“EFINIX.

Efinity’ Debugger Tutorial

UG-EFN-TUTDBG-v1.4
March 2025
www.efinixinc.com

Copyright © 2025. All rights reserved. Efinix, the Efinix logo, the Titanium logo, the Topaz logo, Quantum, Trion, and Efinity are trademarks of Efinix,
Inc. All other trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.


http://www.efinixinc.com

Contents

Introduction 3
Tutorial: Automated Debugging Flow 3
Prepare the TULOMAl FilES. ..ottt benen 3
Create @ Debug Profile.... ..ottt 4
Program the T20 FPGA ...ttt bbbttt ettt ettt benene 4
RUN The DEDUGGET ...ttt ettt nene 5
Tutorial: Manual Debugging Flow 5
Prepare the TULOrial Files......coo ittt 5
Create @ DEbUG Profile ...ttt 6
Add Debug Code 10 YOUN PrOJECT......cciiiiiiiiieiciiite ettt ettt st 7
Debugging with Multiple Manual Debug Profiles.........viiiiiiieees e 9
Program the T20 FPGA.......o ettt sttt ettt ettt 10
RUN the DebUGGET ...ttt ettt 11
Where to Learn More 12

Revision History 12




Efinity Debugger Tutorial

Introduction

@

The Efinity” software includes a hardware Debugger to probe signals in your FPGA design
via the JTAG interface. The Debugger includes two debug cores:

* You use a manual flow and the Profile Editor to configure Virtual I/O (vio) cores.

* You can use a manual flow or the Debug Wizard's automated flow to configure Logic
Analyzer (la) cores.

The following sections walk you through the Debugger's automated and manual flows.

Note: The Debugger tutorials require the Trion® T20 BGA256 Development Board and Efinity® software
v2019.3 or higher. These tutorials assume that you have already installed the Efinity® software and USB
driver for the board.

Tutorial: Automated Debugging Flow

This tutorial walks you through the Debugger automated flow using an example helloworld
design. This tutorial uses the Trion” T20 BGA256 Development Board, the GTKWave
waveform viewer, and assumes that you have working knowledge of the Efinity® software.

You add a Logic Analyzer debug core and configure it using the Debug Wizard.

Prepare the Tutorial Files

In this step you set up your environment and copy the Debugger tutorial design to your
working directory.

1. Run the Efinity setup script if you have not already done so:
* Linux: source <Efinity path>/bin/setup.sh
° Windows: <Efinity path>\bin\setup.bat

2. Copy the folder <Efinity path>/debugger/demo/helloworld-dbg to your
working directory.

3. Connect the Trion® T20 BGA256 Development Board to your computer using a USB
cable.

www.efinixinc.com 3



Efinity Debugger Tutoria

Create a Debug Profile

In this task you add the Logic Analyzer debug core and configure it.

1. Open the helloworld project in the helloworld-dbg directory.

2. Synthesize the design. You do not need to do a full compile; the Debug Wizard only uses
the post-map netlist.

3. Click the Debug Wizard icon in the main icon bar to launch it.

4. In the Signals from list, choose Elaborated Netlist to browse for signals in the pre-map
netlist, or Post-Map to use signals from the post-map netlist.

5. Select the 1ed and counter buses from the list on the left and use the > > button to
move them to the right. Leave the Probe Type at the default, which is DATA AND
TRIGGER.

6. Click Next. The wizard generates a debug profile.

7. Leave Enable "Auto Instantiation" turned on. This option enables the debug profile in
your project. Click Finish.

8. The software prompts you to recompile. Click OK.

9. Perform a full compile.

on page 3 on page 4 >

Program the T20 FPGA

0_1‘ Select Bitsteam (¥ Refresh USB Target @ Start Programming FPGA
010-=fll

You program the Trion” T20 FPGA on the development board using these steps:
1. Choose Tools > Open Debugger to launch the Debugger. The programming controls
are in the Program box.

