
design.assign_pkg_pin("Sled[1]","G4")
design.assign_pkg_pin("Sled[2]","E2")
design.assign_pkg_pin("Sled[3]","G9")
design.assign_pkg_pin("Oled[0]","H4")
design.assign_pkg_pin("Oled[1]","J4")
design.assign_pkg_pin("Oled[2]","A5")
design.assign_pkg_pin("Oled[3]","C5")
design.assign_pkg_pin("Oclk_out","D6")
design.assign_pkg_pin("pll_clkin","C3")
design.assign_pkg_pin("resetn","F1")

www.efinixinc.com 55

Efinity Software User Guide

.csv File for GPIO Blocks
For larger designs with lots of GPIO, it can be simpler to use a spreadsheet application to
make assignments. The Resource Assigner allows you to import and export GPIO block
assignments using a comma separated values (.csv) file. The .csv file includes the package pin
and pad name, the instance name, and the mode. You can use this method for any type of
GPIO, including LVDS pins used as GPIO or HSIO pins used as GPIO.

Table 11: Example GPIO .csv File

Package Pin-Pad Name Instance Name Mode

G5-GPIOL_00

J4-GPIOL_01_SS_N

H4-GPIOL02_CCK

G4-GPIOL_03_CDI4 led[0] output

F4-GPIOL04_CDI0 led[1] output

J3-GPIOL_05_CDI5 rstn input

H3-GPIOL_06_CDI1

...
(6) led[6] inout

When working with the .csv file:
• Add your assignments to the Instance Name and Mode columns.
• Do not modify the package pin-pad names.
• For the mode, specify: input, output, inout, clkout, or none

Note: You cannot make advanced settings such as alternate connections or
registering. To make these settings, use the Block Editor.

When the software reads an imported .csv file, it performs a comparison between the .csv
assignments and the original GPIO block assignments and reports any issues. If the software
finds warnings, it displays them but allows you to finish the import. If it finds errors, it will
not finish the import. When importing, the software:
• Deletes instances that you removed
• Creates newly defined instances
• Replaces instances you renamed with the new name

Scripting an Interface Design
Python is an interpreted, object-oriented, high-level programming language with dynamic
semantics.(7) Efinix distributes a copy of Python 3 with the Efinity® software to support point
tools such as the Debugger and to allow users to write scripts to control compilation.

You use the Efinity® Interface Designer to build the peripheral portion of your design,
including GPIO, LVDS, PLLs, MIPI RX and TX lanes, and other hardened blocks. Efinix
provides a Python 3 API for the Interface Designer to let you write scripts to control the
interface design process. For example, you may want to create a large number of GPIO, or

(6) Unassigned instances have a blank field for the Package Pin-Pad Name column.
(7) Source: What Is Python? Executive Summary

www.efinixinc.com 56

https://www.python.org/doc/essays/blurb/

Efinity Software User Guide

target your design to another board, or export the interface to perform analysis. This user
guide describes how to use the API and provides a function reference.

Learn more: Refer to the Python web site, www.python.org/doc, for detailed documentation on the
language.

Learn more: For more information on using the Python API to script an interface, refer to the Efinity
Interface Designer Python API.

Viewing the Package Pinout
The Package Planner provides a visual representation of the FPGA package pins. Each pin
is color coded by function (such as GPIO, configuration, power, etc.) letting you easily see
which package pin has which function. Additionally, you can highlight I/O banks, PLL
reference clocks, global clocks, and global controls so you can quickly find a specific pin that
has the feature you need. This tool is helpful when planning how to map the signals in your
design to package pins.

Figure 25: Package Planner

Toggle Pin Configuration
Toggle World View
Zoom In
Zoom Out
Fit Pinout to the Window
Show Package Bottom
Rotate Left
Rotate Right
Reset the Orientation
Toggle the Legend
Toggle the Pin Browser
Open Help

Indicates
Pin 1

Refresh the
Pinout

Turn these options
on to highlight them
on the pinout image

Click to View Details
for a Selected Pin

www.efinixinc.com 57

https://www.python.org/doc/
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI

Efinity Software User Guide

Selecting a Pin
Click a pin in the pinout to highlight it. The Pin Information tab opens to show the details
about the selected pin. Open the Legend to view the meaning of the pins' color coding.

Figure 26: Selected Pin

Selected Pin

Selected Pin
Details

Legend

You can also hover over a pin for a quick view of the pin details.

Figure 27: Pin Quick View

www.efinixinc.com 58

Efinity Software User Guide

Browsing for Pins
The Package Planner has a Pin Browser, which has a table view similar to the Resource
Assigner. You can filter pins and then select them in the Pin Browser. The selected pin is
highlighted in the pinout.

Figure 28: Browsing for Pins

Selected Pad Name

Filter Pins

www.efinixinc.com 59

Efinity Software User Guide

Constraining Logic and Routing Manually
(Beta)
The Efinity software v2022.1 and higher lets you assign logic to a specific location in the
FPGA's core. With this method, you can place your design's logic manually instead of letting
the software place it for you.

In v2022.2 and higher, you can also manually constrain routing to specific paths. When you
constrain routing you also need to constraint the logic to which the nets connect.

Placing logic and/or routing manually is an advanced technique, so make sure that you fully
understand the rules and restrictions as described in the following sections.

Important: These features are in beta.

Tiles
The FPGA is made up of a grid of tiles. Most tiles are for logic/routing and others are for
functions like RAM, multipliers, or DSP. The following table shows the types of tiles by
family and their use.

Table 12: FPGA Tile Types

Tile Trion Titanium Topaz Used for

EFT Logic and routing with register

EFL Logic and routing without register

EFM Logic, routing, register,
and shift register

RAM RAM blocks

MULT Multiplier blocks

DSP48 DSP blocks

When you view your design's placement in the Floorplan Editor, you can click on a tile to
view its type and other details. In the following figure, the selected blue tile is an EFT and is
used for logic.

Tip: The Floorplan Editor provides a graphical way to find logic you want to constrain.

www.efinixinc.com 60

Efinity Software User Guide

Figure 29: Tiles in the Floorplan Editor

Notice that some tiles in the floorplan have a number. This number indicates how many
routing lines are used in that tile. A tile used for logic (blue) can also be used as routing
(indicated by the number). Orange means a tile is only used as routing.

www.efinixinc.com 61

Efinity Software User Guide

Working with Primitives
During synthesis, the software maps your design's logic—LUTs, RAM, flipflops, etc.—to
primitives. These primitives occupy specific locations (tiles or groups of tiles). Each tile has
one or more sub-blocks in which to place a primitive. Placing multiple primitives into the
same tile is called packing.

The following tables show the types of primitives, the tiles where you can place them, and
the sub-blocks they can occupy.

Table 13: Mapping Trion Primitives to Tiles and Sub-Blocks

Sub-BlockTile

0 1 2 3

EFT EFX_LUT4
EFX_ADD

– EFX_FF –

EFL EFX_LUT4
EFX_ADD

– – –

RAM EFX_RAM_5K
EFX_DPRAM_5K

Reserved – –

MULT EFX_MULT – – –

Table 14: Mapping Titanium and Topaz Primitives to Tiles and Sub-Blocks

Sub-BlockTile

0 1 2 3

EFT EFX_LUT4
EFX_ADD

EFX_COMB4

Reserved EFX_FF –

EFM EFX_LUT4
EFX_ADD

EFX_COMB4
EFX_SRL8

Reserved EFX_FF –

RAM EFX_RAM10
EFX_DPRAM10

Reserved – –

DSP48 EFX_DSP48
EFX_DSP24
EFX_DSP12

EFX_DSP24
EFX_DSP12

EFX_DSP12 EFX_DSP12

www.efinixinc.com 62

Efinity Software User Guide

The following table shows another view of the same mappings.

Table 15: Mapping Primitives to Tiles

Compatible TilesPrimitive

Trion Titanium Topaz

Allowed Sub-
Block Indices

EFX_LUT4 EFT, EFL EFT, EFM EFT, EFM 0

EFX_ADD EFT, EFL EFT, EFM EFT, EFM 0

EFX_COMB4 EFT, EFL EFT, EFM EFT, EFM 0

EFX_FF EFT EFT, EFM EFT, EFM 2

EFX_SRL8 – EFM EFM 0

EFX_RAM_5K RAM – – 0

EFX_DPRAM_5K RAM – – 0

EFX_RAM10 – RAM RAM 0

EFX_DPRAM10 – RAM RAM 0

EFX_MULT MULT 0

EFX_DSP48 – DSP48 DSP48 0

EFX_DSP24 – DSP48 DSP48 0, 1

EFX_DSP12 – DSP48 DSP48 0, 1, 2, 3

Finding Primitive Cell Names
When the software maps your design to primitives, it assigns a cell name to each instance. To
view the primitive cell names:
• In the Dashboard's Netlist tab, click the Load Synthesized Netlist icon and expand Leaf

Cells.
• Open the <project>.map.v file (in the Dashboard, go to Result pane > Synthesis).

This file is in the project's outflow directory.

Enabling Manual Assignments
Because manual assignments are beta in the Efinity software v2022.1, v2022.2, and 2023.1,
you must enable them with an .ini file.

1. Create a text file named efx_pnr_settings.ini and save it in your project directory.
2. Add the following line to the .ini file:

loc_assignment = <filename>.placeloc

When you synthesize your design, the software uses the assignments in the
<filename>.placeloc file.

www.efinixinc.com 63

Efinity Software User Guide

Assignment Rules
Follow these rules when creating assignments.

General Rules
• You can only constrain logic in the core (use the Interface Designer for I/O constraints).
• You can only constrain primitive cells. If two primitives cells can be packed together,

you can assign them to the same location. The sub-block index must be unique for each
primitive cell in a location. For example, if you assign four EFX_DSP12 primitives to the
same tile, they must each have a different sub-block.

• The software does not pack manually assigned cells with unassigned cells. For example, if
you place a EFX_DSP12 into a DSP tile at sub-block 0 and do not assign any other sub-
blocks, the software will not pack any other DSP logic into that tile, leaving sub-blocks
1, 2, and 3 empty. Similarly, only assigning flipflops (which use sub-block 2) uses more
overall resources because sub-block 0 is left empty.

Important: Because assigned and unassigned cells are not packed together, make
sure to "fill up" the tile with logic. Otherwise you can end up using more tiles than
needed.

Flipflops
• An EFX_FF can be packed alone or with its driver cell (EFX_LUT4, EFX_SRL8,

EFX_ADD, or EFX_COMB4).
• An EFX_FF can only be packed with an EFX_SRL8 if they share CE and CLK inputs

and if the EFX_FF does not have an inverted input.
• An EFX_FF cannot be packed if it has an inverted input connected to a multi-fanout net.

RAM, Multiplier, and DSP
• EFX_MULT, EFX_DSP48, and all RAM primitives cannot share a tile with any other

cells.
• Two EFX_DSP24 primitives or up to four EFX_DSP12 primitives not connected by

CASCIN/CASCOUT signals can be packed together and share a location.

Chains
EFX_DSP48, EFX_DSP24, EFX_DSP12, EFX_ADD, and EFX_SRL8 can form chains. If
one cell in the chain is assigned a location, every other cell in the chain must also be assigned
a location, in the correct order.

Creating a Location Assignment File
The location assignment file is a text file with the extension .placeloc. Each assignment is on
a single line with tabs or spaces between the data:

<block name> <x> <y> <subblk>

• <block name> is the primitive cell name.
• <x> is the horizontal location.
• <y> is the vertical location.
• <subblk> is the sub-block location.

You must include all data for each assignment.

Any text following a # character is ignored (treated as a comment).

www.efinixinc.com 64

Efinity Software User Guide

Tip: Use the Floorplan Editor to help you find the x, y coordinates for a tile. When you click a tile the coordinates
are shown in ().

x,y coordinates for the selected tile

To make it easier for you to create assignments, the Efinity software can dump all placement
data into a file when placement finishes. You can copy and paste the primitive cells you want
to constrain into your .placeloc file and then modify the x, y coordinates.

To dump the placement data, add the following line to your efx_pnr_settings.ini file and re-
run the placer.

dump_placeloc = on

Important: Do NOT simply copy and paste the entire dump file into your .placeloc file or the software
may not be able to perform placement efficiently. Only copy the primitives you want to constrain.

Example: LUT and Flipflop
The example packs an EFX_FF with its driver, LUT_A, an EFX_LUT4.

#block name x y subblk
#---------- -- -- ------
LUT_A 3 3 0
FF_B 3 3 2 # LUT_A drives FF_B

Example: SRL8 Chain
This example assigns locations to every cell in an SRL8 chain.

#block name x y subblk
#---------- -- -- ------
first_srl8 5 4 0
second_srl8 5 5 0
third_srl8 5 6 0
fourth_srl8 5 7 0

Example: Parallel Cascaded DSP Block
This example assigns locations to every EFX_DSP24 across two chains. There can be two EFX_DSP24 cells per DSP
tile.

#block name x y subblk
#---------- -- -- ------
chain0_dsp24_0 17 2 0
chain1_dsp24_0 17 2 1
chain0_dsp24_1 17 22 0
chain1_dsp24_1 17 22 1

www.efinixinc.com 65

Efinity Software User Guide

Constraining Routing Manually (Beta)
With Efinity software v2022.2 and higher, the router lets you manually constrain routing
traces. This feature is beta.

After you compile your design once, you can lock down (or constrain) specific nets to specific
paths. For any future compilations, the software routes these constrained nets in the same
way. To constrain nets, you also need to constrain the logic to which the nets connect. See
Constraining Logic and Routing Manually (Beta) on page 60 for information on making
logic constraints.

You can combine constrained logic and constrained routing to preserve the placement and
routing of a small part of your design, letting the rest change as you compile. This feature can
be useful when logic (such as a sampling delay line) with very specific routing requirements
must be locked down early in the design cycle. Additionally, this feature lets you preserve
place and route for connections that have difficult timing constraints.

Routing Constraint Flow
To use routing constraints, follow this procedure:

1. Determine which nets and cells should be constrained.
2. Run the Efinity software, adjusting your design for each iteration, until the nets meet

timing.
3. When the nets meet timing, use an .ini file to tell the software to save the placement and

routing data to templates. (See Generate .rcf Template on page 67)

a) For Trion devices, set --route_dump_constraint_file="on" to generate
<project>.route2, which is later used in the constraint flow.

4. Do not make any changes to the design and re-compile.
The software creates these template files:
• Placement template <project>.out.placeloc
• Routing template <project>.rcf.template

The routing traces file is <project>.troutingtraces for Titanium and Topaz, and
<project>.route2 for Trion.

Additionally, the process generates <project>.placer_keepout, which is later used by the
placer in the constraint flow.
5. Move these files out of the outflow directory; for example, move them up one level to the

main project directory.
6. Copy and paste the cells and nets you want to constrain from the two template files

to your own files. You do not want to copy everything! (See Creating a Routing
Constraint File on page 67 and Creating a Location Assignment File on page 64)

7. Add your new constraint files to an .ini file. (See Enabling Routing Constraints on page
68)

8. Continue to change your design as needed. When you compile, the software will place
and route the constrained logic and nets as defined in the constraint files.

www.efinixinc.com 66

Efinity Software User Guide

Generate .rcf Template
You tell the software to generate templates in the efx_pnr_settings.ini file. Because routing
constraints are used with logic constraints, you enable templates for both.

1. If you do not already have one, create a text file named efx_pnr_settings.ini and save it
in your project directory.

2. Add the following lines to the .ini file:

dump_placeloc = on
generate_rcf_template = on

When you compile your design, the software generates the <project>.out.placeloc and
<project>.rcf.template files.

Important: Do not generate these templates until you are ready to lock down the routing.

Creating a Routing Constraint File
The routing constraint file is a text file with the extension .rcf. The file format is line-
oriented; each command is on a single line with spaces between the data.

To make it easier for you to create assignments, the Efinity software can dump all routing
data into a template file when routing finishes. (See Generate .rcf Template on page 67)
You copy and paste the nets you want to constrain into your own .rcf.

Important: Do NOT simply copy and paste the entire template file into your .rcf or the software may not
be able to perform routing efficiently. Only copy the nets you want to constrain.

The .rcf has these components:

• routeTraceFile <path>/<filename>.troutingtraces is the file that has the saved
net traces you want to use.

Note: Can only be used by Titanium and Topaz.

Remember: For Trion, the routing trace file is passed using a command-line option:
routing_constraint_file="{project}.route2"

• restoreNetFromTraceFile <net> is the net you want to constrain
• Lines beginning with # are comments

The constrained router flow will use the following trace file to restore constrained nets
routeTraceFile <path>/<project>/<filename>.troutingtraces

Here is a list of available nets that can be restored from the trace file
You can use (#) to comment any net that you would like to exclude
restoreNetFromTraceFile rst_i
restoreNetFromTraceFile net_1
restoreNetFromTraceFile net_2
restoreNetFromTraceFile net_3 # this net is ignored

www.efinixinc.com 67

Efinity Software User Guide

Enabling Routing Constraints
You must enable routing constraints with an .ini file in the Efinity software v2022.2 and
above. Because routing constraints are used with logic constraints, you enable them both.

1. Create a text file named efx_pnr_settings.ini and save it in your project directory.
2. Add the following lines to the .ini file:

loc_assignment = <path>/<filename>.placeloc
rcf_file = <path>/<filename>.rcf
placer_keepout_file = <path>/<filename>.placer_keepout

Note: Only for Trion devices, routing_constraint_file=<path>/<filename>.route2

When you synthesize your design, the software uses the assignments in the specified files.

Best Practices for Constraining Routing
Follow these guidelines when constraining routing to ensure consistency for register and
signal names when you re-compile.

• Use a consistent naming convention, such as netname_LOCKED, for all constrained nets.
This methodology lets you identify them in the template files more easily.

• Limit routing constraints (if possible) to named single-fanout signals between named
registers.

• Use the syn_keep synthesis attribute—for all locked registers and the signals between
locked registers—to tell synthesis to keep the signals during optimization. If you do not
use syn_keep, the software might optimize away the net you want to constrain.

(* syn_keep = "true" *) wire netname_LOCKED;

• In your .rcf, do not point to the .troutingtraces file in the project outflow directory.
This file is overwritten each time you compile. Instead, move the .troutingtraces file into
another directory and point to it in that location.

Note: Titanium and Topaz only.

• Use routing constraints sparingly; excessive constraints make it hard to close timing.
• Implement constrained routing as late in the design cycle as possible (when you have

fewer changes to your design).

Note: Although you can use constrained routing on combinational paths, primitive cell names (for
example LUT names) on these paths may change if you modify unrelated sections of the design and re-run
synthesis. As a result, you may need to update your <project>.out.placeloc file to reflect the new primitive
cell names.

www.efinixinc.com 68

Efinity Software User Guide

Example Flow
Assume that your design has the following register path: rlock0 to rlock1 to rlock2,
and that this path meets timing. We want to constrain this path while we modify another
part of the design (that is independent from this constrained path).

1. To prevent synthesis from optimizing away the registers and wires, use syn_keep in the
Verilog HDL design:

(* syn_keep = "true" *) reg rlock0;
(* syn_keep = "true" *) reg rlock1;
(* syn_keep = "true" *) reg rlock2;
(* syn_keep = "true" *) wire rlock0_net;
(* syn_keep = "true" *) wire rlock1_net;
(* syn_keep = "true" *) wire rlock2_net;

2. Run place and route with the options dump_placeloc = on and
generate_rcf_template = on. You add these options to a efx_pnr_settings.ini
file, one option per line, and save the file in the project folder.

Note: For Trion, add route_dump_constraint_file to the Trion flow and set
route_dump_constraint_file = on.

3. Examine the generated file <project>.out.placeloc to identify the placed location of the
locked registers:

rlock0~FF 16 49 2
rlock1~FF 16 50 2
rlock2~FF 16 44 2

4. Examine the generated file <project>.rcf.template to find the nets between the registers
in the .rcf.template file:

restoreNetFromTraceFile rlock0_net
restoreNetFromTraceFile rlock1_net

5. Remove all cells except the locked ones from the <project>.out.placeloc file and save
it as your own file called my.placeloc. Similarly, remove all nets except the constrained
ones from <project>.rcf.template and save it as your own file called my.rcf file.

6. Add the following settings to your efx_pnr_setting.ini file:

loc_assignment = my.placeloc
rcf_file = my.rcf
placer_keepout_file=my.placer_keepout
(Trion) routing_constraint_file= my.route2

You can now modify any other part of the design and re-run the synthesis and place and
route. The software constrains the paths you specified.

www.efinixinc.com 69

Efinity Software User Guide

Chapter 6

Analyzing Timing

You use static timing analysis (STA) to measure the timing performance of your design.
The software generates a timing report based on the design’s place and route results and the
project’s SDC file. The software provides several tools for viewing and cross-probing timing
results:

• The Timing Browser helps you explore your design’s critical paths and the cells of those
paths.

• The Floorplan tool shows the locations of the paths and cells in the fabric.
• The Tcl Console helps you analyze and explore timing.

After analyzing your design’s timing, you can update your SDC file if needed. To apply
the new SDC settings to see how they affect placement and routing, re-run the flow from
synthesis to the end.

Learn more: For detailed information on performing timing analysis and closing timing, refer to the
Efinity Timing Closure User Guide.

www.efinixinc.com 70

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

Chapter 7

Simulating
Contents:

• Simulation Models
• Changing the Default Testbench Names
• Simulate with the iVerilog Simulator
• Simulate with the ModelSim Simulator
• Simulate with the NCSim Simulator
• Simulate with the Aldec Active HDL or Riviera-PRO Simulator

You can use the command line flow to perform RTL simulation on your design’s source files
as well as simulation on the post-synthesis netlist file.

Note: In the Efinity software v2024.2 and higher you can also simulate the simple interface blocks, such as
GPIO, and PLLs. The supported interfaces blocks are listed in the Trion, Titanium, and Topaz primitives user
guides. Simulation support for additional blocks will be available in upcoming releases.

Simulation involves the following steps:

1. Perform behavioral RTL simulation to ensure that the RTL design matches your
testbench functionality. You can include multiple Verilog HDL design files. Use the --
flow rtlsim flag.

2. Run the mapper to synthesize your design using the --flow map flag. The software
creates the <project name>.map.v file in the outflow directory, which you use for post-
synthesis simulation.

3. Perform post-map simulation using the top-level testbench and the .map.v file using the
--flow mapsim flag.

4. After generating the interface constraints with the unified netlist option you can simulate
the interface logic:

a. Simulate the interface using the --flow ptsimrtl flag.
b. Perform full-chip simulation using the --flow ptsimfc flag.

The following example shows the commands for these three steps:

Example: Simulating at the Command lIne
Linux:

efx_run.py <project name>.xml --flow rtlsim
efx_run.py <project name>.xml --flow map
efx_run.py <project name>.xml --flow mapsim
efx_run.py <project name>.xml --flow ptsimrtl
efx_run.py <project name>.xml --flow ptsimfc

Windows:

efx_run.bat <project name>.xml --flow rtlsim
efx_run.bat <project name>.xml --flow map
efx_run.bat <project name>.xml --flow mapsim
efx_run.bat <project name>.xml --flow ptsimrtl
efx_run.bat <project name>.xml --flow ptsimfc

The software saves simulation results into the outflow directory.

www.efinixinc.com 71

Efinity Software User Guide

Simulation Models
The Efinix core primitive models are located in the directory <installation directory>/
sim_models/verilog.

Table 16: Core Primitive Simulation Models

Primitive Description Trion Titanium Topaz Filename

EFX_ADD Simple Full Adder efx_add.v

EFX_COMB4 Simple 4-Input LUT ROM plus
Simple Adder

efx_comb4.v

EFX_DPRAM5K 5 Kbit True-Dual-Port RAM Block efx_dpram5k.v

EFX_DPRAM10 10 Kbit True-Dual-Port RAM Block efx_dpram10.v

EFX_DSP12 Quad-Mode 4 x 4 DSP Block efx_dsp12.v

EFX_DSP24 Dual-Mode 8 x 8 DSP Block efx_dsp24.v

EFX_DSP48 Full Function DSP Block efx_dsp48.v

EFX_FF D Flip-flop with Clock Enable and
Set/Reset Pin

efx_ff.v

EFX_GBUFCE Global Clock Buffer efx_gbufce.v

EFX_LUT Simple 4-Input LUT ROM efx_lut4.v

EFX_MUL 18 x 18 Multiplier efx_mult.v

EFX_RAM_5K 5 Kbit RAM Block efx_ram_5k.v

EFX_RAM10 10 Kbit RAM Block efx_ram10.v

EFX_SRL8 8-Bit Shift Register efx_srl8.v

The Efinix interface primitive models are located in the directory <installation directory>/
pt/sim_models/verilog

Table 17: Interface Primitive Simulation Models
Although additionally model files are located in the /pt/sim_models/verilog directory, only the ones listed in this
table are supported in v2024.2

Primitive Description Trion Titanium Topaz Filename

EFX_CLKOUT Clock Output Buffer EFX_CLKOUT.v

EFX_FPLL_V1 Fractional PLL EFX_FPLL_V1.v

EFX_GPIO_V1 Basic GPIO EFX_GPIO_V1.v

EFX_GPIO_V2 GPIO with Double Data I/O Function EFX_GPIO_V2.v

EFX_GPIO_V3 HVIO and HSIO Used as GPIO EFX_GPIO_V3.v

EFX_IBUF Single-Ended Input Buffer EFX_IBUF.v

EFX_IDDIO Input Double Data I/O Register EFX_IDDIO.v

EFX_IOREG Single-Ended Bi-Directional Register EFX_IOREG.v

EFX_IO_BUF Single-Ended Bi-Directional Buffer EFX_IO_BUF.v

EFX_IREG Single-Ended Input Register EFX_IREG.v

www.efinixinc.com 72

Efinity Software User Guide

Primitive Description Trion Titanium Topaz Filename

EFX_JTAG_CTRL JTAG Interface EFX_JTAG_CTRL.v

EFX_JTAG_V1 JTAG User TAP Interface EFX_JTAG_V1.v

EFX_OBUF Single-Ended Output Buffer EFX_OBUF.v

EFX_ODDIO Output Double Data I/O Register EFX_ODDIO.v

EFX_OREG Single-Ended Output Register EFX_OREG.v

EFX_OSC_V1 Oscillator EFX_OSC_V1.v

EFX_OSC_V3 Oscillator EFX_OSC_V3.v

EFX_PLL_V1 Simple PLL EFX_PLL_V1.v

EFX_PLL_V2 Advanced PLL EFX_PLL_V2.v

EFX_PLL_V3 Full-Featured PLL EFX_PLL_V3.v

www.efinixinc.com 73

Efinity Software User Guide

Changing the Default Testbench Names
The simulation flow assumes that:

• Your testbench file is named <project name>_tb.v
• The top module in your testbench is named sim

To use a different testbench name, use the --tb option.

To use a different name for the top-level module, specify it with the --tb_top option.

Example: Changing Default Names
Linux:

efx_run.py <project name>.xml --flow rtlsim|mapsim --tb <testbench name>
efx_run.py <project name>.xml --flow rtlsim|mapsim --tb_top <top-level module name>

Windows:

efx_run.bat <project name>.xml --flow rtlsim|mapsim --tb <testbench name>
efx_run.bat <project name>.xml --flow rtlsim|mapsim --tb_top <top-level module name>

Note: If the testbench file is not located at the root level of the project directory, you need to specify the
path. For example:

efx_run.py helloworld.xml --flow rtlsim --tb src\helloworld_tb.v

Simulate with the iVerilog Simulator
By default, the Efinity® software calls the iVerilog simulator. Use the --flow rtlsim|
mapsim flag.

Note: You can download the free Icarus Verilog (iVerilog) simulator from iverilog.icarus.com.

Note: Windows: You may need to add the path to iVerilog ($iVerilog_folder$\bin\) to your System
Variables path for the software to launch correctly.

For example, the commands to simulate are:

Example: Simulate with iVerilog
Linux:

> efx_run.py <project name>.xml --flow rtlsim // Behavioral simulation
> efx_run.py <project name>.xml --flow map // Synthesize the design
> efx_run.py <project name>.xml --flow mapsim // Post-synthesis simulation

Windows:

> efx_run.bat <project name>.xml --flow rtlsim // Behavioral simulation
> efx_run.bat <project name>.xml --flow map // Synthesize the design
> efx_run.bat <project name>.xml --flow mapsim // Post-synthesis simulation

The simulator responds with
• PASS if the simulation is successful.

www.efinixinc.com 74

http://iverilog.icarus.com

Efinity Software User Guide

• a Python exception warning if the simulation is unsuccessful.

The software saves simulation results (<project name>.rtl.simlog and <project
name>.map.simlog) and error messages (<project name>.log) in your project's outflow
directory.

View Waveforms
To use GTKWave to view a waveform:

1. Add the following lines to your testbench to generate the dumpfiles:

$dumpfile("outflow/<file name>.vcd");
$dumpvars(0, sim);

2. Simulate with the iVerilog simulator.
3. Use this command to view the output waveform:

gtkwave outflow/<project name>.vcd

Simulate with the ModelSim Simulator
By default, the Efinity® software calls the iVerilog simulator. Use the --modelsim option
to target the ModelSim simulator instead.

Note: The simulator must be in your path for the simulation to run properly.

For example, the commands to simulate are:

Example: Simulate with ModelSim
Linux:

> efx_run.py <project name>.xml --flow rtlsim --modelsim // Behavioral simulation
> efx_run.py <project name>.xml --flow map // Synthesize the design
> efx_run.py <project name>.xml --flow mapsim --modelsim // Post-synthesis simulation

Windows:

> efx_run.bat <project name>.xml --flow rtlsim --modelsim // Behavioral simulation
> efx_run.bat <project name>.xml --flow map // Synthesize the design
> efx_run.bat <project name>.xml --flow mapsim --modelsim // Post-synthesis simulation

The simulator responds with
• PASS if the simulation is successful.
• FAIL if the simulation is unsuccessful.

The software saves simulation results (<project name>.rtl.simlog and <project
name>.map.simlog) and error messages (<project name>.log) in your project's outflow
directory.

Simulate with the ModelSim GUI
The ModelSim GUI uses a macro file of your simulation files and workspace for simulation.

1. Create a new macro file <project name>.do in your project directory.
2. For behavioral simulation, define your workspace and include your source code.
3. For post-synthesis simulation, define your workspace, include the post-mapping synthesis

file, and include the simulation models for Efinix primitives.

www.efinixinc.com 75

Efinity Software User Guide

4. Add the vsim -t ps <work space>.<test bench module name> command
to start simulation in the ps timeframe.

5. Add the run <number>us command to generate a waveform up to <number> μs.
6. Run the ModelSim software in the Transcript console.
7. Change to the project root directory.
8. Use the do command to execute the macro (do <name>.do).
9. Add signals to the waveform in the Objects tab.
10. View the simulation result in the Wave tab.

The following examples show the macro files for behavioral and post-synthesis simulation for
the helloworld design provided with the Efinity® software.

Figure 30: Bevhavioral Simulation Example .do Macro

vlib work
vmap work work

vlog "helloworld.v"
vlog "led.v"
vlog "reset.v"
vlog "helloworld_tb.v"

vsim -t ps work.sim
run 1us

Figure 31: Post-Synthesis Simulation Example .do Macro
The Efinity software provides additional primitives, but they are not used for simulation.

vlib work
vmap work work

vlog "outflow/helloworld.map.v"

vlog "<path to Efinity>/sim_models/verilog/efx_add.v"
vlog "<path to Efinity>/sim_models/verilog/efx_dpram_5k.v"
vlog "<path to Efinity>/sim_models/verilog/efx_ff.v"
vlog "<path to Efinity>/sim_models/verilog/efx_gbufce.v"
vlog "<path to Efinity>/sim_models/verilog/efx_lut4.v"
vlog "<path to Efinity>/sim_models/verilog/efx_mult.v"
vlog "<path to Efinity>/sim_models/verilog/efx_ram_5k.v"

vlog "helloworld_tb.v"

vsim -t ps work.sim
run 1us

www.efinixinc.com 76

Efinity Software User Guide

Simulate with the NCSim Simulator
By default, the Efinity® software calls the iVerilog simulator. Use the --ncsim option to
target the NCSim simulator instead.

Note: The simulator must be in your path for the simulation to run properly.

For example, the commands to simulate are:

Example: Simulate with NCSim
Linux:

> efx_run.py <project name>.xml --flow rtlsim --ncsim // Behavioral simulation
> efx_run.py <project name>.xml --flow map // Synthesize the design
> efx_run.py <project name>.xml --flow mapsim --ncsim // Post-synthesis simulation

Windows:

> efx_run.bat <project name>.xml --flow rtlsim --ncsim // Behavioral simulation
> efx_run.bat <project name>.xml --flow map // Synthesize the design
> efx_run.bat <project name>.xml --flow mapsim --ncsim // Post-synthesis simulation

The simulator responds with
• PASS if the simulation is successful.
• FAIL if the simulation is unsuccessful.

The software saves simulation results (<project name>.rtl.simlog and <project
name>.map.simlog) and error messages (<project name>.log) in your project's outflow
directory.

www.efinixinc.com 77

Efinity Software User Guide

Simulate with the Aldec Active HDL or Riviera-
PRO Simulator
By default, the Efinity® software calls the iVerilog simulator. Use the --aldec option to
target the Active HDL or Riviera-PRO simulators instead.

Note: The simulator must be in your path for the simulation to run properly.

For example, the commands to simulate are:

Example: Simulate with Aldec Active HDL or Riviera-PRO
Linux:

> efx_run.py <project name>.xml --flow rtlsim --aldec // Behavioral simulation
> efx_run.py <project name>.xml --flow map // Synthesize the design
> efx_run.py <project name>.xml --flow mapsim --aldec // Post-synthesis simulation

Windows:

> efx_run.bat <project name>.xml --flow rtlsim --aldec // Behavioral simulation
> efx_run.bat <project name>.xml --flow map // Synthesize the design
> efx_run.bat <project name>.xml --flow mapsim --aldec // Post-synthesis simulation

The simulator responds with
• PASS if the simulation is successful.
• FAIL if the simulation is unsuccessful.

The software saves simulation results (<project name>.rtl.simlog and <project
name>.map.simlog) and error messages (<project name>.log) in your project's outflow
directory.

www.efinixinc.com 78

Efinity Software User Guide

Chapter 8

Debugging
Contents:

• Profile Editor Perspective
• Debug Wizard
• Debug Perspective
• Debugger Options
• Using the mark_debug Synthesis Attribute
• Concurrent Debugging
• Resource Usage
• Disable the Debug Core

The Efinity® software includes a hardware Debugger to probe signals in your FPGA design
via the JTAG interface. The Debugger has two perspectives: Profile Editor and Debug. The
Profile Editor perspective is where you add debug cores manually. You can also view the
settings of a Logic Analyzer core that you created with the Debug Wizard. The Debug
perspective is where you perform debugging.

The Debugger includes two debug cores, Virtual I/O (vio) and a Logic Analyzer (la).
You use a manual flow and the Profile Editor to configure Virtual I/O cores. You can use a
manual flow or the Debug Wizard's automated flow to configure Logic Analyzer cores.

Debugging involves the following general steps:

1. Create a debug profile with the Virtual I/O and/or Logic Analyzer debugger core(s).
2. Generate the debug design file and add it to your project.
3. Compile.
4. Program the FPGA.
5. Run the Debugger GUI and observe the values on the probes.

Note: The minimum operating frequency of the debug cores is 2 times the JTAG TCK frequency.

www.efinixinc.com 79

Efinity Software User Guide

Profile Editor Perspective
Choose Perspectives > Profile Editor to open the editor. If you created a debug profile
using the Debug Wizard, the editor loads it automatically. You can import an existing profile;
if you do not have an existing debug profile, you add Virtual I/O or Logic Analyzer cores
and then configure them.

Figure 32: Debugger Profile Editor Perspective

Add Debug Core Add Probe Remove Probe or
Source

Import Profile Add Source Remove Debug Core

1. Click Add Debug Core to add a Logic Analyzer (la) or Virtual I/O (vio) core
manually. You can also use the Debug Wizard for Logic Analyzer cores.

2. For vio, add probes and sources; for la, add probes.
3. For vio, specify the signal name and width; for sources you can also specify a radix and

initial value.
4. For la, specify the signal name, width, and whether the signal is for collecting data,

triggering, or both.
5. Click Generate Core RTL to create the debug module and instantiation template.
6. If you created a debug profile with the Debug Wizard, click Import Profile to load it.
7. The Console displays messages.

www.efinixinc.com 80

Efinity Software User Guide

Virtual I/O Debug Core
The Virtual I/O (vio) core lets you monitor and drive the FPGA signals using the
Debugger. You can use it to capture instantaneous data from connected wires or registers,
and you can edit values of connected wires or register. This debug core is useful for triggering
reset or control signals in real time. For example, you could use the Virtual I/O core to
trigger a reset instead of using a pushbutton; or, you can use it to monitor a data bus to
ensure that the data is what you expect. You manually configure and instantiate the Virtual
I/O core.

Functional Description
The Virtual I/O core has an interface to the JTAG User Tap block, a clock, and user-
specified probes and sources.

Figure 33: Virtual I/O Core Block Diagram

Table 18: Virtual I/O Core Ports

Port Direction Description

<core>_clk Input Clock to register input and output ports.

<core>_<probe name>[n:0] Input Probes you add in the Profile Editor. You can add a maximum
on 64 probes; the maximum probe width is 256 bits.

<core>_<source name>[n:0] Output Sources you add in the Profile Editor. You can add a maximum
on 64 sources; the maximum source width is 256 bits.

bscan_CAPTURE Input Capture output from the TAP controller.

bscan_DRCK Input Gated TCK output.

bscan_RESET Input Reset output for the TAP controller.

bscan_RUNTEST Input Output asserted when the TAP controller is in the Run Test / Idle
state.

bscan_SEL Input USER instruction active output.

bscan_SHIFT Input SHIFT output from TAP controller.

bscan_TCK Input JTAG test clock input (TCK).

bscan_TDI Input JTAG test data input (TDI).

bscan_TMS Input JTAG test mode select input (TMS).

bscan_UPDATE Input UPDATE output from TAP controller.

bscan_TDO Output JTAG test data output (TDO).

www.efinixinc.com 81

Efinity Software User Guide

Adding a Virtual I/O Core
1. Open the Debugger.
2. Choose Perspectives > Profile Editor.
3. Choose Add Debug Core > VIO.
4. Specify the core name.
5. Add sources (inputs to your design from the JTAG interface) and probes (outputs from

your design to the JTAG interface).
• For probes, choose a width and specify the signal to which you want to connect the

probe in your design.
• For sources, choose a width and specify the signal to which you want to connect

the source in your design; you can set an initial value and choose a radix for how to
display the data.

6. Click Generate Core RTL. The Efinity® software saves the debug profile in your
project directory as debug_profile.json. The software also creates a debug template
(debug_TEMPLATE.v), which includes the module for the debug profile you created and
debug_top.v, which is the RTL logic for the debug core.

7. Add the debug_top.v file to your project.

Tip: In the Project pane, right-click Design and choose Add to open a dialog box to find the file and add it.

8. Add a JTAG User Tap block in the Interface Designer. Choose JTAG_USER1 as the
JTAG Resource.

Note: the debug template uses the default signal names prefixed with
jtag_inst1. If you use a different name, then you should also change it in the
module instantiation.

9. Add the debug logic into your design using these steps:

a. Add all of the JTAG input and output pins to the project's top module. Refer to the
JTAG User TAP block pin names in the Interfaces Design to get the pin list.

b. Instantiate the debug core in the project's top module. You can copy the example code
from the generated debug_TEMPLATE.v or debug_TEMPLATE.vhd file in the
project folder.

c. Connect the nets that you want to monitor and drive the FPGA signals. You need to
map the net (input, output, wire, register, and/or signal) to the port of the instantiated
debug core (edb_top_inst).

10. Compile the design.

When compilation completes, you can launch the Debugger to perform debugging.

www.efinixinc.com 82

Efinity Software User Guide

Logic Analyzer Debug Core
You use the Logic Analyzer core (la) to monitor the signals in your design. You can capture
connected wire or register values over a specified time period or after a specific number of
times the trigger condition occurs (the default is 1). During runtime, the core samples the
signals and saves the data into the FPGA's block RAM. You can specify the number of
probes, the buffer depth, and the width for each probe input. Additionally, you can set global
AND, OR, NAND, and NOR trigger conditions as well as segment triggers.

You add a Logic Analyzer core manually or using the Debug Wizard, compile your design,
and program the FPGA. Then, you use the Debugger to set trigger events. When a trigger
occurs, the core fills the sample buffer and loads the results into the Debugger's Debug
Perspective. You can view this data using the GTK waveform viewer.

Note: Learn how to use the Debug Wizard >

Functional Description
The Logic Analyzer core has an interface to the JTAG User Tap block, a clock, user-specified
probes and trigger-related signals.

Figure 34: Logic Analyzer Core Block Diagram

Table 19: Logic Analyzer Core Ports

Port Direction Description

<core>_clk Input Clock for triggers. At a minimum, this clock should run at twice the
speed of the JTAG clock. The Debugger uses a JTAG clock of 3 MHz,
so this clock should be 6 MHz or higher.

<core>_<probe
name>[n:0]

Input Probes you add in the Profile Editor. You can add a maximum on 64
probes; the maximum probe width is 256 bits.

<core>_trig_in Input Input trigger. You can connect this port to another Logic Analyzer
core to build a cascading chain of triggers. Alternatively, you can
connect it to an external source such as an oscilloscope.

<core>_trig_in_ack Output Input trigger acknowledge.

<core>_trig_out Output Output trigger. This trigger can be generated from an external
trigger condition or from the <core>_trig_in port of another Logic
Analyzer core.

<core>_trig_out_ack Input Output trigger acknowledge.

bscan_CAPTURE Input Capture output from the TAP controller.

bscan_DRCK Input Gated TCK output.

www.efinixinc.com 83

Efinity Software User Guide

Port Direction Description

bscan_RESET Input Reset output for the TAP controller.

bscan_RUNTEST Input Output asserted when the TAP controller is in the Run Test / Idle
state.

bscan_SEL Input USER instruction active output.

bscan_SHIFT Input SHIFT output from TAP controller.

bscan_TCK Input JTAG test clock input (TCK).

bscan_TDI Input JTAG test data input (TDI).

bscan_TMS Input JTAG test mode select input (TMS).

bscan_UPDATE Input UPDATE output from TAP controller.

bscan_TDO Output JTAG test data output (TDO).

Adding a Logic Analyzer Core Manually
1. Open the Debugger.
2. Choose Perspectives > Profile Editor.
3. Choose Add Debug Core > Logic Analyzer.
4. Specify the core name.
5. Select the data depth. This settings lets you control how much data is saved for the probes.

The more data you save, the more on-chip memory is used.
6. Turn on Trigger In Port and/or Trigger Out Port to enable those signals.
7. Turn on Capture Control if you want to change the capture mode in the Capture Setup

tab during debugging (see Debug Perspective on page 86 for details). If you turn this
option on, the Logic Analyzer uses more FPGA resources.

8. Add probes (outputs from your design to the JTAG interface).

a. Choose a width and specify the signal to which you want to connect the probe in your
design.

b. Choose Data and Trigger (default) to save data and can trigger when to capture.
Choose Data Only to save data.
Choose Trigger Only to trigger when to capture data. Tigger only signals do
not display in the resulting waveform.

9. Click Generate Core RTL. The Efinity® software saves the debug profile in your
project directory as debug_profile.json. The software also creates a debug template
(debug_TEMPLATE.v), which includes the module for the debug profile you created and
debug_top.v, which is the RTL logic for the debug core.

10. Add the debug_top.v file to your project.

Tip: In the Project pane, right-click Design and choose Add to open a dialog box to find the file and add it.

11. Add a JTAG User Tap block in the Interface Designer. You can choose either JTAG
resource.

Note: the debug template uses the default signal names prefixed with
jtag_inst1. If you use a different name, then you should also change it in the
module instantiation.

12. Add the debug logic into your design using these steps:

a. Add all of the JTAG input and output pins to the project's top module. Refer to the
JTAG User TAP block pin names in the Interfaces Design to get the pin list.

www.efinixinc.com 84

Efinity Software User Guide

b. Instantiate the debug core in the project's top module. You can copy the example code
from the generated debug_TEMPLATE.v or debug_TEMPLATE.vhd file in the
project folder.

c. Connect the nets that you want to monitor and drive the FPGA signals. You need to
map the net (input, output, wire, register, and/or signal) to the port of the instantiated
debug core (edb_top_inst).