2. The Trion T20 Development Board displays as the USB Target. If it does not, make sure
that the board is connected to your computer and click Refresh USB Targets.

3. Click the Select Image File button.
4. Browse to the outflow directory and choose < helloworld> .bit.

5. Click Start Programming. The console displays programming messages.

on page 4 on page 5 >

www.efinixinc.com 4



Efinity Debugger Tutorial

Run the Debugger

}70\ Connect Debugger OX\ Disconnect Debugger —L" Add Net

After you program the FPGA with the design containing the debug core, you can run the
Debugger to observe the values on the probed signals. In the Debugger:

1. Click Connect Debugger.

In the Trigger Setup tab, click Add Net.

Select led[7:0] and click OK.

Specity a Value of 00001111, which triggers when the LED output is 00001111.
Click Run. The Debugger waits for the trigger and then captures data.

When the Debugger finishes, it automatically opens the waveform in GTKWave

N kDN

Click Disconnect Debugger to stop the Debugger.

< on page 10

Tutorial: Manual Debugging Flow

This tutorial walks you through the Debugger manual flow using an example helloworld
design. This tutorial uses the Trion® T20 BGA256 Development Board, the GTKWave
waveform viewer, and assumes that you have working knowledge of the Efinity® software.

You add Logic Analyzer and Virtual I/O cores manually in the Debugger's Profile Editor
prespective.

Note: If you are switching from automated debugging flow to manual debugging
flow, you need to go to File > Edit Project > Debugger(tab) and deselect Debugger
Auto Instantiation.

Prepare the Tutorial Files

In this step you set up your environment and copy the Debugger tutorial design to your
working directory.

1. Run the Efinity setup script if you have not already done so:
* Linux: source <Efinity path>/bin/setup.sh
° Windows: <Efinity path>\bin\setup.bat

2. If you have not already done so, copy the folder < Efinity path>/debugger/demo/
helloworld-dbg to your working directory.

3. Connect the Trion® T20 BGA256 Development Board to your computer using a USB
cable.

on page 6 >

www.efinixinc.com 5



C

&

Efinity Debugger Tutorial

reate a Debug Profile

+  Add Debug Core & Add Probe S Add Source

In this task you add Virtual I/O and Logic Analyzer debug cores to a profile and configure
them:

*  You add the input signal(s) to control and the output signal(s) to observe to the Virtual I/

O core.
You add the wire, register, or signal to observe to Logic Analyzer core.

Remember to map the clock source after you instantiate the debug core.

1.
2.

7.

8.

Open the helloworld project in the helloworld-dbg directory.

Choose Tools > Open Debugger to launch the Debugger. Because your project does not

have a debug profile, the Debugger opens to the Profile Editor perspective.

. Click Add Debug Core > Virtual I/O to add a new core with the default Core name

(vio0)..
Add three probes (in) and three sources (out) with the following name and width settings
(leave the other settings at the defaults):

Name Type Width Description

counter Probe 26 Shows the values for
counter[25:0].

raddr Probe 4 Shows the values for
raddr[3:0].

led Probe 8 Shows the values
for the pattern on
led[7:0].

vio_reverse Source 1 Control the reverse
button.

vio_mux_sel Source 1 Control the

multipleser select.

vio_maddr Source 4 Control the memory

address maddr{3:0].

Click Add Debug Core > Logic Analyzer to add a second core with the default Core
name (1a0)..

Add three probes (in) with the same name and width settings as the probes in the VIO
core (leave the other settings at the defaults):

Name Type Width Description

counter Probe 26 Captures values in
counter[25:0]

raddr Probe 4 Captures the values
in maddr[3:0]

led Probe 8 Captures the values
in led[7:0]

Click Generate Debug RTL. The Debugger creates the file debug_top.v and template
files (debug_TEM PLATE.v and debug_TEMPLATE.vhd) in your project directory.