13. Compile the design.

When compilation completes, you can launch the Debugger to perform debugging.

Note: For complex designs with multiple levels of hierarchy, it can be time-consuming to implement the
Logic Analyzer core manually. Instead, use the Debug Wizard. Learn about the Debug Wizard >

Debug Wizard
The Debug Wizard provides an automated flow for adding a logic analyzer core to your
design. You launch the wizard from the Efinity main icon bar. This wizard is helpful for
complex projects with multiple levels of hierarchy. You select signals and nets from the
post-map netlist and specifiy the probe type. Then, the wizard automatically creates a debug
profile, adds the debug core to your project, connects the nets that you want to debug to
the probe ports of the debug instance, and adds the JTAG User Tap block to your interface
design. When the wizard completes its processing, you simply compile and start debugging.

Using the Wizard
1. Launch the Debug Wizard.
2. Choose the buffer depth. The buffer uses on-chip RAM, therefore, a larger buffer uses

more RAM.
3. Optionally enable capture control. Enabling this option lets you change the capture mode

in the Capture Setup tab during debugging (see Debug Perspective on page 86 for
details). If you turn this option on, the logic analyzer uses more FPGA resources.

4. Select the JTAG User TAP (USER1 or USER2) to connect to the Debugger in the
Connection Settings box.

5. In the Signals from list, choose Elaborated Netlist to browse for signals in the pre-map
netlist, or Post-Map to use signals from the post-map netlist.

6. Select signals and add them using the forward arrows. You can filter the signal list with
regular expressions.

Note: Signals with an Undefined clock domain are not driven by any clock in the
post-map netlist. If you want to capture the waveform of a signal with an undefined
clock domain, you need to manually add the Logic Analyzer core.

7. Specify the probe type (Data and Trigger, Data Only, or Trigger Only) for each signal.
8. Click Next. The wizard generates the core and hooks it up to your design.
9. Turn on Enable Auto Instantiation to have the wizard enable the logic analyzer in your

project.
10. Click Finish. The Efinity® software saves the debug profile in your project directory

as debug_profile.wizard.json. The software also creates a debug template
(debug_TEMPLATE.v), which includes the module for the debug profile you created and
debug_top.v, which is the RTL logic for the debug core.

Note: The wizard's automated flow requires the JTAG_USER1 or JTAG_USER2 resource. If you are using
the block for the Debugger, you cannot use it for any other JTAG function; otherwise, you will receive an
error during placement.

www.efinixinc.com 85

Efinity Software User Guide

If you did not turn on Enable Auto Instantiation, you can manually enable the wizard-
created debug profile:

1. Open the Project Editor.
2. Click the Debugger tab.
3. Select your project's debug_profile.wizard.json in the Debug Profile box.
4. Turn on Debugger Auto Instantiation.

Turn off Debugger Auto Instantiation in the Debugger tab to disable the debugger profile.

Debug Perspective
The Debug perspective is where you perform debugging. From this view, you can program
the FPGA, set triggers, and open the GTKWave waveform viewer to see the results.

When you close the Debugger, it asks you if you want to save settings. Click Yes if you
want to save values you have entered (such as trigger values, radix, window depth, etc.). This
feature lets you open and close the Debugger without losing your work.

The Debugger provides basic error checking. When you program the FPGA, the Debugger
checks to make sure that the bitstream you chose matches the FPGA you are trying to
program. Additionally, the Debugger verifies that the debug profile in your Efinity project
matches the debug core in the bitstream you are using. If the Debugger finds any mismatches,
it gives an error message.

You can open multiple Debugger windows. Choose Tools > Open Debugger multiple
times or click the Debugger icon multiple times to open additional windows. When you close
the Efinity software, all Debugger window close as well.

Note: Download and install the GTKWave software from gtkwave.sourceforge.net. Windows: You may
need to add the path to GTKWave ($GTKWave_folder$\bin\) to your System Variables path for the
software to launch correctly.

www.efinixinc.com 86

http://gtkwave.sourceforge.net

Efinity Software User Guide

Logic Analyzer Perspective
The following figure shows the Debug perspective for the Logic Analyzer.

Figure 35: Debug Perspective GUI - Logic Analyzer

Select Bitsteam Connect Debugger Disconnect Debugger

Start Programming Add Net Remove Net

Stop Programming Select Waveform File

To perform debugging using the Logic Analyzer:

1. Select the bitstream and program the FPGA.
2. Connect the Debugger.
3. Add triggers. If you turned on Capture Control in the Debug Wizard, you can adjust the

capture mode in the Capture Setup tab. Set the # Trigger option if you want the trigger
to occur after n occurances (default is 1).

4. Click Run to run the code. The Debugger waits for the trigger conditions you set and
then captures data.
Click Run Immediate to begin capturing data immediately.

5. The Core status and Capture status areas show the progress.
6. The Console shows messages.
7. Click the Select Waveform File button to choose a waveform file.

www.efinixinc.com 87

Efinity Software User Guide

Understanding Capture Control
The Logic Analyzer core supports a capture control option. When you turn on this option in
the debug profile, the Capture Setup tab becomes available during debugging.

The Capture Mode option selects which condition the Debugger evaluates before each
sample is captured:
• Always—Stores a data sample during a given clock cycle regardless of any capture

conditions you set.
• Basic—Only stores a data sample during a given clock cycle if the capture condition

evaluates as true. Select this option to add nets and set capture conditions.

You can subdivide the capture data buffer into one or more segments. The Debugger
automatically suggests a window depth depending on the number of segments you choose.
Additionally, you can set the position of the trigger in the window.

Virtual I/O Perspective
The following figure shows the Virtual I/O Debug perspective.

Figure 36: Virtual I/O Debugger

To perform debugging using Virtual I/O cores:

1. Select the bitstream and program the FPGA.
2. Connect the Debugger.
3. Enter values for the sources and observe the values for the probes.
4. The Console shows messages.

www.efinixinc.com 88

Efinity Software User Guide

Debugger Options
The Debugger has these options, which you turn on or off in the Options menu:

Table 20: Debugger Options

Option Description

Allow .bit/.hex for all configuration modes With this option turned on, you can program
the FPGA using a .hex file in JTAG mode. This
option supports legacy behavior for Trion
FPGAs.

Always launch new waveform viewer window Turn this option on if you want the Debugger
to open a new waveform window each
time you launch a debug session. Existing
windows remain open.

www.efinixinc.com 89

Efinity Software User Guide

Using the mark_debug Synthesis Attribute
You can use the attribute, mark_debug, to mark the debug nets for auto debug probe
insertion. You include the mark_debug synthesis attribute in your RTL and set it to true
or 1. If the attribute is set to true or 1, synthesis tool writes out the selected signal to a
default file, <project dir>/outflow/debug_profile.mark_debug.json. In the Project
Editor, you can enable or disable the mark_debug output by setting the synthesis option
enable-mark-debug to 1 (default, enabled) or 0 (disabled).

Note: See "mark_debug" in the Efinity Synthesis User Guide.

After synthesis, you can open the Debugger Wizard to monitor the selected mark_debug
signals (highlighted in blue in the following figure). In the Debug Wizard, you can:
• Edit the attributes related to the selected signal, e.g., clock domain and trigger type.
• Add additional signals from the design to be probed or remove the selected mark_debug

signals.

When you finish using the Debug Wizard, the toolswrites the debug_profile.wizard.json
as usual. You can continue to debug as you normally would.

Figure 37: mark_debug Signals in the Debug Wizard

Note: If you have changed which signals have the mark_debug attribute in your RTL, you must re-run the
Debug Wizard to reimport the selected or changed signals. The changes are retained if the same signal is
selected and if the debug attribute has changed before.

www.efinixinc.com 90

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH

Efinity Software User Guide

In batch (command-line) workflows, the software generates the same <project dir>/
outflow/debug_profile.mark_debug.json file. You need to edit the project.xml to add
the efx:debugger section manually:

1. Turn on auto instantiation.
2. Specify the debug profile value as outflow/debug_profile.mark_debug.json.

<efx:debugger>
 <efx:param name="work_dir" value="work_dbg" value_type="e_string"/>
 <efx:param name="auto_instantiation" value="on" value_type="e_bool"/>
 <efx:param name="profile" value="outflow/debug_profile.mark_debug.json"
 value_type="e_string"/>
 </efx:debugger>

The efx_run.py script picks up the specially named file, debug_profile.mark_debug.json
and calls efx_run_dbg.py with a new mark_debug option. This option triggers a call to
a efx_dbg/DbgWizard.py function to process and generate the connection profile. The
debug_top.v is required for the debugger auto insertion flow.

Note: In this command-line flow, all debugger attributes are set to default when the
debug_profile.mark_debug.json file is first generated. Then, you can edit the JSON file to alter the
following attributes:

• data_depth, default = 1024
• capture_control, default = false
• input_pipeline, default = 1
• jtag_user, default = USER1

For each of the probe signals, the clock domain is deduced automatically. However, the clock
domain is left as Undefined for a pure combinational signal. In this case, you can edit the
JSON file to specify the desired clock domain. This information is retained when the JSON
file is regenerated in future synthesis runs.

www.efinixinc.com 91

Efinity Software User Guide

Concurrent Debugging
The Debugger has the concurrent debug feature where you can open multiple debug
windows and connect to different JTAG USER TAP interfaces at the same time. This
feature lets you perform debugging more easily. For example, you can set up a trigger in one
Debugger window and then cause the event to happen in the second Debugger window.

The concurrent debug feature requires you to connect to the board using the Efinity
Hardware Server. You can use the same computer for the server and client. Launch the
server with the board connected to your computer and then connect to the server from the
Debugger client using the same IP address.

See Working with Remote Hardware on page 140 for instructions on setting up a
Hardware Server.

To open more than one Debugger window, choose Tools > Open Debugger or click the
Debugger icon multiple times.

Resource Usage
In Efinity version 2020.1 and higher, you can view the resources used by the debug cores in
the Dashboard's Results pane in the Debugger table. The software reports:
• Whether auto-instantiation is turned on or off
• Whether the debug target is the elaborated or post-map netlist
• Number of flipflops used
• Number of adders used
• Number of LUTs used
• Number of memory blocks used

Note: The resoure usage is an estimation, and is meant to give you a general guideline about the usage
for reference purposes.

Disable the Debug Core
If you want to remove a debug core from your project:

1. Open the Project Editor.
2. Click the Debugger tab.
3. Turn off the Debugger Auto Instantiation option.
4. Click OK.
5. Re-compile the design.

The software removes the debug profile from your design, but does not remove it from
disk. So you can re-enable the debug profile again by turning on the Debugger Auto
Instantiation, specifying the profile name, and recompiling.

www.efinixinc.com 92

Efinity Software User Guide

Chapter 9

Debugging Transceivers
Contents:

• Launching the Transceiver Debugger
• Using the Transceiver Debugger
• Debugging with BIST
• Sending Commands
• Interpreting the Results

The Efinity software v2024.1 and higher includes the Efinity Transceiver Debugger tool that
tests and displays the signal quality of the transceiver signals; it does not test the actual data
itself. This tool is not an oscilloscope.

The left side of the Transceiver Debugger has programming options and buttons. Its
functionality is similar to the Programmer, only simplified. A Console displays messages such
as the device ID, board profile, and device status. It also shows any error messages. In v2025.1
and higher, the Transceiver Debugger supports BIST.

Learn more: Refer to the Efinity Transceiver Debugger Tutorial for information on how to use example
designs provided with the Efinity software.

Figure 38: Efinity Transceiver Debugger

www.efinixinc.com 93

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=EFN-XCVR-DEBUG

Efinity Software User Guide

Launching the Transceiver Debugger
To open the Transceiver Debugger, choose Tools > Open Transceiver Debugger.

You can also launch the Transceiver Debugger using a batch file (Windows) or shell script
(Linux).

Windows—Execute the file <Efinity version>\debugger\serdes_debug_tool\bin
\efinity_serdes_dbg.bat.

Linux—Execute the file <Efinity version>/debugger/serdes_debug_tool/bin/
efinity_serdes_dbg.sh.

Using the Transceiver Debugger
This topic assumes you already know how to program an FPGA using the Efinity
Programmer. To use the Transceiver Debugger:

1. Connect an Efinix transceiver-capable board, e.g., a board with the Ti375 N1156 FPGA.
2. Click Refresh USB Target if the USB Target field does not display the board name.
3. If the FPGA is not programmed already, select a bitstream file and program it as you

normally would.
4. Select JTAG > USERn and connect the Transceiver Debugger. Choose the JTAG user

TAP that connects to the the APB bridge. The loopback design provided with the Efinity
software uses USER2.

Note: Disconnect all other debug cores before connecting the Transceiver
Debugger.

5. Review the PCIE Status table in the Status tab. This table shows the link status and
speed.

6. Review the PHY Status table in the Status tab. This table show whether the lanes are
locked and ready.

7. In the Configuration tab, adjust the settings for the eye diagram plot.

Setting Description

Selected Lane Choose the lane to use in the sys diagram plot, lane 0, 1, 2, or 3.
Default: 0

Vertical Offset Value Indicates how many vertical positions there are to the right and left
of center. Higher values result in a plot with high resolution, at the
expense of longer drawing time.
Default: 40

Vertical Offset Step Indicates how many vertical positions to include in the same color
pixel. For example, for an offset value of 40 and a step of 2, the
software plots a total of 20 blocks on each side of the center line. A
higher number results in less drawing time.
Default: 2

Horizontal
Offset Value

Indicates how many horizontal positions there are to the right and
left of center. Higher values result in a plot with high resolution, at
the expense of longer drawing time.
Default: 40

www.efinixinc.com 94

Efinity Software User Guide

Setting Description

Horizontal
Offset Step

Indicates how many horizontal positions to include in the same
color pixel. For example, for an offset value of 40 and a step of 2,
the software plots a total of 20 blocks on each side of the center
line. A higher number results in less drawing time.
Default: 2

Accumulation Period The accumulation period is how long to perform the test for each
pixel. A higher value provides more saturated results. Each period
in the nanoseconds range.
Default: 7

8. When you are finished setting values, click Start. The tool begins sampling data and
displaying the results on the plot.

Debugging with BIST
To use the BIST function, you need a loopback design, in which the transceiver transmits
data and then receives it back. You can use internal parallel or serial loopbacks, or an external
serial loopback. You access the BIST function through the transceiver's APB interface.

Figure 39: Transceiver BIST Loopback Types

RX TX

Lane

rx_rd_ln[n:0] tx_td_ln[n:0]

tx
_m

_l
n[

n:
0]

tx
_p

_l
n[

n:
0]

rx
_m

_l
n[

n:
0]

rx
_p

_l
n[

n:
0]

FPGA

RX TX

Lane

rx_rd_ln[n:0] tx_td_ln[n:0]

tx
_m

_l
n[

n:
0]

tx
_p

_l
n[

n:
0]

rx
_m

_l
n[

n:
0]

rx
_p

_l
n[

n:
0]

FPGA

RX TX

Lane

rx_rd_ln[n:0] tx_td_ln[n:0]

tx
_m

_l
n[

n:
0]

tx
_p

_l
n[

n:
0]

rx
_m

_l
n[

n:
0]

rx
_p

_l
n[

n:
0]

FPGA

Internal Parallel Internal Serial External Serial

Note: The Efinity includes a loopback project that you can use for testing with the transceivers BIST
function.

www.efinixinc.com 95

Efinity Software User Guide

In the Transceiver Debugger, click the BIST tab to set up the test.

Figure 40: Transceiver Debugger BIST Tab

• Click Add Link to add lanes. The Link column shows the list of links.
• Bist Sync Status shows a hex value indicating whether the link is running or has an error:

— A022—BIST is running.
— A02A, A02E—An error occurred. The value toggles between A02A and A02E.
— A020—BIST is not running.

• Errors shows the current error count as an exponential sum.
• Click Reset to reset the link's error count to 0.
• Click Inject Error to force a 2-bit transmit error on the link.
• In the Pattern menu, choose the sequence type for testing. Currently the debugger only

supports a pseudo-random binary sequence (PRBS).

Important: If the transceiver is in BIST mode, it can only be used for testing. Re-program the FPGA to use
the transceiver for regular data transmission.

Sending Commands
The Transceiver Debugger's Terminal area lets you interact with the PCIe Controller's
registers by sending commands through the APB interface.
• Single Command—Choose this option to send one command. Enter the command in the

Command box and click Send.
• Mass Read/Write—To send multiple commands choose this option.

— Click the input file button next to the Input File box and browse to select a text file
of commands. The file should be a text file (.txt) with one command per line. for
example:

write:0x204048,0x00000000
write:0x2041A8,0x00000A11
write:0x2041A8,0x00000A01
read:0x20F000,0x0000A022
read:0x2041AB,0x00000000

— Optionally, you can write the output to a file as well as displaying it in the Console.

1. Turn on Output File.
2. Click the output file button and browse to a directory in which to save the output.

— Click the play button to start running the commands.
— Click the stop button to stop running commands.

The following table outlines some of the commands you can use in the Efinity Transceiver
Debugger tool.

www.efinixinc.com 96

Efinity Software User Guide

Table 21: Transceiver Debugger Commands

Command Example Comment

write:<24-bit hex register>,<32-bit hex
value>

write:0x2041A0,0x00003800 -

read:<24-bit hex register> read:0x2041A0 Return value is 32
bits.

sleep:<seconds> sleep:5 Only available in
Mass Mode.

For a list of transceiver registers, see:
• Titanium PCIe® Controller Registers User Guide
• Titanium Ethernet 10GBase-KR User Guide ("Register Map")
• Titanium SGMII 1G and 2.5G User Guide ("Register Map")
• Titanium PMA Direct User Guide ("Register Map")

Interpreting the Results
The PCIE Status table shows information about the link. You can review the data to see
whether the link is operating at the correct speed with the correct number of lanes.

The eye plot gives a visual representation of the link quality. Areas that are black have no
errors reported. The yellow, orange, and red colors indicate how many errors are being found
(yellow is less while red is more).

You can use the plot to see if the error-free area (or eye) is sufficient for your application.
For example, for a PCIe Gen4x4 interface, the unit interval (UI) for PCIe Gen4 is 62.5
picoseconds (refer to the PCI-SIG's PCI Express® Base Specification for more information). In
the PCIe Gen4x4 plot:

• One horizontal step is approximately three millivolts.
• One unit interval is 64 steps. A UI is a full window (between the X of the eye diagram).
• A step, therefore, is close to 1 picosecond.

www.efinixinc.com 97

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-Ti10GBASEKR
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiSGMII
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPMAD

Efinity Software User Guide

Chapter 10

Configuring an FPGA
Contents:

• FPGA Configuration Modes
• Flash Programming Modes
• About the Programmer GUI
• Generate a Bitstream (Programming) File
• About the BRAM Initial Content Updater
• Working with Bitstreams
• SPI Programming
• JTAG Programming
• Using the Command-Line Programmer
• Project-Based Programming Options
• Configuration Status Register
• Verifying Configuration with the Programmer
• Securing Titanium Bitstreams

When you have finished running your design through the flow, you are ready to configure a
device. You configure devices using the standalone GUI or command-line Programmer tool
and a USB cable attached to your board. You can download the bitstream file into the device
itself or into flash memory. Before you begin configuration, install the USB drivers for the
programming cable (see Appendix: Installing USB Drivers on page 142).

FPGA Configuration Modes
Trion®, Topaz, and Titanium FPGAs have dedicated configuration pins. You select the
configuration mode by setting the appropriate condition on the input configuration pins.
Trion®, Topaz, and Titanium FPGAs support the following configuration modes.

Table 22: FPGA Configuration Modes

Mode Description

SPI Active (serial/parallel) The FPGA loads the bitstream itself from non-volatile SPI flash memory.

SPI Passive (serial/parallel) An external microprocessor or microcontroller sends the bitstream to the FPGA
using the SPI interface.

JTAG A host computer sends instructions through a download cable to the FPGA's
JTAG interface using JTAG instructions.

www.efinixinc.com 98

Efinity Software User Guide

Flash Programming Modes
The following table shows the methods you can use to program the configuration bitstream
into the flash device on your board. Although you can program the flash directly using the
SPI interface, this method requires that you have a SPI header on your board or use an FDTI
chip. Therefore, Efinix recommends that you use a JTAG bridge, because that method only
requires a JTAG header, which you would typically have on your board for other purposes
anyway.

Important: If you are using the secutiry feature (Titanium or Topaz only), you can no longer use the JTAG
bridge flash programming modes after you disable JTAG access. Refer to Securing Titanium Bitstreams on
page 127 for details.

Table 23: Flash Programming Modes

Mode Description

SPI Active (serial/parallel) Use the Efinity Programmer and a cable connected to a SPI header on the board.

SPI Active using JTAG Bridge
(New)

A improved version of the SPI Active using JTAG Bridge (Legacy) mode with a
faster flash programming time.

SPI Active x8 using JTAG
Bridge (New)

A improved version of the SPI Active x8 using JTAG Bridge (Legacy) mode with a
faster flash programming time.

Learn more: Refer to Program using a JTAG Bridge on page 115 for more
information.

www.efinixinc.com 99

Efinity Software User Guide

About the Programmer GUI
The graphical user interface makes it easy to select bitstream images and program Efinix
FPGAs.

Figure 41: Programmer

Open Combine Multiple
Images Files Dialog Box

Status Messages

Select Image

Start Programming

Refresh Configuration
Status

Configuration Options

Advanced Device
Configuration Status

Refresh the Available
USB Targets

Board Name

Connect to a
Remote Host

To use the Programmer:

1. Choose a target. Click the Edit Remote Host List button to connect to a board attached
to a remote host. See Working with Remote Hardware on page 140.

2. Choose a bitstream file. Use a .hex file for SPI modes or a .bit file for JTAG mode.
After you select a bitstream, the Programmer reads the bitstream and displays data in the
FPGA and Checksum fields. The checksum excludes the pre-header and ignores whether
characters are uppercase or lowercase; therefore, it is a checksum of the bitstream content,
not a file checksum.

www.efinixinc.com 100

Efinity Software User Guide

Tip: You can also get the checksum from the command line using the command:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\efx_pgm\generate_checksum.py <bitstream>

3. Choose the programming mode and then select options.

Mode Options

SPI Active Starting Flash Address
Flash Length
Erase Before Programming
Verify After Programming

SPI Passive Clock Speed

JTAG Device Select
JTAG Clock Speed

SPI Active using JTAG Bridge (Legacy)
SPI Active using JTAG Bridge (New)
SPI Active x8 using JTAG Bridge (Legacy)
SPI Active x8 using JTAG Bridge (New)

Starting Flash Address
Flash Length
Erase Before Programming
Verify After Programming
Device Select
JTAG Clock Speed

4. Click the Program FPGA (SPI Passive or JTAG) or Program Flash (all other modes)
button.

The Programmer has status information that gives you diagnostics:
• The FPGA or flash device's configuration status displays in the Device Configuration

Status area. Click the Refresh button to refresh the status and display messages in the
console.

• Use the Advanced Device Configuration Status button to get diagnostics that can be
helpful when debugging why configuration is failing. Refer to Configuration Status
Register on page 124 for more information.

Note: For detailed information on how to use configuration modes and set up your circuit board for
configuration, refer to AN 006: Configuring Trion FPGAs or AN 033: Configuring Titanium FPGAs.

www.efinixinc.com 101

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN006
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Software User Guide

Edit the SPI Active Clock
An internal oscillator generates the internal clocks the FPGA uses during configuration.
In SPI active configuration mode, configuration starts operating at the default frequency
(10 MHz) and then switches to the user-selected clock to minimize configuration time
(assuming the SPI flash device supports the faster fMAX).

You set the configuration clock frequency in the Efinity® software.

Table 24: Internal Oscillator Clock Settings

SPI Clock Divider Frequency (MHz)

DIV4 20

DIV8 10

To change the clock frequency:

1. Choose File > Edit SPI Active Clock or click the toolbar icon to open the Edit SPI
Active Clock Settings dialog box.

2. Choose the divider value with DIV Select.
3. Click Apply and Close to save your changes.

You can also set the clock frequency for the project in the Project Editor > Bitstream
Generation tab. Any setting you make in the Edit SPI Active Clock Settings dialog box
overrides what you set for the project.

Note: T20 (Q144, F324, F400 packages) and T35 (all packages) support negative edge sampling. Click
Enabled to turn it on. Then, specify the number of extra clock cycles to insert between the time when the
default clock changes to the specified clock and when the FPGA continues configuration. You can add up
to 7 extra clock cycles.

www.efinixinc.com 102

Efinity Software User Guide

Generate a Bitstream (Programming) File
When you run the automated flow, the software automatically generates bitstream files
that you can use to configure your target device. You can also generate the bitstream files
manually. To generate bitstream files from the command line, use the following command:

Example: Generate a Bitstream File from the Command Line
Linux:

> efx_run.py <project name>.xml --flow pgm

Windows:

> efx_run.bat <project name>.xml --flow pgm

The software generates these files in the outflow directory:
• .hex file as <project name>.hex. Use this file to program in SPI active or passive mode.
• .bit file as <project name>.bit. Use this file for JTAG programming.

Important: With the Efinity software v2021.2 and higher, you must use .hex for SPI and .bit for JTAG.

The bitstream file includes programming options you set for your project (e.g., to initialize
user memory or set configuration mode). If you change these options you must regenerate
the bitstream file. See Project-Based Programming Options on page 121.

Note: The software does not generate bitstream files for preliminary devices.

About the BRAM Initial Content Updater
The BRAM Initial Content Updater is a tool that lets you quickly update the initial memory
saved in the FPGA's BRAM without performing a full compile. For example, you can use
this tool if you want to:
• Update RISC-V application code in the on-chip memory
• Update sensor parameters in on-chip memory

To open the BRAM Initial Content Updater, click its icon in the toolbar or choose Tools >
Open BRAM Initial Content Updater.

Figure 42: Using the Netlist Pane
BRAM Initial Content Updater

In the tool, you select the elaborated netlist memory that you want to update, not the post-
map memory. Therefore, you do not need to know how synthesis decomposes and maps
the memories to use this tool. Because this tool bypasses the full compilation flow, it does
not update <project>.map.v and other intermediate compiler output files. As a result, the
updated bitstream file will be out of sync with your other project files.

www.efinixinc.com 103

Efinity Software User Guide

The format of the initial memory files is the same format used by Verilog HDL parsers and
and the $readmemh or $readmemb Verilog HDL functions.

Note: The --optimize-zero-init-rom synthesis option tells the software to optimize away zero value
ROMs. If your design has zero-value ROMs and you plan to use the BRAM Initial Content Updater later,
disable this synthesis option in your project settings.

Figure 43: BRAM Initial Content Updater

List of memory initialization
files used in the project

Update memory content
Revert to the original memory content
Close

Generate a new bitstream

Select a new memory initialization file

Filter the list

Updating the BRAM Initial Content
To use the tool:

1. Compile your project if you have not already done so. (The BRAM Initial Content
Updater tool is disabled if you have not compiled.)

2. Create a new .hex file or update an existing one with the new memory content.
3. Open the tool by choosing Tools > Bram Update or by clicking the toolbar icon.
4. Select the memory you want to update. Use the filter options to narrow the list.
5. Click the Select Memory Initialization File button.
6. Choose the new .hex file.
7. Click Open.
8. Click the Update Memory Content button.
9. Click the Regenerate Bitstream button.
10. Close the BRAM Initial Content Updater.

Configure the FPGA with your updated bitstream.

If you want to revert the bitstream back to the original one:

1. Open the BRAM Initial Content Updater.
2. Click the Revert Memory Content Updates button.
3. Click the Regenerate Bitstream button.

www.efinixinc.com 104

Efinity Software User Guide

Using the Example Files
If you have a Trion T20 BGA256 Development Board, you can use the example files provided
with the Efinity software to experiment with the BRAM Initial Content Updater.

1. Connect the board to your computer.
2. Open the helloworld project in the <Efinity install path>/debugger/demo/

helloworld-dbg_GOLDEN directory.
3. Compile the project.
4. Configure the FPGA using the Programmer, JTAG mode, and the .bit file located in the

project's outflow directory.
5. Open the BRAM Initial Content Updater.
6. Click the memory named mem to select it.
7. Click the Select Memory Initialization File button.
8. Select the reverse.inithex file in the helloworld-dbg_GOLDEN directory.
9. Click Open.
10. Click the Update Memory Content button.
11. Click the Regenerate Bitstream button.
12. Close the BRAM Initial Content Updater.
13. In the Programmer, click Start Ptrogram (use the same bitstream file). When configuration

completes, the LEDs on the board blink in the opposite direction, showing the changed
initial memory state.

You can use the other files in the helloworld-dbg_GOLDEN directory to update the
bitstream to show other blinking patterns. Additionally, you can create your own .hex file to
change the blinking pattern.

www.efinixinc.com 105

Efinity Software User Guide

Command-Line Interface
In addition to the GUI. you can rus the BRAM Initial Content Updater from the command
line. With this method you can perform iterative work, without having to go through GUI
for every iteration.

Usage:

efx_bram_update --project <project name> --memory <logical memory name>,<initialization file>
 <options>

Where:

Table 25: BRAM Initial Content Updater CLI Options

Option Shorthand Description Type Example

--help -h Show the help. Optional --help

--project arg -j Specify the Efinity project file. Required -j pt_demo.xml

--mem_info arg -i Specify the memory file in protocol buffer
format.

Optional -i new_mem.hex

--place arg -p Specify a placement file. Optional -p pt_demo.place

--lbf arg -l Specify the Logical Bit File (.lbf). Optional -l pt_demo.lbf

--output arg -o Specify the name for the updated
bitstream file.

Optional -o pt_demo.bit

--family arg -f Indicate the FPGA family, trion or titanium Optional -f trion

--verbose -v Print out verbose messages. Optional -v

--memory arg -b Specify the logical memory you want to
update and the memory initialization file.
Use the format <memory>,<init file>

Required -b mem,new_mem.hex

--mode arg -m Indicate the mode for the update tool.
update: Default. Use to updatie the
memory with a new file.
read: Reads the current initial content
data in the bitstream and displays it in the
console.
revert: Go back to the original initial
memory content.

Optional -m revert

Working with Bitstreams
You can use the Efinity Programmer to manipulate a bitstream before programming an
FPGA or flash device.

www.efinixinc.com 106

Efinity Software User Guide

Edit the Bitstream Header
You can use the Programmer to edit the bitstream header information, for example, to add
project or revision information. To edit the header:

1. In the Programmer, choose File > Edit Header... or click the toolbar icon to open the
Edit Image Header dialog box. The window shows the default header information.

2. Edit the header.
3. Click Save.

Important: When editing the bitstream header, if you remove any of the auto-generated information
(such as Device: <name>), the Programmer may not be able to recognize the bitstream. Efinix
recommends that you only append a small amount of information to the auto-generated data if you want
to customize or annotate the header. The header can be a maximum of 256 characters, including the auto-
generated text.
If you want to write your own program to detect which device the bitstream targets (e.g., using a
microprocessor and SPI passive mode), be sure to keep all of the auto-generated header, specifically the
Device: <name> string.

Bitstream Compression
When you generate a bitstream for Titanium Topaz FPGAs, the Efinity® software
compresses the bitstream by default. This compression results in a bitstream size that is about
half of the maximum size.

Refer to AN 033: Configuring Titanium FPGAs for the bitstream sizes.

Important: If you are using the Titanium or Topaz security features (AES-256 encryption and/or
asymmetric authentication), the software cannot compress the bitstream. Therefore, compression is
disabled when you use these features.

Export to Raw Binary Format
The Efinity® software v2018.4 and later supports raw binary (.bin) format for use with third-
party flash programmers. To export to this format:

1. Open the Programmer.
2. Select the bitstream file.
3. Click Export.
4. Specify the filename.
5. Click Save.

You can also convert the file to .bin at the command line as described in Convert to Intel
Hex Format at the Command Line on page 108.

Export to .svf Format
The Efinity® software v2021.1 and later supports serial vector format (.svf) files for use with
third-party JTAG programmers. To export to this format:

1. Open the Programmer.
2. Select a bitstream file.
3. Click Export.
4. Specify the filename.
5. Choose Serial Vector Format (*.svf) as the Files of type.
6. Click Save.

www.efinixinc.com 107

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Software User Guide

Convert to Intel Hex Format at the Command Line
You can also convert a bitstream file to Intel Hex and other formats at the command line
using this command:

export_bitstream.py [-h] [--family <Trion®, Topaz, and Titanium>] [--idcode IDCODE] [--freq
 FREQ]
 [--sdr_size SDR_SIZE][--tir_length TIR_LENGTH] [--hir_length HIR_LENGTH]
 [--tdr_length TDR_LENGTH] [--hdr_length HDR_LENGTH] [--enter_user_mode <on or off>]
 <format> <input filename> <output filename>

Where <format> is:
• hex_to_bin
• hex_to_intelhex
• bin_to_hex
• intelhex_to_hex
• hex_to_svf

For example:

C:\Efinity\2021.1\bin\setup.bat
python3 C:\Efinity\2021.1\pgm\bin\efx_pgm\export_bitstream.py hex_to_bin new_project.hex
 test2.bin

Combine Bitstreams and Other Files
You may want to store multiple bitstreams or other data into the same flash device on your
board. For example, you can combine files for:

• Multi-image configuration using the CBSEL pins
• Internal reconfiguration
• Programming FPGAs in a daisy chain
• Programming a bitstream and other files such as a RISC-V application binary

You use the Combine Multiple Image Files dialog box to choose files to combine into a
single file for programming. Choose one of the following modes:

Table 26: Modes when Combining Images

Mode Use For Number of Images Refer to

Multi-image
configuration

Up to 4 Program Multiple Images (CBSEL) on
page 109

Selectable Flash
Image

Internal
reconfiguration

Up to 4 Program Multiple Images (Internal
Reconfiguration) on page 110

Daisy Chain Daisy chains Any number of JTAG
devices including
those from other
vendors

Program a Daisy Chain on page 111

Generic Image
Combination

A bitstream and other
files

One bitstream and
any number of other
files

Program Multiple Images (Bitstream
and Data) on page 111

www.efinixinc.com 108

Efinity Software User Guide

Combine Bitstreams at the Command Line
If you want to use a script to combine iages at the command line, you can sue the
multi_image_merger.py script in the <Efinity>/pgm/bin directory. the command is:

multi_image_merger.py [-m] [--mode] [-t] [--type] [-ifile] [-iaddr] [-o] [--outfile] [-h] [--
help]

The options are:

• -m, --mode—Specifies which multi-image mode to use: generic_comb_image, daisy_chain_image,
selectable_flash_image (default)

• -t, --type—Specifies which type to use for selectable_flash_image mode only: internal,
external (default)

• -ifile—Image files. Use this flag for each file you want to combine.
• -iaddr—Starting address, can specify multiple times.
• -o, --outfile—Output bitstream file.
• -h, --help—Display the help.

Examples:

multi_image_merger.py -m selectable_flash_image -t external -ifile <hex file 1> -iaddr 0x00 -
ifile <hex file 2> -iaddr 0x380000 -o
multi_image_merger.py -m selectable_flash_image -t internal -ifile <hex file 1> -ifile <hex
 file 2> -o
multi_image_merger.py -m daisy_chain_image -ifile <hex file 1> -ifile <hex file 2> -o
multi_image_merger.py -m generic_comb_image -ifile <hex file 1> -ifile <hex file 2> -iaddr 0x00
 -iaddr 0x380000 -o

SPI Programming
You can program Efinix FPGAs using the SPI interface and a .hex file.

Program a Single Image
In single image programming mode, you configure one FPGA with one image.

1. Click the Select Image File button.
2. Browse to the outflow directory and choose <project name>.hex.
3. Choose SPI Active or SPI Passive configuration mode.
4. Click Start Program. The console displays programming messages.

Program Multiple Images (CBSEL)
In this programming mode, you specify up to four images that can configure one FPGA. You
then use the FPGA's CBSEL pins to select which image to use. You can only use active mode.

1. Click the Combine Multiple Images button.
2. Choose Mode > Selectable Flash Image.
3. Enter the output file name.
4. Choose the output file location. The default is the project's outflow directory.
5. Choose External Flash Image.
6. Click in the table row corresponding to the position for which you want to add an image.
7. Click Add Image.
8. Select the image file to place in that location.
9. Click OK.

www.efinixinc.com 109

Efinity Software User Guide

10. Repeat steps 6 through 9 as needed. You can add up to four images.
11. Click Apply to generate the combined image file.
12. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.
13. Click Start Program.

Note: For more information on programming multiple images, refer to Example Design: Configuring a
Trion Development Board with Multiple Images on the Downloads page in the Support center.

Program Multiple Images (Internal Reconfiguration)
In this programming mode, you specify up to four images that can configure one FPGA. You
then use the FPGA's internal reconfiguration interface to select which image to use. You can
only use active mode.

1. Click the Combine Multiple Images button.
2. Choose Mode > Selectable Flash Image.
3. Enter the output file name.
4. Choose the output file location. The default is the project's outflow directory.
5. Choose Remote Update Flash Image.

Note: When using internal reconfiguration, you must choose Remote Update
Flash Image. If you choose External Flash Image, the FPGA reconfigures with the
first image as specified by the CBSEL pins instead of the golden image.

6. Click in the table row corresponding to the position for which you want to add an image.
7. Click Add Image.
8. Select the image file to place in that location.
9. Click OK.
10. Repeat steps 6 through 9 as needed. You can add up to four images.
11. Click Apply to generate the combined image file.
12. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.
13. Click Start Program.

Note: For more information on using the internal reconfiguration feature, refer to AN 010: Using the
Internal Reconfiguration Feature to Update Efinix FPGAs Remotely.

www.efinixinc.com 110

https://www.efinixinc.com/support/ed/configuring-fpgas-with-multiple-images.php
https://www.efinixinc.com/support/ed/configuring-fpgas-with-multiple-images.php
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN010
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN010

Efinity Software User Guide

Program Multiple Images (Bitstream and Data)
In this programming mode, you specify one bitstream and one or more data files to combine
into a single file for programming. You can only use active mode.

1. Click the Combine Multiple Images button.
2. Choose Mode > Generic Image Combination.
3. Enter the output file name.
4. Choose the output file location. The default is the project's outflow directory.
5. Click Add Image.
6. Select the image file to place in that location.
7. Click Open. The image file and flash length are displayed in the table.
8. Specify the flash address.
9. Repeat steps 5 through 8 as needed.

Note: If you want to combine a bitstream and a RISC-V binary, use 0x00000000 as
the bitstream's flash address and 0x00380000 as the binary's flash address.

10. Click Apply to generate the combined image file.
11. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.
12. Click Start Program.

Program a Daisy Chain
In this programming mode, you specify any number of images to configure a daisy chain of
FPGAs. You can choose active or passive configuration for first FPGA; the rest are in passive
mode.

1. Click the Combine Multiple Images button.
2. Select Daisy Chain as the Mode.
3. Enter the output file name.
4. Choose the output file location. The default is the project's outflow directory.
5. Click Add Image to add a file to the daisy chain.
6. Repeat step 5 to add as many files as you want to the chain. Use the up/down arrows to

re-order the images if needed.
7. Click Apply to generate the combined image file.
8. Click Close to return to the Programmer, which displays the combined image file as the

image to use for programming.
9. Click Start Program.

www.efinixinc.com 111

Efinity Software User Guide

JTAG Programming
You can program Efinix FPGAs using the JTAG interface and a .bit file.

Trion Family JTAG Device IDs
The following table lists the Trion JTAG device IDs.

Table 27: Trion JTAG Device IDs

FPGA Package JTAG Device ID

T4, T8 BGA81 0x0

T8 QFP144 0x00210A79

T13 All 0x00210A79

T20 WLCSP80, QFP100F3,
QFP144, BGA169, BGA256

0x00210A79

T20 BGA324, BGA400 0x00240A79

T35 All 0x00240A79

T55, T85, T120 All 0x00220A79

Titanium Family JTAG Device IDs
The following table lists the Titanium JTAG device IDs.

Table 28: Titanium JTAG Device IDs

FPGA Package JTAG Device ID

Ti35 All 0x10661A79

Ti60 All 0x10660A79

Ti85 All 0x006C2A79

J361, J484, G400, G529 0x00691A79Ti90

L484 0x00688A79

J361, J484, G400, G529 0x00692A79Ti120

L484 0x0068CA79

Ti135 All 0x006C0A79

Ti165 All 0x006A1A79

M484 0x00680A79

J361, N484, J484D1,
G400, G529

0x00690A79

Ti180

L484 0x00684A79

Ti240 All 0x006A2A79

Ti375 All 0x006A0A79

www.efinixinc.com 112

Efinity Software User Guide

Topaz Family JTAG Device IDs
The following table lists the Topaz JTAG device IDs.

Table 29: Topaz JTAG Device IDs

FPGA Package JTAG Device ID

Tz50 All 10668A79

Tz75 All 006C8A79

Tz100 All 006C9A79

Tz110 All 00698A79

Tz170 All 00699A79

Tz200 All 006A8A79

Tz325 All 006A9A79

Program a Single Image
In single image programming mode, you configure one FPGA with one image.

1. Click the Select Image File button.
2. Browse to the outflow directory and choose <project name>.bit.
3. Choose the JTAG configuration mode.
4. Click Start Program. The console displays programming messages.

www.efinixinc.com 113

Efinity Software User Guide

Program Using a JTAG Chain
You can program an FPGA that is part of a JTAG chain. The chain can include Trion®,
Topaz, and Titanium FPGAs as well as other devices. You define your JTAG chain using
a JTAG chain file. You import the JTAG chain file into the Programmer to perform
programming. The JTAG chain file is an XML file (.xml) that includes all of the devices in
the chain. For example:

Trion FPGA example:

<?xml version="1.0"?>

<chain>
 <device chip_num="1" id_code="0x00210a79" ir_width="4" istr_code="1100" />
 <device chip_num="2" id_code="0x00210a79" ir_width="4" istr_code="1100" />
 <device chip_num="3" id_code="0x00210a79" ir_width="4" istr_code="1100" />
</chain>

Titanium Topaz FPGA example:

<?xml version="1.0"?>

<chain>
 <device chip_num="1" id_code="0x10661A79" ir_width="5" istr_code="11000" />
 <device chip_num="2" id_code="0x10661A79" ir_width="5" istr_code="11000" />
 <device chip_num="3" id_code="0x10661A79" ir_width="5" istr_code="11000" />
</chain>

where:
• chip_num is the device order starting from position 1.
• id_code is the hexadecimal JEDEC device ID (all lowercase letters)
• ir_width is the width of the instruction register in bits
• istr_code is the binary IDCODE instruction

Note: For Trion FPGAs, use 1100 as the istr_code.

Note: For Titanium Topaz FPGAs, use 11000 as the istr_code.

To program using a JTAG chain:

1. Create a JTAG Chain File using a text editor.
2. Open the Programmer.
3. Choose your USB Target and Image.
4. Select JTAG as the Programming Mode.
5. Click the Import JCF toolbar button.
6. Browse to your JTAG Chain File and click Open.
7. Select which device you want to program in the drop-down list next to the JTAG

Programming Mode option.
8. Click Start Program.

Note: If you implement both the daisy chain and JTAG chain together, ensure that the daisy chain is fully
completed before executing the JTAG chain. Because the daisy chain requires CSIs to be connected to
CSOs, the JTAG chain will only configure successfully when the CSIs are high.

www.efinixinc.com 114

Efinity Software User Guide

Program using a JTAG Bridge
Programming with a JTAG bridge is a two-step process: first you configure the FPGA to
turn it into a flash programmer (.bit) and second you use the FPGA to program the flash
device with the bitstream (.hex).

The SPI Active using JTAG Bridge mode (formerly named SPI Active using JTAG Bridge
(New)) has pre-built flash loader (.bit) files that you can use. These .bit files do not require an
external clock source. You can still use your own .bit file if you choose to do so.