Open the debug_top.v file and rename edb_top as edb_top manual.

www.efinixinc.com

6




Efinity Debugger Tutoria

9. Close the Debugger.

on page 5 on page 7 >

Add Debug Code to Your Project

When you generate the debug code, the software copies the debug_top.v file to your project
directory. You need to add the file to your project, instantiate the RTL, and compile.

1. In the Efinity” main window, click the Project tab under the dashboard.

Right-click Design and choose Add.

Browse to your project directory.

Select the debug_top.v and click Open.

Add the JTAG User Tap block to the interface design.

A

a) Open the Interface Designer.

b) Select JTAG User Tap.

¢) Click Add Block.

d) Choose JTAG USERI1 as the JTAG Resource.
e) Generate SDC constraints.

f) Close the Interface Designer.

6. Edit the helloworld.v design to enable the debug code:

a) Add all of the JTAG input and output pins to the project top module (helloworld).
Refer to the JTAG User TAP block pin names in the Interface Designer for a full list
of pin names; alternatively, you can paste the following into the helloworld IO port
module:

input jtag_instl CAPTURE,
input jtag instl DRCK,
input jtag instl RESET,
input jtag_instl RUNTEST,
input jtag instl SEL,
input jtag instl SHIFT,
input jtag instl TCK,
input jtag instl TDI,
input jtag instl TMS,
input jtag instl UPDATE,
output jtag instl TDO,

b) Declare the following probe signal and width in the helloworld module:

wire vio reverse;
wire vio mux sel;
wire [AWIDTH-1:0] vio maddr;

¢) Change hardware pushbutton to the vio0 source

Old New

assign raddr = assign raddr =
counter [COUNTER SIZE-1:DELAY SIZE] (vio_mux_sel)? vio_maddr :
counter [COUNTER SIZE-1:DELAY SIZE]

d) Change hardware pushbutton to the vio0 source

Oold New

else if (~reverse) begin else if (~reverse || vio reverse)
begin

www.efinixinc.com 7




Efinity Debugger Tutoria

e) Instantiate the debug core in the project’s top module. You can copy the example code
from the generated debug TEMPLATE.v or debug TEMPLATE.vhd file in the
project folder and rename the module edb top to edb top manual or copy the
following code into the project’s top module.

edb_top manual edb top inst manual (
.bscan CAPTURE ( jtag instl CAPTURE ),
.bscan DRCK ( jtag_instl DRCK ),
.bscan RESET ( jtag instl RESET ),
.bscanﬁRUNTEST ( jtag instl RUNTEST ),
.bscan_SEL ( jtag instl SEL ),

.bscan SHIFT ( jtag_ instl SHIFT ),
.bscan TCK ( jtag instl TCK ),

.bscan TDI ( jtag instl TDI ),
.bscan_TMS ( jtag_ instl TMS ),

.bscan UPDATE ( jtag instl UPDATE ),
.bscan _TDO ( jtag instl TDO ),

.vio0 _clk ( clk ),

.vio0 counter ( counter ),

.vio0_ raddr ( raddr ),

.vio0 led ( led ),

.vio0 vio reverse ( vio reverse ),
.vio0 vio mux sel ( vio mux sel ),

.vio0 vio maddr ( vio maddr ) o
.1a0 clk ( clk ),

.1a0 counter ( counter ),
.1la0_raddr ( raddr ),

.1la0 led ( led )

)i

f) Save the helloworld.v
7. Compile the design.

@ Note: For advice on using an automated flow for adding a logic analyzer
core, refer to the "Debug Wizard" in the
Efinity Software User Guide.

@ Note: The project in <Efinity path>/debugger/demo/helloworld-dbg_GOLDEN
has performed steps 1-7 with the original helloworld project. This project is used
for the BRAM Initial Content Updater (see: "About the BRAM Initial Content
Updater" in Efinity Software User Guide.

on page 6 on
page 9 >

www.efinixinc.com 8


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE

Efinity Debugger Tutorial

Debugging with Multiple Manual Debug
Profiles

USER1 ~ User Tap

You can use multiple debug profiles within the same project. Each debugger profile must use
a different set of JTAG User Tap resources, and you must enable the profile in the Interface
Designer. The helloworld-dbg_MULTI_USERS uses JTAG User TAP 1 for the Virtual I/O
debugger profile (vio_debug_profile.json) and JTAG User TAP 2 for the Logic Analyzer
debugger profile (la_debug_profile.json).