Note: The JTAG bridge modes were changed in the Efinity software v2025.1. If you are using an older
version of software and want to use the SPI Active using JTAG Bridge (Legacy) mode, refer to Appendix:
Program using a JTAG Bridge (Legacy) on page 144.
The JTAG bridge bitstream files bundled with v2025.1 and higher can only be used with v2025.1 or
higher. You cannot use older bundled JTAG bridge bitstream files with v2025.1 or higher, and you cannot
use the v2025.1 or higher bundled files with older software versions. If you need to use the older bundled
files, use the Programmer v2024.2.

Tip: If you would like to incorporate the RTL files for the new flash loader into your own design, use the JTAG to
SPI Flash Bridge core in the IP Manager.

The Titanium and Topaz .bit files include a custom JTAG USERCODE in the bitstream:
• Single flash .bit files—0x96C09A03
• Dual flash .bit files—0xC07FCFE2

Note: For Titanium Topaz FPGAs, the Programmer automatically loads the .bit file based on the FPGA
target. The Programmer has separate pre-built .bit files for JTAG bridge mode
For Trion FPGAs, you need to specify the pre-built file to use.

Figure 44: SPI Active Using JTAG Bridge Options

To program using a JTAG bridge:

1. Choose the USB Target.
2. In the Image box, click the Select Image File button to browse for the .hex file to

program the flash device.

www.efinixinc.com 115

Efinity Software User Guide

3. Choose the SPI Active using JTAG Bridge or SPI Active x8 using JTAG Bridge
programming mode.

4. Turn on the Auto configure JTAG Bridge Image option.
For Titanium Topaz FPGAs, the Programmer automatically loads the .bit file. Skip step 5
if you want to use the pre-loaded .bit file.

5. Specify your own .bit file.

a) In the Programming Mode box, click Select Image File.
b) The Open Image File dialog box opens to a directory of available pre-built .bit files.

Choose the file for your FPGA (Trion), or browse to find your own .bit file.
The Programmer remembers which file you specify and uses it automatically the next
time you run the Programmer.

6. Choose the SPI Active Options and JTAG Options.

Option Description

Select Flash x8 mode only. Choose whether to use the upper flash, lowre, flash,
or both.

Starting Flash
Address

Specify the address is other than the default.

Flash Length Specify the length if other than the default.

Erase Before
Programming

Default: on. When turned on, the Programmer erases the flash
device before re-programming it.

Select Verify Method Normal verify—The FPGA computes an on-chip hash from the
read back flash data to perform verification. Normal verify is
significantly faster than in the Programmer v2024.2 and lower (so
much faster that you might think it did not do anything).
Fast verify—Similar to normal verify, but requires a SPI x4 width
(quad mode). The Programmer cannot detect whether your board
is using quad mode; if your board is not using it and you try to use
fast verify, programming will fail.
Skip verify—Do not verify the flash.

Device Select Choose the JTAG device ID of the FPGA to program.

JTAG Clock Speed Choose a speed or specify a custom one.

7. Click Start Program. The Programmer first configures the FPGA and then programs the
flash device.

Important: If you are using the Titanium Topaz RSA bitstream authentication security feature, you need to
use a signed .bit file. Copy the bundled .bit file from <Efinity version>/pgm/fli/titanium/pgm/fli/topaz to
another directory and sign it. Then point to the signed .bit file in the Programmer. You can also create your
own .bit file if you prefer.
Refer to Using the Efinity Bitstream Security Key Generator on page 129 for information on signing
existing .bit files.

Efinix strongly recommends you to disable JTAG if you are using the security features to
achieve the highest security level. While disabled, you can still program the flash with JTAG
Bridge by connecting to a soft JTAG tap IP and four GPIOs. Refer to:
• Blowing Fuses with the SVF Player on page 131
• JTAG Command Support with Security Enabled on page 133

www.efinixinc.com 116

Efinity Software User Guide

JTAG Programming with FTDI Chip Hardware
These instructions describe how to program Trion®, Topaz, and Titanium FPGAs using the
FTDI Chip FT2232H and FT4232H Mini Modules. Efinix® has tested the hardware for use
with Trion®, Topaz, and Titanium FPGAs.

Note: Efinix does not recommend the FTDI Chip C232HM-DDHSL-0 programming cable due to the
possibility of the FPGA not being recognized or the potential for programming failures.

1. Open the Efinity® software.
2. Open the Efinity® Programmer.
3. Click the Select Bitstream Image button.
4. Browse to your image and click OK.
5. Choose one of the following in the USB Target drop-down list:

• Dual RS232 HS for FT2232H Mini Module
• FT4232H_MM for FT4232H Mini Module

6. Choose JTAG from the Programming Mode drop-down list.
7. Click Start Program.

FDTI Programming at the Command Line
The Efinity® includes a script, ftdi_program.py, which you can use for command-line
programming with FTDI modules. (Use the --help flag to view all supported options for
the ftdi_program.py script.) The command is in the format:

ftdi_program.py <filename>.bit -m <mode> --url <url> --aurl
<url>

where <mode> is the programming mode:

• active, passive
• jtag, jtag_chain
• jtag_bridge, or jtag_bridge_x8(8) (see Program using a JTAG Bridge

on page 115). In software versions prior to v2025.1, these options were named
jtag_bridge_new and jtag_bridge_x8_new, respectively.

Note: To use the JTAG bridge modes, you must have already configured the FPGA with the JTAG SPI
flash loader.
The Efinity software v2023.2 and higher includes pre-built flash loader .bit files in <Efinity installation
directory>/pgm/fli/<family>.
Refer to the JTAG SPI Flash Loader Core User Guide for information on using the legacy flash loader.

Important: You only need to specify the --url and --aurl options if you have more than one board
with an FTDI chip connected to your computer.
Only supported in T20 (BGA324 and BGA400), T35, T55, and T120 FPGAs.

<url> is in the format:

ftdi://ftdi:<product>:<serial>/<interface>

where:

<product> is the USB product ID of the device

(8) The jtag_bridge_x8 mode is only supported in some Titanium Topaz FPGAs. Refer to the data sheet for the modes your FPGA supports.

www.efinixinc.com 117

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=FLASHCTRL-CORE

Efinity Software User Guide

<product> Board

232h Trion T8 Development Board

2232h Trion T20 MIPI Development Board
Trion T20 BGA256 Development Board
Trion T120 BGA324 Development Board
Trion T120 BGA576 Development Board

4232h Xyloni Development Board

4232h Titanium Ti60 BGA225 Development Board
Titanium Ti375C529 Development Board
Titanium Ti375N1156 Development Board

2232h Titanium Ti180J484 Development Board

2232h Topaz Tz170J484 Development Board

<serial> is the serial number of the FTDI chip. (Optional)
• If you only have one Efinix® development board or FTDI device connected to your

computer, you do not need to specify the serial number.
• In the Efinity® software v2020.2 and higher, the Programmer displays the serial number of

the FTDI device in the USB Info string. The serial number is a string beginning with FT.

The string after S/N is
the FTDI serial number

<interface> is the interface number. For Efinix® development boards, <interface> is
always 1.

Linux Examples
To program in Linux:

1. Open a terminal and change to the Efinity® installation directory.
2. Type: source ./bin/setup.sh and press enter.
3. Use the ftdi_program.py command.

Example: Titanium Ti60 F225 Development Board as the only board attached to your
computer, use:

ftdi_program.py <filename>.bit -m jtag

Example: Titanium Ti60 F225 Development Board with serial number FT5ECP6E when
another board with an FTDI chip is connected to your computer, use:

ftdi_program.py <filename>.bit -m jtag --url ftdi://ftdi:4232h:FT5ECP6E/1

www.efinixinc.com 118

Efinity Software User Guide

 --aurl ftdi://ftdi:4232h:FT5ECP6E/1

Example: Xyloni Development Board as the only board attached to your computer, use:

ftdi_program.py <filename>.bit -m jtag

Example: Trion T120 BGA324 Development Board with serial number FT5ECP6E when
another board with an FTDI chip is connected to your computer, use:

ftdi_program.py <filename>.bit -m jtag --url ftdi://ftdi:2232h:FT5ECP6E/1
 --aurl ftdi://ftdi:2232h:FT5ECP6E/1

Windows Examples
To program in Windows:

1. Open a command prompt and change to the Efinity® installation directory.
2. Type: .\bin\setup.bat and press enter.
3. Use the ftdi_program.py command.

Example: Titanium Development board as the only board attached to your computer, use:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\ftdi_program.py <filename>.bit
 -m jtag

Example: Titanium Ti60 F225 Development Board with serial number FT5ECP6E when
another board with an FTDI chip is connected to your computer, use:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\ftdi_program.py <filename>.bit
 -m jtag --url ftdi://ftdi:4232h:FT5ECP6E/1 --aurl ftdi://ftdi:4232h:FT5ECP6E/1

Example: Xyloni Development Board as the only board attached to your computer, use:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\ftdi_program.py <filename>.bit
 -m jtag

Example: Trion T120 BGA324 Development Board with serial number FT5ECP6E when
another board with an FTDI chip is connected to your computer, use:

%EFINITY_HOME%\bin\python3 %EFINITY_HOME%\pgm\bin\ftdi_program.py <filename>.bit
 -m jtag --url ftdi://ftdi:2232h:FT5ECP6E/1 --aurl ftdi://ftdi:2232h:FT5ECP6E/1

www.efinixinc.com 119

Efinity Software User Guide

Using the Command-Line Programmer
To run the Programmer using the command line, use the command:

Example: Command-Line Programmer
Linux:

> efx_run.py <project name>.xml --flow program

Windows:

> efx_run.bat <project name>.xml --flow program

(Optional) Use these options:

• --pgm_opts mode specifies the configuration mode. The available modes are:
— active—SPI active configuration
— passive—SPI passive configuration
— jtag—JTAG programming
— jtag_bridge—SPI active using JTAG bridge mode
— jtag_bridge_x8—SPI active x8 using JTAG bridge mode (used with two flash

devices)(9)

In active mode, the FPGA configures itself from flash memory; in passive mode, a CPU
drives the configuration. If you do not specify the mode, it defaults to active. For example,
to use JTAG mode, use the command:

efx_run.py <project name>.xml --flow program --pgm_opts mode=jtag

• --pgm_opts settings_file specifies a file in which you have saved all of the
programming options. A settings file is useful for performing batch programming of
multiple devices.

(9) Used with two flash devices. Only supported in some Titanium Topaz FPGAs. Refer to the data sheet for the modes your
FPGA supports.

www.efinixinc.com 120

Efinity Software User Guide

Project-Based Programming Options
You specify project-based programming options in the Project Editor > Bitstream
Generation tab in the Efinity® software. Efinix FPGAs support active and passive
configuration in a variety of modes.

Note: Some of these project settings affect bits in the bitstream. Therefore, when you program an FPGA
with the Programmer, the setting you make in the Project Editor should match what you intend to use in
the Programmer.

Table 30: Project-Specific Programming Options

Option Notes

Active/Passive Active: SPI active mode.
Passive: SPI passive mode.
Your choice of active or passive affects the pinout and determines which choices are
available in the Programming Mode box.

JTAG USERCODE Use this field to specify a 32-bit user electronic signature. The USERCODE is included in
 the bitstream. You can read it from the FPGA via the JTAG interface, and you can view the
 JTAG USERCODE in the Programmer’s Advanced Device Status dialog box.
Default:Fixed at: 0xFFFFFFFF

Clock Source For Titanium Topaz FPGAs, choose whether you want to use the FPGA's internal oscillator
or an external clock source as the configuration clock.
For Trion FPGAs, this option is always Internal Oscillator.

SPI Programming
Clock Divider

Choose the divider for the SPI clock. This setting is reflected in the bitstream file.
Default: DIV8

Clock Sampling
Edge

For Titanium Topaz FPGAs, choose whether the configuration clock should sample on the
rising or falling edge. The default is Rising.
For Trion FPGAs, this option is always Rising.

Power down flash
after programming

Enable this option to power down the flash device after the FPGA finishes programming.
This setting is reflected in the bitstream file, and you can only set it here.
Default: On

Use 4-byte
addressing during
configuration

(Titanium Topaz only). When you turn this option on, the control block issues 4-byte addresses
 when it configures the FPGA.
This option is not supported for all Trion Ti35 or Ti60Tz50 FPGAs.

Programming mode Choose the programming mode and width; the choices depend on the FPGA and
package you are targeting. This setting is reflected in the bitstream file, and you can only
set it here.
Default: SPI <active or passive> x1

Enable Initialized
Memory in User
RAMs

This setting is reflected in the bitstream file, and you can only set it here.
on: The bitstream has initialized memory.
off: The bitstream does not have initialized memory.
smart:
For the Trion family, this option has the same effect as on.
For the Titanium Topaz family, this option gives a slightly smaller bitstream.
Default: smart

www.efinixinc.com 121

Efinity Software User Guide

Option Notes

Release Tri-States
before Reset

During configuration, core signals are held in reset and the I/O pins are tri-stated. These
states are released when the FPGA enters user mode.
On: (default) I/O pins are released from tri-state before the core is released from reset
(use this option when the application is core sensitive).
Off: Core signals are released from reset before the I/O pins are released from tri-state
(use this option when the application is I/O sensitive).

Enable Bitstream
Compression

(Titanium Topaz only) When turned on (default), the software compresses the bitstream.
If you choose Bitstream Encryption or Bitstream Authentication, this option is turned off
and disabled because you cannot compress a bitstream and use the security features
simultaneously.

Bitstream Encryption (Titanium Topaz only)
On: The software generates an encrypted bitstream. You also need to specify the .bin file
in the FPGA Key Data File box.
Off: (default) The software generates a plaintext bitstream.

Randomize IV value
during compilation

(Titanium Topaz only) This option is used with bitstream encryption. The encryption/
decryption uses a 96-bit initial vector (IV). If you want the software to generate a random
IV for every compilation, leave this option turned on. If you want to specify an IV, turn this
option off and specify the value in the 96-bit IV Value box.
On (default): Let the software generate the IV value. (The bitstream will be different every
time you compile, even if nothing has changed in your design.)
Off: The software does not generate the IV value; the user will specify it in the 96-bit IV
Value box. (If nothing has changed in your design, when you recompile, the bitstream
remains the same)

96-bit IV Value (Titanium Topaz only) Click the refresh button next to this box to generate a random IV
value. You can also enter a value you generate with another program.

Bitstream
Authentication

(Titanium Topaz only)
On: The software generates a signed bitstream. You also need to specify the .bin file in
the FPGA Key Data File box and the RSA private key (.pem) file in the RSA Private Key
box.
Off: (default) The software generates an unsigned bitstream.

FPGA Key Data File (Titanium Topaz only) Specify the location and name of the .bin file you generated with
the Efinity Bitstream Security Key Generator.

RSA Private Key (Titanium Topaz only) Specify the location and name of the RSA private key file (.pem).

Generate JTAG
configuration file

On (always): Generate a .bit file for JTAG configuration.

Generate JTAG raw
binary configuration
file

On: Generate a .bin file (raw binary) for JTAG configuration.
Off (default): Do not generate a .bin file.

Generate SPI
configuration file

On (always): Generate a .hex file for SPI programming.

Generate SPI raw
binary configuration
file

On: Generate a .bin file (raw binary) for SPI programming.
Off (default): Do not generate a .bin file.

When you change one of these options, you can simply re-run the bitstream generation flow
step. You do not need to recompile the design.

www.efinixinc.com 122

Efinity Software User Guide

Figure 45: Setting Programming Options (Trion)

www.efinixinc.com 123

Efinity Software User Guide

Figure 46: Setting Programming Options (Titanium Topaz)

Notice: Refer to the data sheet for your FPGA for information on which configuration options it supports.
Refer to AN 006: Configuring Trion FPGAs or AN 033: Configuring Titanium FPGAs for information on
configuration modes, timing, and board considerations.

Configuration Status Register
Titanium Topaz FPGAs have a configuration status register. You can use the Efinity
Programmer to monitor the values in this register to help debug confugration issues. View
the register values in the Advanced Device Configuration Status dialog box, which you
open by clicking the button of the same name.

www.efinixinc.com 124

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN006
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Software User Guide

Table 31: Configuration Status Register

Name Description

IN_USER 0: The FPGA is not in user mode.
1: The FPGA is in user mode. IN_USER waits for all internal resets and tri-states
to be released before it goes high.

Note: This bit is not supported in Ti60ES FPGAs.

CDONE Configuration done, has the same value as the CDONE output pin.
0: The FPGA is not configured.
1: Configuation is complete.

NSTATUS Configuration status, has the same value as the active-low NSTATUS output pin
if the NSTATUS pin is not driven by user when the FPGA is in user mode.
0: Indicates that the FPGA received a bitstream that was targeted for a different
configuration mode or width, or a CRC error is detected during configuration.
NSTATUS can also go low if there is a mismatch between the bitstream and the
FPGA encryption/authentication keys.
1: During configuration, indicates that the FPGA is in configuration mode.

CRC32_ERROR_CORE 0: No CRC errors were detected in the core configuration bits.
1: One or more CRC errors were detected in the core configuration bits.

RMUPD_ERROR 0: No errors occurred during remote update.
1: An error occurred during remote update configuration. Has the same value
as the remote update error status signal sent to the core fabric.

CONFIG_END 0: Configuration is not complete.
1: Configuration completed (whether successful or not).

SYNC_PAT_FOUND 0: Indicates that the FPGA is not receiving the expected synchronization pattern
at start of the bitstream. Check for board or power issues.
1: Indicates that the FPGA detected a synchronization pattern at start of the
bitstream., and the clock and data connections to the FPGA are acceptable. Any
configuration problems are likely digital or logical in nature. After successful
configuration the status will return to 0.

SEU_ERROR 0: No SEU detection errors were found.
1: An SEU detection error was found when reading back the SEU CRAM. Has
the same value as the SEU detection error status signal to the core fabric.

CRC32_ERROR_PERIPH 0: No CRC errors were detected in the interface configuration bits.
1: One or more CRC errors were detected in the interface configuration bits.

AES256_PASS For an encrypted bitstream:
0: Decryption failed. The encryption keys used in to program the fuses may not
match the ones used to encrypt the bitstream
1: The encrypted bitstream was decrypted successfully.
If the bitstream is not encrypted, this register is always a 1.

Note: This bit is not supported in Ti60ES FPGAs.

www.efinixinc.com 125

Efinity Software User Guide

Name Description

RSA_PASS When using RSA authentication:
0: The signature check failed. The RSA keys used to program the fuses may not
match the ones used to sign the bitstream in the Efinity project.
1: The bitstream signature was verified successfully
If RSA authentication is not used, this register is always a 1.

Note: This bit is not supported in Ti60ES FPGAs.

AES_ACTIVE After the FPGA is configured, you can check this status bit for encryption:
0: AES is disabled in the current design.
1: AES is enabled in the current design.

RSA_ACTIVE After the FPGA is configured, you can check this status bit for authentication:
0: RSA is disabled in the current device.
1: RSA is enabled in the current device.

USERCODE Displays the 32-bit hex JTAG USERCODE.

Verifying Configuration with the Programmer
After you program the flash or configure the FPGA, you can confirm that the bitstream is
loaded and the user design is running successfully using the Programmer. You can also use
a microcontroller or LEDs to verify configuration. Refer to "Verifying Configuration" in
AN 006: Configuring Trion FPGAs or AN 033: Configuring Titanium FPGAs.

www.efinixinc.com 126

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN006
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN033

Efinity Software User Guide

Securing Titanium Bitstreams
Titanium FPGAs have built-in security features to help you protect your intellectual
property and to prevent tampering.
• Encryption—Encrypt your bitstream using an AES-256 key.
• Authentication—Sign your bitstream with an RSA-4096 private key.
• JTAG Disable—Permanently disables all JTAG instructions except for those used to get

device information.
• JTAG Disable Efuse Only—Permanently disables the JTAG efuse instructions only.

Note: Refer to JTAG Command Support with Security Enabled on page 133 for details on the JTAG
disabling modes and which commands they support.

You use the following Efinity tools to implement these bitstream security features:

Table 32: Efinity Tools Used for Securing Bitstreams

Tool Used for

Bitstream Security
Key Generator

Create or specify an AES-256 key.
Create or specify an RSA-4096 private key.
Specify whether to disable JTAG.

SVF Player

Program the fuses in the Titanium FPGA with the AES-256 key and/or RSA certificate data.
After you blow the fuses with an RSA key, the FPGA only accepts a bistream signed with the
correct private key.
After you blow fuses with an AES-256 key, the FPGA only accepts a plaintext bitstream or a
bitstream signed with the correct key.
Program the JTAG fuse to disable JTAG function.

Project Editor

Turn on bitstream encryption and/or authentication, and specify the .bin file created by the
Bitstream Security Key Generator.
Turn on bitstream authentication and specify the private key (.pem) file to sign the bitstream.

Figure 47: Bitstream Authentication

Create Keys

Signed
Bitstream

Sign Bitstream

Private
Key

Public
Key

Authenticate

Developer’s Computer FPGA in System

Configured

Blow Fuses

Valid
Signature

Invalid
Signature Do Not Enter

User Mode
Fuses

Unsigned
Bitstream

FPGA in
User Mode

Use Efinity Bitstream
Security Key Generator

Use Efinity
Project Editor

Use Efinity
SVF Player

www.efinixinc.com 127

Efinity Software User Guide

The public key is derived from the private key; the .pem is essentially a private/public key
pair. The private key only exists in the .pem. The software uses it to sign the bitstream, but
the bitstream and fuses only contain public key information. The FPGA uses the public key
to validate the bitstream's signature; it cannot be used to re-sign a modified bitstream.

Figure 48: Bitstream Encryption

Create Key

Encrypted
Bitstream

Plaintext
Bitstream

Encrypt

Key

Decrypt

Developer’s Computer FPGA in System

Blow Fuses

Fuses

Configured

Decryption
Successful

Decryption
Fails Do Not Enter

User Mode

FPGA in
User Mode

Use Efinity Bitstream
Security Key Generator

Use Efinity
Project Editor

Use Efinity
SVF Player

Figure 49: Disabling JTAG

Disable JTAG

.svf File

Developer’s Computer FPGA in System

FPGA

Blow Fuses

Use Efinity Bitstream
Security Key Generator

Use Efinity
SVF Player

JTAG
Header

IDCODE
DEVICE_STATUS

BYPASS
SAMPLE/PRELOAD

USERCODE (1)

The following sections describe how to use each of these tools to enable security features.

www.efinixinc.com 128

Efinity Software User Guide

Using the Efinity Bitstream Security Key Generator
The key generator tool simplifies the process of creating encryption keys and generating RSA
certificates. You access this tool in the Efinity main menu at Tools > Open Key Generator.
You can use the key generator without opening a project.

Note: You can use the Efinity Bitstream Security Key Generator iteratively. That is, you can first use
encryption and later add in RSA authentication, and even later disable JTAG commands. Refer to
Workflow for Using Security Features on page 135 for more information.

Figure 50: Efinity Bitstream Security Key Generator

1. If you want to use encryption:

a) Turn on AES-256 Bitstream Encryption.
b) Click the Randomly Generate button to generate a 256 bit key. The software

populates the AES-256 Key box with the generated key.
c) Alternatively, if you already have a key, you can enter it into the AES-256 Key box.

2. If you want to use authentication:

a) Turn on RSA-4096 Asymmetric Bitstream Authentication.
b) Click the Randomly Generate PEM File button.
c) In the Generate AND Save PEM File dialog box, choose a location to save the .pem

file and type a filename in the File name box.
d) Click Open. The tool generates the private key and displays a message in the status

box.
e) Alternatively, click the Select PEM File button to load a private key (.pem) that you

created already.

www.efinixinc.com 129

Efinity Software User Guide

Note: If you use another tool to create a private key, be sure to use the
RSA-4096 algorithm. Titanium FPGA's only support authentication with this
algorithm.

3. If you are ready to turn off JTAG, choose ON or DISABLE_EFUSE_ONLY for JTAG
Disabling. Otherwise, leave it set to OFF.

Option Description

OFF No JTAG disabling.
Efinix strongly recommends that you use ON or
DISABLE_EFUSE_ONLY to disable access to the JTAG
efuse instructions for added security.

ON Permanently disables the JTAG efuse instructions as well
as all other JTAG instructions except for those used to get
device information.

DISABLE_EFUSE_ONLY Permanently disables the JTAG efuse instructions only.
Other JTAG instructions are not affected, for example, you
can still perform debugging.

Note: See JTAG Command Support with Security Enabled on page 133 for
details.

If you turn on the Use Separate SVF option, the software creates two SVFs:
one for AES and/or RSA (<keyname>.svf) and one for JTAG disabling
(<keyname>_jtag_disable.svf). Two files make it easy to use the key generator iteratively,
and when you are done to disable JTAG.

When the Use Separate SVF option is tuned off, the software creates one <keyname>.svf,
which contains all applicable AES, RSA, and JTAG disabling commands.

Important: Do not permanently disable JTAG unless you are really ready, that is,
you are finished with all JTAG debugging and configuration tasks. After you disable
JTAG, you cannot undo it. Use DISABLE_EFUSE_ONLY if you still want to perform
debugging.

4. Choose your FPGA.
5. Click Generate.
6. In the Select Output File dialog box, choose the location to save the .bin (key data) file

and type a filename in the File name box.
7. Click Open.

The tool creates the following files:

• <filename>.bin—This file contains key information. You specify it in the Project Editor
when you turn on bitstream encryption and/or authentication.

• <filename>.pem—This file contains your RSA private key. You use this file to sign the
bitstream by specifying it in the Project Editor.

• <filename>.svf—This file contains JTAG commands and key information. You use it
with the Efinity SVF Player to blow the FPGA fuses.

Note: Efinix recommends that you save the 256-bit encryption key in a safe place so you have it in case
you want to generate another .svf later (see Workflow for Using Security Features on page 135). You
need to copy it from the AES-256 Key box and save it into a text file.

www.efinixinc.com 130

Efinity Software User Guide

Blowing Fuses with the SVF Player
The Efinity SVF Player is a JTAG SVF player that sends JTAG commands to an FPGA. The
player reads the JTAG commands from a serial vector format (.svf) file. You can use the SVF
Player without opening a project. The Efinity SVF Player requires a JTAG cable or mini-
module with the FTDI n232H chipset.

The Efinity Bitstream Security Key Generator creates an .svf that you use with the SVF
Player to blow fuses in Titanium FPGAs. These fuses contain key information for bitstream
encryption and/or RSA authentication, and also control JTAG access to the FPGA.

The .svf used for blowing fuses performs a variety of JTAG commands.
• It checks the FPGA's IDCODE and compares it to the .svf to ensure that the player is

targeting the correct FPGA.
• For AES encryption, the key is sent in eight 32-bit words, followed by a validation step.
• For RSA authentication, the key is sent in twelve 32-bit words, followed by a validation

step.
• It has commands to blow the JTAG fuse.

The .svf only has commands for the bitstream security features that you turned on in the
Efinity Bitstream Security Key Generator.

Important: You can only blow the fuses once, and you cannot undo it after you have blown them. So
make sure that you are really ready before you take this step.

Figure 51: SVF Player

To blow fuses with the SVF Player:

www.efinixinc.com 131

Efinity Software User Guide

1. Choose a USB Target. Ensure that your board is connected to your computer and turned
on. Click the Refresh button to search for newly connected boards.

2. Click the Open SVF File button to load the .svf that you generated with the Efinity
Bitstream Security Key Generator. The content of the .svf displays in the console.

Note: If you make changes to the .svf, you can reload it using the Reload button.

3. Click the Play button to play the .svf file. It takes a very short amount of time to blow
fuses.

4. Toggle CRESET_N or power cycle your board for the new fuse settings to take effect.

Important: Do not try to blow the same fuses a second time (for example, do not run the same .svf twice
in a row).

Typically, you will not receive any errors when running the SVF Player. However, you may
receive a TDO mismatch error in the following situations:
• You are trying to blow fuses that are already blown.
• You are trying to blow fuses for the wrong FPGA, that is, the FPGA you selected in the

Efinity Bitstream Security Key Generator is not the same as the one on your board.

Enabling Security for Your Project
You set bitstream security options for your project in the Project Editor. After you enable
these options, you only need to generate a new bitstream to apply them. You do not need to
re-compile the design.

Table 33: Project Options for Security

Option Description

Bitstream Encryption (Titanium Topaz only)
On: The software generates an encrypted bitstream. You also need to specify the
.bin file in the FPGA Key Data File box.
Off: (default) The software generates a plaintext bitstream.

Bitstream Authentication (Titanium Topaz only)
On: The software generates a signed bitstream. You also need to specify the .bin file
in the FPGA Key Data File box and the RSA private key (.pem) file in the RSA Private
Key box.
Off: (default) The software generates an unsigned bitstream.

FPGA Key Data File (Titanium Topaz only) Specify the location and name of the .bin file you generated
with the Efinity Bitstream Security Key Generator.

RSA Private Key (Titanium Topaz only) Specify the location and name of the RSA private key file
(.pem).

www.efinixinc.com 132

Efinity Software User Guide

JTAG Command Support with Security Enabled
Titanium and Topaz FPGAs support additional bitstream security by letting you disable
JTAG commands completely or partially:

• JTAG Disable—Permanently disables the JTAG efuse instruction as well as all other JTAG
commands except for the ones used to read device information.

• JTAG Disable Efuse—Permanently disables the JTAG efuse instructions only. Other JTAG
instructions are not affected, for example, you can still perform debugging.

The following table shows the commands supported for each mode.

Table 34: Allowed JTAG Commands with Security Enabled

JTAG Disable JTAG Disable EfuseCommand

Ti35,
Ti60, Tz50

Ti85,
Ti135,
Tz75,
Tz100

Ti90,
Ti120,
Ti180,
Tz110,
Tz170

Ti165,
Ti240,
Ti375,
Tz200,
Tz325

Ti85,
Ti135,
Tz75,
Tz100

Ti90,
Ti120,
Ti180,
Tz110,
Tz170

Ti165,
Ti240,
Ti375,
Tz200,
Tz325

BYPASS

DEVICE_STATUS

EFUSE_PREWRITE – – – – – – –

EFUSE_USER_WRITE – – – – – – –

EFUSE_WRITE_STATUS – – – – – – –

ENTERUSER – – – –

EXTEST – – – –

IDCODE

INTEST – – – –

JTAG_USER1 – – – –

JTAG_USER2 – – – –

JTAG_USER3 – – – –

JTAG_USER4 – – – –

PROGRAM – – – –

SAMPLE/PRELOAD

USERCODE –

Refer to the following topics for details:
• Securing Titanium Bitstreams on page 127
• Using the Efinity Bitstream Security Key Generator on page 129

www.efinixinc.com 133

Efinity Software User Guide

Encrypt or Sign Bitstreams from the Command Line
The Efinity software includes a Python script that you can use to encrypt and/or sign
bitstreams from the command line. You use the script <Efinity directory>/security/bin/
AddSecurityTitanium.py.

AddSecurityTitanium.py [-h] [-s] [-e] [-i IV] [-o OUTPUT]
 [--device_version {1,2}] [--verbose]
 [--timeout TIMEOUT] [-p KEYPAIR] [-x PASSPHRASE]
 [--public_key PUBLIC_KEY]
 bitstream keyfile

Table 35: AddSecurityTitanium.py Options

Option (Long) Option (Short) Input Description

--help -h None Show help.

--sign -s None RSA sign the bitstream. Required if target
device has enabled RSA in non-volatile
memory. With this option, you must also
specify the RSA PEM key file containing the
RSA private key.

--encrypt -e None Encrypt the bitstream. Optional regardless
if target device has had decryption key
programmed in non-volatile memory.

--iv IV -i IV None Manually specify 96-bit bit IV value, for
obfuscation. If not specified, one will be auto-
generated. Ignored if encryption not used.

--output -o Filename Use the specified output security-enabled
HEX file name instead of default name.

--device_version N/A 1, 2 Device security version.
1: Ti35, Ti60, Ti90, Ti120, Ti180, Tz50, Tz110,
Tz170
2: Ti85, Ti135, Ti165, Ti240, Ti375

--verbose N/A None Print out detailed information.

--timeout N/A Number Timeout in seconds, defaults no timeout.

--keypair -p Key pair RSA keypair PEM file (must match that used
with GenKeyFileTitanium.py tool).

--passphrase -x Pass phrase Passphrase associated with RSA private key,
contained in RSA PEM key pair file. If the
private key is passphrase-protected, then this
option is required.

--public_key N/A Filename RSA public key PEM file.

The following example shows how to sign and encrypt a file:

$EFINITY_HOME/bin/python3 $EFINITY_HOME/security/bin/AddSecurityTitanium.py
 --sign --encrypt --iv 0123456789ABCDEF01234567 --output my_secured_bitstream.hex
 --device_version 1 --keypair my_private_key.pem my_raw_unsecured_bitstream.hex
 my_keyfile.bin

www.efinixinc.com 134

Efinity Software User Guide

Workflow for Using Security Features
This topic describes some of the potential workflows you might use when developing
applications that include bitstream security. You do not have to use all of the bitstream
security features simultaneously. You can enable them sequentially or only use some of the
features if that suits your workflow.

This iterative process has two parts: blowing fuses and securing the bitstream.

Blowing Fuses Iteratively
You can blow fuses in any order, and blow only some of them in any iteration. For example,
you can:

1. Blow fuses for only AES-256.
2. Blow fuses for only RSA authentication.
3. Blow fuses for AES-256 after doing step 2.
4. Blow fuses for RSA authentication after doing step 1.
5. Blow fuses for both AES-256 and RSA authentication, but do not blow JTAG fuse.
6. Blow fuses for AES-256 and RSA authentication, and blow JTAG fuse (all in mode where

you turn on everything).
7. Blow JTAG fuse after doing steps 1, 2, 3, 4, or 5.

Important: Once you blow the JTAG fuse (steps 6 or 7), you cannot perform any further iterations!

Each time you want to blow fuses for a new iteration, you use the Efinity Bitstream Security
Key Generator to create a new .svf file with the new options that you want to enable.

Important: Do not enable options that you have already turned on. For example, if you already blew the
AES-256 fuses, do not try to blow them again.

www.efinixinc.com 135

Efinity Software User Guide

Example 1: Blow Fuses for AES-256 First, Fuses for RSA Authentication Later

You already blew fuses for AES-256 and now you want to blow fuses for RSA authentication:

1. Open the Efinity Bitstream Security Key Generator.
2. Turn off the AES-256 Bitstream Encryption option.
3. Turn on the RSA-4096 Asymmetric Bitstream Authentication option and generate or

select a .pem.
4. Click Generate to create a new .svf; discard the .bin file.
5. Use the new .svf with the SVF Player to blow the RSA fuses; discard the .bin file.

Example 2: Blow Fuses for AES-256 and RSA Authentication First, Fuse for Disabling
JTAG Later

You already blew fuses for AES-256 and RSA authentication and now you want to blow the
JTAG fuse:

1. Open the Efinity Bitstream Security Key Generator.
2. Turn off the AES-256 Bitstream Encryption option.
3. Turn off the RSA-4096 Asymmetric Bitstream Authentication option.
4. Choose ON for JTAG Disabling.
5. Click Generate to create a new .svf; discard the .bin file.
6. Use the new .svf with the SVF Player to blow the JTAG fuse.

Securing Bitstreams Iteratively
You can secure the bitstream with encryption and/or authentication. When you enable either
option (or both) in the Project Editor, you need to specify the .bin file you create with the
Efinity Bitstream Security Key Generator.

Note: When working iteratively, you need to make sure that you use the same key data that you used in
the previous iteration.

Example 3: Secure Bitstream for AES-256 First, RSA Authentication Later

You already enabled for AES-256 and now you want to enable RSA authentication:

1. Open the Efinity Bitstream Security Key Generator.
2. Turn on the AES-256 Bitstream Encryption option and enter the key from the previous

iteration (this is why you should save it).
3. Turn on the RSA-4096 Asymmetric Bitstream Authentication option and generate or

select a .pem.
4. Click Generate to create a new .bin file; discard the .svf file.
5. Specify the new .bin file in the Project Editor.
6. Generate the bitstream.

Example 1 and Example 3 both start with AES-256 and later add RSA authentication.
However, you turn off AES-256 for Example 1 and turn on AES-256 for Example 3.
Therefore, you need to run the Efinity Bitstream Security Key Generator twice: the first time
with settings for blowing fuses; the second time with settings for bitstream security.

Example 2 only blows the JTAG fuse, so you use the .svf file with the SVF Player and
discard the .bin file.

www.efinixinc.com 136

Efinity Software User Guide

Verifying Security Settings
You may want to verify that your Titanium FPGA is correctly using the security features
that you enabled. You can use the Advanced Device Configuration Status dialog box
(Programmer) to view the security status signals. See Configuration Status Register on page
124 for details.

Note: With the AES encryption feature enabled, Titanium FPGAs accept both encrypted and unencrypted
bitstreams as valid. So you can configure the FPGA with a plaintext bitstream even after you blow its fuses
with an AES key.
Conversely, if you have blown fuses for RSA authentication, the FPGA only accepts a bitstream signed with
the private key you blew into the fuses.

Figure 52: Advanced Device Configuration Status Security Signals

You can also test out the bitstream security features by trying to program the FPGA with
a bitstream that you signed with the wrong RSA key, an unsigned bitstream, or a bitstream
encrypted with the wrong key. If the Titanium FPGA detects a key mismatch, it will not go
into user mode.

www.efinixinc.com 137

Efinity Software User Guide

Chapter 11

Working with JTAG .svf Files
Contents:

• Using the Efinity SVF Player

The JTAG serial vector format (.svf) file is a vendor-independent ASCII text file of JTAG
commands. You can use an .svf file for JTAG debugging, boundary-scan testing, and
programming with any .svf-compatible JTAG hardware.

The Efinity Programmer can convert a bitstream file to .svf so that you can use third-party
JTAG hardware to program an Efinix FPGA. Refer to Export to .svf Format on page 107.

JTAG programming with an .svf file is supported in all Efinix FPGAs except for:
• T4, T8, and T13 in any package
• T20 in W80, Q144, F169, and F256 packages

Using the Efinity SVF Player
The Efinity SVF Player is a JTAG SVF player that sends JTAG commands to an FPGA. The
player reads the JTAG commands from a serial vector format (.svf) file. You can use the SVF
Player without opening a project. The Efinity SVF Player requires a JTAG cable or mini-
module with the FTDI n232H chipset.

You can use the SVF Player to execute any JTAG commands on the following Efinix
FPGAs:
• Trion T20 in F324 and F400 packages
• Trion T35 in any package
• Trion T55, T85, and T120 in any package
• All Titanium and Topaz FPGAs in any package

You can use the the SVF Player to execute any JTAG command except PROGRAM for the
following Trion FPGAs:
• T4, T8, and T13 in any package
• T20 in W80, Q144, F169, and F256 packages

www.efinixinc.com 138

Efinity Software User Guide

You can also use the SVF Player to execute JTAG commands for non-Efinix devices in a
JTAG chain.

Figure 53: SVF Player

To use the SVF Player:

1. Choose a USB Target. Ensure that your board is connected to your computer and turned
on. Click the Refresh button to search for newly connected boards.

2. Click the Open SVF File button to load the .svf. The content of the .svf displays in the
console.

Note: If you make changes to the .svf, you can reload it using the Reload button.

3. Click the Play button to play the .svf file.

You can also step through the .svf file line by line using the Step Over button. This feature is
useful for debugging. To stop playing the file, click the Stop button.

www.efinixinc.com 139

Efinity Software User Guide

Chapter 12

Working with Remote Hardware

The Efinity software includes the Efinity Hardware Server that allows you to communicate
with a development board that is attached to a remote host machine. For example, you may
want to use your Efinix development board in a lab environment and let several developers
access it from their own computers. With the Efinity Hardware Server, you can connect the
board to the lab machine and then program or debug it from a remote networked computer.
The Efinity Hardware Server is supported in the Programmer, Debugger, and SVF Player.

Important: The Efinity Hardware Server is beta in the Efinity software v2021.2, v2022.1, and 2023.1.
Please excuse any random bugs, we will fix them.
Known issue: Currently, the hardware server does not arbitrate between multiple requests. Therefore,
if more than one person tries to connect to the board, there will be a conflict and all users will see
errors in the Programmer console or the Programmer may crash or hang. If the board is in the middle of
programming when multiple requests occur, programming aborts in an unfinished state.

Start the Efinity Hardware Server
You start the Efinity Hardware Server using the efinity_hw_server.py command-line tool.

efinity_hw_server.py [-h] [-a <address>] [-p <port>]

Where:
• -h shows help.
• <address> is the server address; if you do not specify an address, the Efinity Hardware

Server defaults to 0.0.0.0 (that is, all IPv4 addresses on the local machine).
• <port> is the server port number; if you do not specify a port, the Efinity Hardware

Server defaults to 8080.

The tool issues the message Running Server at <IP address>:<port> when the
Efinity Hardware Server begins running.

Windows:

Use the following commands in a Command Prompt to start the server:

<Efinity path>\bin\setup.bat
<Efinity path>\bin\python3.bat <efinity path>\pgm\bin\efx_pgm
\efinity_hw_server.py

Linux:

Use the following commands in a terminal to start the server:

source <Efinity path>/bin/setup.sh
python3 <Ffinity path>/pgm/bin/efx_pgm/efinity_hw_server.py

Stop the Efinity Hardware Server
In the terminal or Command Shell, enter Ctrl+C to stop the server.

Connect the Board to the Server
For Efinix development boards, connect the board to the server using a USB cable. When
you connect to the remote host from your computer, the board name appears in the
Programmer's USB Target list.

www.efinixinc.com 140

Efinity Software User Guide

For your own board, use a JTAG Mini-Module or JTAG cable to connect the board to the
server. When you connect to the remote host from your computer, the module or cable
name appears in the Programmer's USB Target list. (Refer to JTAG Programming with
FTDI Chip Hardware on page 117.)

Connect to a Remote Host
You use the Edit Remote Host dialog box to manage the list of remote server hosts. You
access this dialog box from Programmer, Debugger, or SVF Player tools.

1. Click the Edit Remote Host List button to open the Edit Remote Host dialog box.
2. Press the + button.
3. Double-click the cell under Address and enter the server's IP address.
4. Double-click the cell under Port and enter the port.
5. Click the + button to add another row. Click the - button to remove a selected row.
6. Click OK.

The software refreshes the USB Target list; any boards connected to remote hosts appear in
the list. Simply choose the board that you want to program or debug as usual.

www.efinixinc.com 141

Efinity Software User Guide

Appendix: Installing USB Drivers
To program Trion®, Topaz, and Titanium FPGAs using the Efinity® software and
programming cables, you need to install drivers.

Efinix development boards have FTDI chips (FT232H, FT2232H, or FT4232H) to
communicate with the USB port and other interfaces such as SPI, JTAG, or UART. Refer
to the Efinix development kit user guide for details on installing drivers for the development
board.

Note: If you are using more than one Efinix development board, you must manage drivers accordingly.
Refer to AN 050: Managing Windows Drivers for more information.

Notice: The Trion T8 BGA81 Development Boards do not have FTDI chip for USB communication. Refer
to the T8 BGA81 Development Kit User Guide for more information about installing its Windows USB
driver.

For your own development board, Efinix suggests using the FTDI Chip FT2232H or
FT4232H Mini Modules for JTAG programming Trion®, Topaz, and Titanium FPGAs. (You
can use any JTAG cable for JTAG functions other than programming.)

Note: Efinix does not recommend the FTDI Chip C232HM-DDHSL-0 programming
cable due to the possibility of the FPGA not being recognized or the potential for
programming failures.

Table 36: USB Programming Connections

Board Connect to Computer with

Efinix development boards USB cable

Your own board FTDI x232H programming kit. For example:
• FT2232H Mini Module
• FT4232H Mini Module

Note: The FTDI Chip Mini Module supports 3.3 V I/O voltage only. Refer to the FTDI Chip website for
more information about the modules.

Installing the Linux USB Driver
The following instructions explain how to install a USB driver for Linux operating systems.

1. Disconnect your board from your computer.
2. In a terminal, use these commands:

> sudo <installation directory>/bin/install_usb_driver.sh
> sudo udevadm control --reload-rules
> sudo udevadm trigger

Note: If your board was connected to your computer before you executed these
commands, you need to disconnect it, then re-connect it.

www.efinixinc.com 142

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=AN050
https://ftdichip.com/products/ft2232h-mini-module/

Efinity Software User Guide

Installing the Windows USB Driver
On Windows, you use software from Zadig to install drivers. Download the Zadig software
(version 2.7 or later) from zadig.akeo.ie. (You do not need to install it; simply run the
downloaded executable.)

Important: For some Efinix development boards, Windows automatically installs drivers for some
interfaces when you connect the board to your computer. You do not need to install another driver
for these interfaces. Refer to the user guide for your development board for specific driver installation
requirements.

To install the driver:

1. Connect the board to your computer with the appropriate cable and power it up.
2. Run the Zadig software.

Note: To ensure that the USB driver is persistent across user sessions, run the
Zadig software as administrator.

3. Choose Options > List All Devices.
4. Repeat the following steps for each interface. The interface names end with (Interface N),

where N is the channel number.
• Select libusb-win32 in the Driver drop-down list.
• Click Replace Driver.

5. Close the Zadig software.

Note: This section describes how to install the libusb-win32 driver for each interface separately. If you
have previously installed a composite driver or installed using libusbK drivers, you do not need to update
or reinstall the driver. They should continue to work correctly.

www.efinixinc.com 143

https://zadig.akeo.ie

Efinity Software User Guide

Appendix: Program using a JTAG Bridge
(Legacy)

Programming with a JTAG bridge is a two-step process: first you configure the FPGA to
turn it into a flash programmer (.bit) and second you use the FPGA to program the flash
device with the bitstream (.hex).

The Trion®, Topaz, and Titanium .bit files include a custom JTAG USERCODE in the
bitstream:
• Single flash .bit files—0x6212E80D
• Dual flash .bit files—0xFA828A14

To program using a JTAG bridge:

1. Choose the USB Target.
2. In the Image box, click the Select Image File button to browse for the .hex file to

program the flash device.
3. Choose the SPI Active using JTAG Bridge (Legacy) or SPI Active x8 using JTAG

Bridge (Legacy) mode.
4. Turn on the Auto configure JTAG Bridge Image option.

For Titanium Topaz FPGAs, the Programmer automatically loads the .bit file. Skip step 5
if you want to use the pre-loaded .bit file.

5. Specify the .bit file.

a) In the Programming Mode box, click Select Image File.
b) The Open Image File dialog box opens. Browse to find your own .bit file.

6. Click Start Program. The Programmer first configures the FPGA and then programs the
flash device.

Notice: Refer to the JTAG SPI Flash Loader Core User Guide for instructions on creating the .bit file.

Important: If you are using the Titanium Topaz RSA bitstream authentication security feature, you need
to use a signed .bit file. Copy the bundled .bit file from the appropriate source folder to another directory
and sign it. Then point to the signed .bit file in the Programmer. You can also create your own .bit file with
the JTAG Flash Loader IP core if you prefer. Depending upon your board, the source folder is:

• <Efinity version>/pgm/fli/titanium
• <Efinity version>/pgm/fli/topaz

Refer to Using the Efinity Bitstream Security Key Generator on page 129 for information on signing
existing .bit files.

www.efinixinc.com 144

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=FLASHCTRL-CORE

Efinity Software User Guide

Appendix: Efinity Tools
This topic provides a list of tools included with the Efinity software.

Table 37: Efinity Tools

Tool Description Read More

Bitstream Security Key
Generator

Simplifies the process of creating encryption
keys and generating RSA certificates (for
Titanium FPGAs only).

Using the Efinity Bitstream
Security Key Generator on
page 129

BRAM Initial Content Updater Lets you quickly update the initial memory
saved in the FPGA's BRAM without performing
a full compile.

About the BRAM Initial
Content Updater on page 103

Code Editor Basic editor for viewing code or report files.
You should use your own editor for real coding
work.

Debugger Use to probe signals in your FPGA design via
the JTAG interface.

Debugging on page 79

Debug Wizard Provides an automated flow for adding a logic
analyzer core to your design.

Debug Wizard on page 85

Floorplan Editor Provides a graphical view of the logic and
routing in your design.

Interface Designer Used to build the peripheral portion of your
design such as PLLs, GPIO, MIPI, DDR, etc.

About the Interface Designer
on page 50

IP Packager Use this tool to "package" design files for re-
use in the IP Manager.

Packaging Design Files on
page 26

IP Manager Interactive wizard that helps you customize and
generate Efinix IP cores.

Using the IP Manager on page
41

JTAG SVF Player JTAG SVF player that sends JTAG commands
to an Efinix FPGA.

Using the Efinity SVF Player
on page 138

Log Message Tool to sort and browse through all of the
messages resulting from the compilation flow.

Viewing Messages and Logs
on page 35

Message Browser Shows synthesis-specific messages that result
when you elaborate the netlist.

Viewing Messages and Logs
on page 35

Netlist Viewer Displays and analyzes your design's
netlist, including all components and their
connections (nodes and nets).

Netlist Viewer (Beta) on page
32

Package Planner Provides a visual representation of the FPGA
package pins.

Viewing the Package Pinout
on page 57

Programmer Select bitstream images and program the
FPGA directly or the flash device on a board.

About the Programmer GUI on
page 100

Efinity RISC-V Embedded
Software IDE

Develop and debug software for the Sapphire
SoC suite of RISC-V processors.

Efinity RISC-V Embedded
Software IDE on page 40

Tcl Command Console Enter Tcl commands to analyze and explore
timing.

Timing Browser Helps you explore your design’s critical paths
and the cells of those paths.

www.efinixinc.com 145

Efinity Software User Guide

Tool Description Read More

Transceiver Debugger Lets you test and display the signal quality of
the FPGA's transceiver signals.

Debugging Transceivers on
page 93

www.efinixinc.com 146

Efinity Software User Guide

Appendix: Efinity Project Files
The following sections describe the important files the Efinity software uses and generates.
Files in the work* directories are typically intermediate files used by the tools, and do not
provide useful information for the user.

Efinity Source Files for Version Control
If you want to put your project under revision control, the files you need to store (in addition
to your RTL) are:

• <project>.xml
• <project>.peri.xml
• <project>.sdc
• debug_profile.wizard.json
• dbg_top.v
• <module>.v
• settings.json

Bitstream Generation
<project>.hex
In GUI Result pane > Bitstream menu

In file system <project>/outflow

Created by Efinity software during the bitstream generation step

Design source? No

The Efinity software creates this file during the bitstream generation step. This file is the .hex
file you use to program in SPI active or SPI passive modes.

<project>.bit
In GUI Result pane > Bitstream menu

In file system <project>/outflow

Created by Efinity software during the bitstream generation step

Design source? No

The Efinity software creates this file during the bitstream generation step. This file is the .bit
file you use to program in JTAG mode.

www.efinixinc.com 147

Efinity Software User Guide

<project>.pgm.out
In GUI Result pane > Bitstream menu

In file system <project>/outflow

Created by Efinity software during the bitstream generation step

Design source? No

The software creates this file after bitstream generation; it contains all of the messages output
to the Console.

Debugger
debug_profile.wizard.json
In GUI Project Editor > Debuging tab

In file system <project>

Created by Efinity Debug Wizard

Design source? Yes

The Efinity software creates this file when you use the Debug Wizard to add a logic analyzer
core to your design. This file contains all of the settings you made in the wizard. For more
information in the wizard and settings, refer to Debug Wizard on page 85.

dbg_top.v
In GUI Result pane > Debugger menu

In file system <project>/outflow/work_dbg

Created by Efinity Debug Wizard

Design source? Yes

The Efinity software creates this file when you use the Debug Wizard to add a logic analyzer
core to your design. This file has the RTL logic for the debug core.

debug_TEMPLATE.v
In GUI –

In file system <project>/outflow/work_dbg

Created by Efinity Debugger

Design source? Yes

The Efinity Debugger creates this file when you create a logic analyzer or virtual I/O debug
core manually. This file has the module for the debug profile you created.

Refer to Virtual I/O Debug Core on page 81 or Logic Analyzer Debug Core on page 83
for more information.

www.efinixinc.com 148

Efinity Software User Guide

Interface Designer
<project>.peri.xml
In GUI –

In file system <project>

Created by Interface Designer when you create an interface

Design source? Yes

The Interface Designer creates this file when you create a new interface for your project. This
file contains all of the settings that you specified in the Interface Designer for I/O banks,
GPIO, LVDS, PLLs, MIPI, DDR, etc. You should not edit this file directly!

<project>.interface.csv
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints

Design source? No

The Interface Designer creates this file when you generate constraints. This file shows
the constraints for the FPGA design pins used in the interface between the core and the
periphery in a comma-separated values (.csv) file.

<project>.pt.rpt
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints

Design source? No

The Interface Designer creates this file when you generate constraints. This file provides
details of the blocks used in the interface, including I/O banks, global connections, clock
region usage, GPIO and dual-function configuration pins used, PLLs, LVDS, etc.

<project>.pinout.rpt
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints

Design source? No

The Interface Designer creates this file when you generate constraints. This file provides
the board design pinout with pin number, signal name, pin name, I/O bank, etc. in a nicely
formatted text file format.

www.efinixinc.com 149

Efinity Software User Guide

<project>.pinout.csv
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints

Design source? No

The Interface Designer creates this file when you generate constraints. This file provides the
board design pinout with pin number, signal name, pin name, I/O bank, etc. in a comma-
separated values (.csv) format.

<project>.pt_timing.rpt
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints

Design source? No

The Interface Designer creates this file when you generate constraints. This file shows
the interface’s timing requirements based on the <project>.pt.sdc. The report has these
sections:
• PLL Timing Report—Shows period and phase shift of output clocks from PLL.
• GPIO Timing Report—The report shows the following GPIO data:

— The clock network delay, including the delay from GPIO_GCLK_IN to the core's
global network and the delay from the PLL's clkout to GPIO_GCLK_OUT.

— The output delay for GPIO configured as clock outputs (GPIO_CLK_OUT).
— The delays for non-registered GPIO.
— The delays for registered GPIO, including Timing Requirement of both Setup time

and Hold time for path from FPGA pins to FPGA interface and the path delay from
FPGA interface to FPGA pins.

• JTAG Timing Report—If you added a debug core to your design, this section shows the
JTAG signal delay.

<project>.pt.sdc
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints

Design source? No

The Interface Designer creates this file when you generate constraints. The file is a template
SDC that you use to create your own SDC file. You copy and paste the constraints into your
own SDC and modify it as needed.

There are several types of contraints:
• Clock constraints—These constraints define the clocks and virtual clocks in your design.

The file has create_clock constraints for the PLL clocks (the SDC file defines a clock
period) and any GPIO clocks, that is, GPIO used as GCLK (you need to define the clock
period for these).

www.efinixinc.com 150

Efinity Software User Guide

• GPIO constraints—These constraints define the input delay and output delay from
registered IO to core as well as input delay and output delay from non-registered IO to
core.

• Periphery constraints—These are constraints for any interfaces, such as LVDS, MIPI, DDR,
etc.

Learn more: See Copy and Paste the Interface Constraints in the Efinity Timing Closure User Guide for
instructions on using this file.

<project>_or.ini
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints

Design source? No

The Interface Designer creates this file when you generate constraints. This file contains
bitstream configuration settings (option register settings) related to features you enable in
the Interface Designer such as SEU and remote update. The Programmer uses this file when
creating the bitstream.

<project>_template.v
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints

Design source? No

The Interface Designer creates this file when you generate constraints. This file provides
the a template Verilog HDL file defining the FPGA design pins based on the interface
configuration. You can use this file as the starting point for the Efinity synthesis top-level
target. The port list in the file matches the Interface Designer-generated SDC constraint
file. To use this file:

1. Save the file with a different name to the directory where you keep your source files, such
as your project directory.

2. Add the new file to you project as a design file.
3. Change the top-level entity in the Efinity project to be the module name given in this

file. For example, if the module name is pt_demo, change the top-level entity name to
pt_demo in Project Editor > Design tab > Top Module/Entity.

4. Add the design content.

Unified Design Flow

<project>.unified.isf
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Synthesis when generating constraints in the unified design flow

Design source? No

www.efinixinc.com 151

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

The mapper creates this file when you generate constraints in the unified design flow. This
file is an ISF that creates design instances and sets their properties based on the interface logic
discovered by synthesis.

<project>.auto_asg.isf
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Synthesis when generating constraints in the unified design flow

Design source? No

The mapper creates this file when you generate constraints in the unified design flow. This
file is as ISF with the interface logic automatically assigned to resources. This file is only
generated when a custom user ISF resource assignment file is not included.

<project>.peri_rtl.v
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints in the unified design
flow

Design source? No

The Interface Designer creates this file when you generate constraints in the unified design
flow. This file is the interface netlist file for simulation. This file only contains the interface
logic discovered by synthesis.

<project>.peri_pt.v
In GUI Result pane > Interfaces menu

In file system <project>/outflow

Created by Interface Designer when generating constraints in the unified design
flow

Design source? No

The Interface Designer creates this file when you generate constraints in the unified design
flow. This file is the interface netlist file for simulation. This file only contains the interface
logic generated using the Interface Designer.

IP
<module>.define
In GUI –

In file system <project>/ip/<module>

Created by IP Configuration wizard

Design source? No

When you generate an IP core, the IP Configuration wizard creates this file. The file contains
all of the settings you specified for the IP core.

www.efinixinc.com 152

Efinity Software User Guide

settings.json
In GUI –

In file system <project>/ip/<module>

Created by IP Configuration wizard

Design source? Yes

When you generate an IP core, the IP Configuration wizard creates this file. The file has the
configuration settings for the IP core.

You can use this settings file to create another instance of the core with the same settings, or
you can modify it to create another core with slightly different settings. For example, you can
quickly create FIFOs of varying depths by re-using an existing settings.json file.

Learn more: Refer to IP Settings File on page 47 for instructions on using this file to create another
instance of an IP core.

<module>_tmpl.v
In GUI –

In file system <project>/ip/<module>

Created by IP Configuration wizard

Design source? No

When you generate an IP core, the IP Configuration wizard creates this file. The file has the
Verilog HDL template you can use to instantiate the IP in your RTL design.

<module>_tmpl.vhd
In GUI –

In file system <project>/ip/<module>

Created by IP Configuration wizard

Design source? No

When you generate an IP core, the IP Configuration wizard creates this file. The file has the
VHDL template you can use to instantiate the IP in your RTL design.

<module>.v
In GUI –

In file system <project>/ip/<module>

Created by IP Configuration wizard

Design source? Yes

When you generate an IP core, the IP Configuration wizard creates this file. The file source
code for the IP core.

www.efinixinc.com 153

Efinity Software User Guide

Placement
<project>.place
In GUI Result pane > Placement menu

In file system <project>/outflow

Created by Efinity software during the placement step

Design source? No

The Efinity software creates this file during the placement step. This file has the detailed
placement report (block name, x,y coordinates, sub-block, and block number) for all of the
logic blocks in the design shown in a nicely formatted text layout.

<project>.place.rpt
In GUI Result pane > Placement menu

In file system <project>/outflow

Created by Efinity software during the placement step

Design source? No

The Efinity software creates this file during the placement step. This file shows the resources
used after placement for inputs, outputs, clocks, LEs, memory, and multipliers (Trion) or
DSP Blocks (Titanium).

The report's Resource Summary section shows how many core resources (inputs, outputs,
clocks, etc.) the design uses. In this context, the inputs and outputs are the connections
between the core and the periphery (or interfaces); they do not represent package pins.
Different versions of software model these connections differently, which can cause the
number of available input or output connections to change from one release to the next.

For example, the Efinity software v2022.2 includes a -reference_pin option for the
set_input_delay and set_output_delay constraints for Trion FPGAs. To model
these pins, the software adds more clock connections from the core to the interface to the
report's I/O counts. Therefore, for the same design, you may notice a higher number of
inputs and outputs in the report file in the Efinity software v2022.2 or higher.

To find the number of GPIO used (meaning the number of package I/O pins as inputs and
outputs), refer to the Result pane's GPIO Periphery Resource field or <project>.pt.rpt in
the outflow folder.

<project>.place.out
In GUI Result pane > Placement menu

In file system <project>/outflow

Created by Efinity software during the placement step

Design source? No

The Efinity software creates this file during the placement step. This file shows the messages
output to the Console during placement. Review all SDC messages and adjust your
constraints as needed. Warning messages flag issues that can affect timing closure.

www.efinixinc.com 154

Efinity Software User Guide

Project
<project>.sdc
In GUI Project pane > Constraint menu

In file system <project>

Created by User defined

Design source? Yes

This file is the Synopsys Design Constraints (.sdc) file you use to constraint your design to
meet timing requirements. It is too much information to explain how to do that here, so refer
to Efinity Timing Closure User Guide for the full details.

<project>.xml
In GUI –

In file system <project>

Created by Efinity software when you create a project

Design source? Yes

The Efinity software creates this file when you create a new project. This file contains all of
the information about your project, including any settings you make in the Project Editor.
You should not edit this file directly!

Routing
<project>.pnr.rpt
In GUI Result pane > Routing menu

In file system <project>/outflow

Created by Efinity software during the routing step

Design source? No

The Efinity software creates this file during the routing step. This file shows the resources
used after placement and routing for inputs, outputs, clocks, LEs, memory, and multipliers
(Trion) or DSP Blocks (Titanium).

<project>.route.rpt
In GUI Result pane > Routing menu

In file system <project>/outflow

Created by Efinity software during the routing step

Design source? No

The Efinity software creates this file during the routing step. This file shows the routing
report, including global control information.

www.efinixinc.com 155

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

<project>.route.out
In GUI Result pane > Routing menu

In file system <project>/outflow

Created by Efinity software during the route step

Design source? No

The software creates this file after routing; it contains all of the messages output to the
Console. This file shows detailed information about the number of routing iterations and cost
time when routing your design. If your design does not route, you can try adjusting the place-
and-route optimization level for congestion.

Learn more: See Place-and-Route Options in the Efinity Timing Closure User Guide for information on
using the options for optimization level.

<project>.timing.rpt
In GUI Result pane > Routing menu

In file system <project>/outflow

Created by Efinity software during the route step

Design source? No

The software creates this file after routing. This static timing analysis report contains detailed
information about your design's critical paths. The report has severl sections:

• Clock Frequency Summary—Shows a summary of the clocks in your design and their
constraints. It uses the critical paths to show the maximum clock frequency that each
clock can achieve. In the summary you can check the clock constraints defined in your
SDC file, the maximum frequency of the clocks in your design, and the edge of the launch
clocks and capture clocks.

• Clock Relationship Summary—Lists the related clocks, their constraints, and the slack. The
report shows measurements using the active clock edge. This report shows how many
pairs of launch clocks and capture clocks are involved when routing your design and the
slack of the most critical setup path among related clocks. If any of the clock relationships
have negative slack, your design has not closed timing.

• Path Details for Max Critical Paths—Shows the critical paths for the maximum (setup)
critical paths. The report only shows the most critical path for each relationship. This
section gives detailed information for the Launch Clock Path, Capture Clock Path, Data
Path (including Clock To Q + Data Path Delay). Usually, the most efficiency way to
reduce the data path delay is to fix negative slack.

• Path Details for Min Critical Paths—Shows the critical paths for the minimum (hold)
critical paths. The report only shows the most critical path for each relationship.

Learn more: Refer to Interpreting Timing Results and Tools for Exploring
Timing in the Efinity Timing Closure User Guide.

www.efinixinc.com 156

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING

Efinity Software User Guide

Synthesis
<project>.map.v
In GUI Result pane > Synthesis menu

In file system <project>/outflow

Created by Efinity software during the synthesis step

Design source? No

The Efinity software creates this file during the synthesis step. This file has the post-mapping
netlist that you use for simulation.

<project>.map.core.v
In GUI Result pane > Synthesis menu

In file system <project>/outflow

Created by Efinity software during the synthesis step.

Design source? No

The Efinity software creates this file during the synthesis step. This file has the post-mapping
core netlist that you use for simulation in the unified design flow. This file is only generated
in the unified design flow and contains only the core logic.

<project>.map.peri.v
In GUI Result pane > Synthesis menu

In file system <project>/outflow

Created by Efinity software during the synthesis step.

Design source? No

The Efinity software creates this file during the synthesis step. Post-mapping netlist file for
simulation with the unified design flow. This file is only generated in the unified design flow
and contains the interface logic as well as the core netlist..

<project>.map.rpt
In GUI Result pane > Synthesis menu

In file system <project>/outflow

Created by Efinity software during the synthesis step

Design source? No

The Efinity software creates this file during the synthesis step. This file contains all of the
reporting for the synthesis step. It give the top-level entioty, the files in the design as well as
results of pre-optimization and mapping, post-optimization and re-synthesis, and estimates
for the resource usage for each module.

www.efinixinc.com 157

Efinity Software User Guide

<project>.map.out
In GUI Result pane > Synthesis menu

In file system <project>/outflow

Created by Efinity software during the synthesis step

Design source? No

The Efinity software creates this file during the synthesis step. This file has all of the messages
the synthesis tool outputs to the Console, including any synthesis warnings or errors.

<project>.res.csv
In GUI Result pane > Synthesis menu

In file system <project>/outflow/work_syn

Created by Efinity software during the synthesis step

Design source? No

The Efinity software creates this file during the synthesis step. This file has the resource usage
for all of the modules in the design. When you double-click on this file in the Result pane >
Synthesis menu, the report opens with two tabs:

• The Hierarchy tab shows a tablular view of the modules and the resources used. You can
filter the list using the filter field at the top.

• The Text tab shows a plain text view of the same data.

www.efinixinc.com 158

Efinity Software User Guide

Appendix: Shortcuts
This section provides a list of shortcuts when working with the Efinity software.

Table 38: Shortcuts

Action Shortcut

To launch the Efinity GUI with a project already loaded Use this command in a terminal or command prompt:

$Efinity$\bin> setup.bat --run
efinity --project <project_name>.xml

To add a design file to your project Go to Dashboard > Project pane and right-click
Design. Choose Add from the pop-up menu, browse
for the file, and click Open.

To add an SDC file to your project Go to Dashboard > Project pane and right-click
Constraint. Choose Add from the pop-up menu,
browse for the file, and click Open.

To open the file system folder where your project
resides

Go to Dashboard > Project pane and right-click the
filename. Choose Open Containing Folder.

To open a design file with your chosen text editor Go to Dashboard > Project pane and right-click the
filename. Choose Open with User Editor.
(Make sure you have set the path to your editor first in
File > Preferences > External text editor.)

To delete a file from your project Go to Dashboard > Project pane and right-click the
filename. Choose Delete.

www.efinixinc.com 159

Efinity Software User Guide

Appendix: Icon List

General Icons

Filter

Search

General Tool Preferences

Help

Exit

?

Expand All

Collapse All

Toggle Properties Panel

Property Icons

Message Browser

Log Browser

Log Icons

Project Icons
Open Project

New Project

Close project

Edit Project

Choose Project Directory

Remove a File from a Project

Add a file to a Project

Import Design & Constraint Files

Save

Results are out
of sync with settings

Flow Icons
Run Complete Flow

Synthesize

Place

Route

Place & Route

Stop

Generate Bitstream File01

www.efinixinc.com 160

Efinity Software User Guide

Floorplan Icons
View Floorplan

Show Cell Browser

Show Cell Browser Filter

Toggle Floorplan Filter/Legend

Filter Floorplan View

Floorplan Legend

Zoom In

Zoom Out

Fit View

Show Fanin

Show Fanout

Show Timing Path

Show Timing Delay

Show All Nets

Trace Nets (Open Net Tracer)

Clear Net Trace

World View (Dragon’s Eye View)

Timing & Console Icons
Toggle Timing Browser

Toggle Tcl Command Console

Run Tcl Command

Clear Tcl Command

Lock Scrolling

Toggle Console

Clear Console

Interface Designer Icons
Interface Designer

Add Block

Create a GPIO bus

Delete Block

Show or Hide Block Editor

Resource Assigner

Toggle Instance View and Resource View

Clear Resource

Clear All Resources

Show/Hide Filter

Clear Filter

Export GPIO Assignments

Import GPIO Assignments

Clear Design

Check Design for Errors

Export Settings

Generate Constraints File

Package Planner

Resource Assigner

Tools Icons
IP Catalog

IP Editor

Netlist Viewer

Show Dashboard

Key Generator

Randomly Generate PEM File

Select PEM File

SVF Player

Open SVF File

Reload

Run

Step Over

Stop

svf

Programmer Icons
Programmer

Import JTAG Chain File (JCF)

Export

Edit Header

Add Image File

Delete Image File

Combine Image Files

Select Image File01

01

01

01

01
010 Remote Hardware Server

Advanced Device Configuration Status

www.efinixinc.com 161

Efinity Software User Guide

Debugger Icons

Debugger

Debug Wizard

Add Debug Core

Remove Debug Core

Connect Debugger

Disconnect Debugger

Import Debug Pro�le

Refresh USB Target

Select Waveform File

Advanced Device Con�guration Status

Add Probe

Add Source

Remove Probe or Source

Add Net

Remove Net

Active High

Active Low

Toggle High

Toggle Low

Package Planner Icons
Exit

Refresh

Help

Show/Hide View Config

World View

Zoom In

Zoom Out

Fit to Window

Show Bottom View

Show Package Top

Left Rotate

Right Rotate

Reset Orientation

Legend

Pin Browser

Export Diagram

?

www.efinixinc.com 162

Efinity Software User Guide

Revision History

Table 39: Document Revision History

Date Version Description

June 2025 16.1 Updated for patch 2025.1.110.2.x.
Updated device support.

May 2025 16.0 Updated for Efinity software v2025.1.
The JTAG SPI Flash Loader IP Core is removed from all families. It is replaced by
the JTAG to SPI Flash IP core. (DOC-2285)
Removed "Appendix: Connecting Programming Hardware." Refer to the
configuration application notes for this information.
SPI Active using JTAG Bridge (New) renamed as SPI Active using JTAG Bridge.
Moved topic on SPI Active using JTAG Bridge (Legacy) to appendix.(DOC-2250)
Added topic describing Setting User and Project Directories on page 16.
(DOC-2465)
Removed Auto-Load Place-and-Route topic. This feature is no longer needed with
v2025.1. (DOC-2284)
Updated machine memory requirements. (DOC-2286)
Added "Using Mark Debug" subtopic in "Debugging Overview". (DOC-2344)
Updated description of where you add the .isf to your project, see Design Tab on
page 19. (DOC-2472)
Added instructions for simulating with the Aldec Active HDL or Riviera-PRO
simulators. (DOC-2463)
Added description of the Transceiver Debugger's BIST function. (DOC-2469)
You can now launch the Efinity RISC-V Embedded Software IDE from the Efinity
GUI. (DOC-2430)
Added topic on combining multiple image files at the command line. (DOC-2231)
Generate Efinity Constraints Files button renamed as Generate Interface Output
Files. (DOC-2296)

March 2025 15.4 Updated for patch 2024.2.294.4.15.
Updated device support table for Tz100G400, Tz170G400, Ti180J484D1, and
Ti135N484.

February 2025 15.3 Updated for patch 2024.2.294.3.14.
Added support for Ti180 J484D1 packages.
Added topic on resolving IP Manager issues. (DOC-2345)

January 2025 15.2 Updated for patch 2024.2.294.2.12.
Added bitstream support for Tz200 and Tz325 FPGAs in C529 packages.
Added bitstream support for Ti165 and Ti240 FPGAs in C529 packages.
The HyperRam Controller IP Core no longer supports Trion FPGAs. (DOC-2312)
Updated instructions for installing Linux USB drivers. (DOC-2279)

December
2024

15.1 Updated for patch 2024.2.294.1.19.
Added N484 package for Ti85 and Ti135.
Added C529 package for Tz200 and Tz325.
Added bitstream support for Ti375 in N484 package and Tz110 and Tz170 in J361
and J484 packages.

www.efinixinc.com 163

Efinity Software User Guide

Date Version Description

November
2024

15.0 Added new features in 2024.2.
Updated device support.
Project Editor > Design tab > Top Module/Entity cannot be left empty.
(DOC-2137)
Updated Table 4: Machine Memory Requirements on page xii. (DOC-2052)
Corrected link to latest Microsoft Visual C++ Redistributable downloads.
(DOC-2045)
An EFX_FF primitive cannot be placed in a Trion ELF tile.
Described .f files for referencing RTL source code. (DOC-2072)
Updated screen shots for unified design options. (DOC-2184)
Added Linux requiremens fro Java. (DOC-2056)
Added new # Trigger option for Debugger Logic Analyzer. (DOC-1886)
Double-clicking a file in the Project or Result pane opens it in the default or user
editor. (DOC-2146)
Added topic about encrypting and/or signing bitstreams at the command line.

August 2024 14.1 Added Ti85 and Ti135 FPGAs.

June 2024 14.0 Updated device support for v2024.1.
Added topic on Packaging Design Files on page 26.
Red Hat support is v8.0 and higher. Removed support for v7.4. (DOC-1648)
The Console supports color output and dark mode. (DOC-1762)
Added the sta_tclsh flow option to open the Tcl Console frorm the command
line. (DOC-1881)
Added chapter on the Efinity Transceiver Debugger. (DOC-1941)
The software has separate .bit files for JTAG Bridge (New) and JTAG Bridge
(Legacy), and they are not compatible with each other. The .bit files do not require
an external clock. (DOC-1789)

May 2024 13.6 Added Ti165 and Ti240 FPGAs, replacing the Ti135 and Ti200, respectively.

April 2024 13.5 Added bitstream support for F100 package for the Ti35 and Ti60 FPGAs.
Pinout is final for F100 package for the Ti35 and Ti60 FPGAs.
Q3 timing model is final for the Ti90, Ti120, and Ti180 FPGAs in the J484 package.

March 2024 13.4 Added F100 and F256 packages for the Ti35 and Ti60 FPGAs.
Added F256 package for the T35 FPGAs.

February 2024 13.3 Updated table of supported Titanium FPGAs.

February 2024 13.2 Added note in Generated Files-Testbench. (DOC-1691)

January 2024 13.1 Added Ti135 and Ti200 to device support and machine memory requirements.
(DOC-1660)
Added JTAG device IDs for Ti135, Ti200, and Ti375.
Added note explaining that you should make a backup of your existing project
before opening it in a newer software version because the project files are not
backwards compatible. (DOC-1632)
Added note about Windows %PATH% variable to Hardware and Software
Requirements on page xii. (DOC-1687)

www.efinixinc.com 164

Efinity Software User Guide

Date Version Description

December
2023

13.0 Updated device support and new in v2023.2.
Updated machine memory requirements.
For Windows, a 64-bit operating system is required. 32-bit systems are not
supported.
Added explanation about the input and output numbers listed in the Core
Resoures section of the Result pane and in the <project>.place.rpt file.
You can open multiple Debugger windows by clicking the Debugger icon multiple
times.
Added information on how to reference Trion and Titanium VHDL primitive
libraries.

November
2023

12.2 Added bitstream support for G400 packages.
Added note to use only ASCII characters. (DOC-1522)

August 2023 12.1 Added G400 package support. (DOC-1393)

June 2023 12.0 Updated device support and new in v2023.1.
Added section about the Netlist Viewer tool.
Added section about the BRAM Initial Content Updater.
Updated description for Preferences dialog box.
Added topic on how to preserver place-and-route for a portion of your design.
Added additional information on design migration.
Added appendix describing all tools included with the Efinity software.

December
2022

11.0 Updated device support and new in v2022.2.
Added section on constraining routing manually.
EFX_COMB4 not available in Trion FPGAs. (DOC-1074)
Added description of Debugger Options menu. (DOC-1029)
Added topics on how to constrain routing (beta).

September
2022

10.1 Updated Project-Based Programming Options topic for new options.
Updated PFGA support for Efinity patch 2022.1.226.1.9.

August 2022 10.0 Added new project-based programming option for 4-byte addressing.
Updated the available options for theProject Editor > Place and Route tab.
(DOC-889)
Clarified the instructions for instantiating debug cores. (DOC-883)
Clarified that when using internal reconfiguration you must use Programmer
> Combine Multiple Image Files > Image Type > Internal Flash Image option.
(DOC-874)
Added topic on verifying configuration with the Programmer.
When editing the bitstream header, do not remove any auto-generated data or the
Programmer may not recognize the bitstream.
Removed support for C232HM-DDHSL-0 cable. (DOC-860)
Added a topic on the concurrent debug feature.
Updated supported IP cores.
Updated Installing USB Drivers topics.
Updated supported IP cores.

June 2022 9.2 Pointed to new sourceforge location for GTKWave download. (DOC-797)

www.efinixinc.com 165

Efinity Software User Guide

Date Version Description

April 2022 9.1 Added Program using a JTAG Bridge topic.
Added topic on combining a bitstream and other data into a single file for
programming.
Re-organized topics about working with bitstreams.
Moved topics on installing USB drivers and connecting programming hardware to
the appendix.
The minimum operating frequency of the debug cores is 2 times the JTAG TCK
frequency. (DOC-754)
Added CORDIC core to the list of supported IP (included with Efinity patch
v2021.2.323.2.18).

December
2021

9.0 Added Efinity Hardware Server documentation. (DOC-598)
Added support for FTDI FT4232H Mini Module. (DOC-597)
Added the JTAG USERCODE option to the Project-Based Programming Options
topic.
With the Efinity software v2021.2 and higher, you must use .hex for SPI and .bit for
JTAG. (DOC-638)
When importing an IP configuration .json file, specify the module name in the IP
Configuration wizard. (DOC-611)
Updated machine memory requirements (RAM).
You may need to re-compile when upgrading from an older version.
Added appendix of project file definitions.

November
2021

8.2 Added instructions on using the Titanium bitstream security features.
Added instructions for using the Efinity SVF Player.
Described how to export a bitstream to serial vector format (.svf).
When using the stand-alone Programmer on 64-bit Windows, install both the x86
and x64 libraries. (DOC-576)
Added instructions for importing IP cores. (DOC-584)

October 2021 8.1 Added topic on flash programming modes.
Added topic on the Titanium configuration status registers. (DOC-487)
Added note that FTDI Chip FT2232H Mini Module supports 3.3 V I/O voltage only.
(DOC-495)
Added description of command to convert bitstream files from .hex to .bin to
Exporting to Raw Binary Format topic. (DOC-527)
JRE required for running the DMA Controller in the IP Manager. (DOC-549)
Added a note that you need to specify the path when simulating with testbench
files that are not in the project's root directory. (DOC-468)

June 2021 8.0 Added support for Titanium family.
Supported Ubuntu version is v18.04 or higher. v16.04 is end of life. (DOC-433)
Added the Java runtime environment as a software requirement for configuring the
Sapphire SoC in the IP Manager.
Described more detail on the Enable Initialized Memory in User RAMs option in the
Project Editor > Bitstream Generation tab. (DOC-458)
Added table of IP cores supported by family.
Updated the FTDI command-line programming topic. Added the command-line
programmer configuration mode options. (DOC-430)

January 2021 7.1 Corrected JTAG chain file code example. (DOC-368)

www.efinixinc.com 166

Efinity Software User Guide

Date Version Description

December
2020

7.0 Added a new chapter on using the IP Manager.
Added instructions on using VHDL libraries.
Explained how to resize the Project, Netlist, and Result panes.
Described the context-sensitive menus in the Project, Netlist, and Result panes.
Added requirement to install the Microsoft Visual C++ 2015 x86 runtime library for
the standalone Programmer. (DOC-315)
Updated instructions for performing JTAG programming at the command line.
(DOC-323)
Corrected JTAG Mini Module pin names for T4, T8, T13, T20BGA256, and
T20BGA169 connection setup.
Clarified Undefined clock domain signals in the Debug Wizard.
Added table of files shown in the Result pane. (DOC-277)
Interface scripting file now supports PLL.

November
2020

6.1 Updated instructions on installing Windows USB drivers.
Added FTDI cable and module connection for T20BGA400.
Added JTAG device IDs for T20BGA324 and T20BGA400.
Removed the FTDI2232 from About USB Drivers topic making the description
applicable to other FTDI chips.
Corrected the command for using --pgm_opts with the command-line
programmer.

June 2020 6.0 Updated for v2020.1 release.
Windows 7, Red Hat v6, and CentOS v6 no longer supported.
Removed the chapters on SDC constraints and Tcl commands. This content is now
in the Efinity Timing Closure User Guide.
Added a topic on Efinity synthesis.
Added a topic on project migration.
Updated Programmer content to reflect new GUI and features.
Consolidated and updated content on installing USB drivers for boards, C232HM-
DDHSL-0 cable and FTDI FT2232H module.
Added support for FTDI FT2232H module for JTAG programming.
Added a topic on the various ways to view messages and logs.
Added topic on the Interface Designer/s Resource View.
Added a topic on using an API for scripting an interface design.
Added topic on Interface Scripting File (.isf).

December
2019

5.0 Updated for v2019.3 release.
Added chapter on using the Debugger.
Added explanation that 2 unassigned pairs of LVDS pins should be located
between and GPIO and LVDS pins in the same bank.

August 2019 4.5 Updated for v2019.2 release.
Added information on enhanced Resource Assigner.
Added information on JTAG programming.
Added command-line instructions for using the Windows efx_run.bat file.

April 2019 4.4 Updated for v2019.1 release.
Added information on new project manager capabilities.
Updated set_false_path usage.

www.efinixinc.com 167

Efinity Software User Guide

Date Version Description

January 2019 4.3 Updated for v2018.4 release.
Added more information on simulation and waveform viewing.
Added instructions for installing Windows USB driver.
Updated Programming information.

October 2018 4.2 Added a note pointing to AN 006: Configuring Trion FPGAs for more information
about using multiple images and daisy chaining for configuration.
Added Python 3 to the software requirements list as an option. For Windows, if
you do not have a full version of Python, the .py extension may not be correctly
associated with Python.

June 2018 4.1 Removed Python requirement; as of this release, Python is included with the
software.
Added the requirement that Windows users install the Microsoft Visual C++ 2015
x64 runtime library.

April 2018 4.0 Updated for v2018.0 release.
Added “Constraining Logic and Assigning Pins” topic, which replaces section on
fine-tuning your design.
Updated information on device configuration.

Novenber
2017

3.1 Minor updates.

May 2017 3.0 Updated for v2017.0 release.
Described new Floorplan Editor tools.
Updated SDC constraint information.

May 2016 2.0 Updated for v2016.0 release.
Documented the Timing Browser.
Documented the Tcl Command Console and available Tcl commands.
Updated SDC constraint information.

July 2015 1.1 Minor updates.

May 2015 1.0 Initial release.

www.efinixinc.com 168

	Contents
	Figures
	Tables
	Introduction
	New in v2025.1
	Using an Existing Project with a New Software Version
	Where to Learn More

	Hardware and Software Requirements
	1. Setting Up
	Efinity Quick Start
	Setting General Tool Preferences
	Setting User and Project Directories
	Efinity Main Window

	2. Managing Projects
	Project Editor
	Project Tab
	Referencing RTL Source Files
	Using VHDL Libraries
	Packaging Design Files
	Migrating a Project to another FPGA

	3. Running the Tool Flow
	Run the Flow with the Dashboard Controls
	Run the Flow from the Command Line
	About Efinity® Synthesis
	Netlist Tab
	Netlist Viewer (Beta)
	Opening the Netlist Viewer
	Zooming
	Highlighting and Marking
	Viewing the Netlist Hierarchy
	Finding Elements
	Viewing a User-Defined Element
	Viewing an Element's Connectivity
	Viewing the Action History

	Viewing Messages and Logs
	Result Tab
	Viewing Place-and-Route Results
	Efinity RISC-V Embedded Software IDE

	4. Using the IP Manager
	Supported IP Cores by Family
	Using the IP Configuration Wizard
	Generated Files
	Instantiating IP in Your Project
	Managing IP in Your Project
	IP Settings File
	Getting Updated IP
	Resolving IP Manager Issues

	5. Constraining Logic and Assigning Pins
	About the Interface Designer
	Get Oriented
	Using the Resource Assigner
	Resource View
	Importing and Exporting Assignments
	Interface Scripting File
	.csv File for GPIO Blocks

	Scripting an Interface Design
	Viewing the Package Pinout
	Selecting a Pin
	Browsing for Pins

	Constraining Logic and Routing Manually (Beta)
	Tiles
	Working with Primitives
	Enabling Manual Assignments
	Assignment Rules
	Creating a Location Assignment File
	Constraining Routing Manually (Beta)
	Routing Constraint Flow
	Generate .rcf Template
	Creating a Routing Constraint File
	Enabling Routing Constraints
	Best Practices for Constraining Routing
	Example Flow

	6. Analyzing Timing
	7. Simulating
	Simulation Models
	Changing the Default Testbench Names
	Simulate with the iVerilog Simulator
	View Waveforms

	Simulate with the ModelSim Simulator
	Simulate with the NCSim Simulator
	Simulate with the Aldec Active HDL or Riviera-PRO Simulator

	8. Debugging
	Profile Editor Perspective
	Virtual I/O Debug Core
	Logic Analyzer Debug Core

	Debug Wizard
	Debug Perspective
	Logic Analyzer Perspective
	Understanding Capture Control

	Virtual I/O Perspective

	Debugger Options
	Using the mark_debug Synthesis Attribute
	Concurrent Debugging
	Resource Usage
	Disable the Debug Core

	9. Debugging Transceivers
	Launching the Transceiver Debugger
	Using the Transceiver Debugger
	Debugging with BIST
	Sending Commands
	Interpreting the Results

	10. Configuring an FPGA
	FPGA Configuration Modes
	Flash Programming Modes
	About the Programmer GUI
	Edit the SPI Active Clock

	Generate a Bitstream (Programming) File
	About the BRAM Initial Content Updater
	Updating the BRAM Initial Content
	Using the Example Files
	Command-Line Interface

	Working with Bitstreams
	Edit the Bitstream Header
	Bitstream Compression
	Export to Raw Binary Format
	Export to .svf Format
	Convert to Intel Hex Format at the Command Line
	Combine Bitstreams and Other Files
	Combine Bitstreams at the Command Line

	SPI Programming
	Program a Single Image
	Program Multiple Images (CBSEL)
	Program Multiple Images (Internal Reconfiguration)
	Program Multiple Images (Bitstream and Data)
	Program a Daisy Chain

	JTAG Programming
	Trion Family JTAG Device IDs
	Titanium Family JTAG Device IDs
	Topaz Family JTAG Device IDs
	Program a Single Image
	Program Using a JTAG Chain
	Program using a JTAG Bridge
	JTAG Programming with FTDI Chip Hardware
	FDTI Programming at the Command Line

	Using the Command-Line Programmer
	Project-Based Programming Options
	Configuration Status Register
	Verifying Configuration with the Programmer
	Securing Titanium Bitstreams
	Using the Efinity Bitstream Security Key Generator
	Blowing Fuses with the SVF Player
	Enabling Security for Your Project
	JTAG Command Support with Security Enabled
	Encrypt or Sign Bitstreams from the Command Line
	Workflow for Using Security Features
	Verifying Security Settings

	11. Working with JTAG .svf Files
	Using the Efinity SVF Player

	12. Working with Remote Hardware
	Appendix: Installing USB Drivers
	Installing the Linux USB Driver
	Installing the Windows USB Driver

	Appendix: Program using a JTAG Bridge (Legacy)
	Appendix: Efinity Tools
	Appendix: Efinity Project Files
	Efinity Source Files for Version Control
	Bitstream Generation
	<project>.hex
	<project>.bit
	<project>.pgm.out

	Debugger
	debug_profile.wizard.json
	dbg_top.v
	debug_TEMPLATE.v

	Interface Designer
	<project>.peri.xml
	<project>.interface.csv
	<project>.pt.rpt
	<project>.pinout.rpt
	<project>.pinout.csv
	<project>.pt_timing.rpt
	<project>.pt.sdc
	<project>_or.ini
	<project>_template.v
	Unified Design Flow
	<project>.unified.isf
	<project>.auto_asg.isf
	<project>.peri_rtl.v
	<project>.peri_pt.v

	IP
	<module>.define
	settings.json
	<module>_tmpl.v
	<module>_tmpl.vhd
	<module>.v

	Placement
	<project>.place
	<project>.place.rpt
	<project>.place.out

	Project
	<project>.sdc
	<project>.xml

	Routing
	<project>.pnr.rpt
	<project>.route.rpt
	<project>.route.out
	<project>.timing.rpt

	Synthesis
	<project>.map.v
	<project>.map.core.v
	<project>.map.peri.v
	<project>.map.rpt
	<project>.map.out
	<project>.res.csv

	Appendix: Shortcuts
	Appendix: Icon List
	Revision History