1. Open the helloworld project in the < Efinity install path> /debugger/demo.helloworld-
dbg_ MULTI_USERS directory.

2. Compile the project.

3. Configure the FPGA using the debugger, JTAG mode, and the .bit file located in the
project's outflow directory.

4. Debug with the Logic Analyzer debugger profile:

a) Change to Perspectives > Profile Editor.

b) Click Import Profile.

¢) Choose the file la_debug_profile.json and click OK.
d) Change to the Debugger using Perspectives > Debug.
e) Change the User TAP to USER2.

f) Connect the debugger.

g) Disconnect the debugger when finished.

5. Debug with the Virtual I/O debugger profile:

a) Change to Perspectives > Profile Editor.

b) Click Import Profile.

¢) Choose the file vio_debug_profile.json and click OK.
d) Change to the Debugger using Perspectives > Debug.
e) Change the User TAP to USER1

f) Connect the debugger.

g) Disconnect the debugger when finished.

on page 7 on page 10 >

www.efinixinc.com 9



page 9

Efinity Debugger Tutorial

Program the T20 FPGA

0_{ Select Bitsteam (¥ Refresh USB Target @ Start Programming FPGA
010«

You program the Trion” T20 FPGA on the development board using these steps:
1. Choose Tools > Open Debugger to launch the Debugger. The programming controls
are in the Program box.

2. The Trion T20 Development Board displays as the USB Target. If it does not, make sure
that the board is connected to your computer and click Refresh USB Targets.

3. Click the Select Image File button.
4. Browse to the outflow directory and choose < helloworld> .bit.

5. Click Start Programming. The console displays programming messages.

on onpage 11 >

www.efinixinc.com 10



Efinity Debugger Tutorial

Run the Debugger

\C@ Connect Debugger }73 Disconnect Debugger —L" Add Trigger Condition

After you program the FPGA with the design containing the debug core, you can run the
Debugger to observe the values on the probed signals. In the Debugger:

1.

Ui A W N

Click Connect Debugger. The view opens to the 1a0 tab.

In the Trigger Setup tab, click Add Trigger Condition.

Choose led[7:0] and click OK.

Specity a value of 00001111, which triggers when the LED output is 00001111.

Click the vio0 tab. The Value fields show the data captured on the probes.

To reverse the LED blinking direction, change the Value for vio_reverse to 1 and press
Enter. To stop the LEDs blinking, change the Value for vio_mux_sel to 1 and press
Enter.

Click Disconnect Debugger to stop capturing data.

@ Note: The Comparator is a GUl-only feature. When the probe value is equal to the
compared value, the cell background turns green to indicate a match. If the values
do not match, the cell background turns red. By default, the compared values are
an empty string, with the cell background color not set.

Figure 1: Example of Debugger with Comparator in action

File Options Perspectives Help

Name Type Width Radix Value Control Comparator (@  Configuration
1 counter Probe 26 Hex ~ 293d8bo _ UsBTarget | Quad Rs232-HS I
1/ raddr Probe 4 Hex ~|a 2 USB Info 1D: 0403:6011
1 led Probe 8 Hex |03 _ICJ Bitstream  buntu/home/phyung/efinity/helloworld.bit ~ | ieoF225| | [ |9, ]| &
1|vio_reverse  Source 1 10 M e - _ Device Status (@) Last Updated: Mon Sep 3024 10:47:28 (~  [7]
1 vio_mux_sel - Source 1 Bin -0 Hex - _ O 10650275 - userL - | [% [
o madtr s+ = v I

Mon September 30 24 10:47:17 - Board Profile: Generic Board |~
Profile Using FT4232

Mon September 30 24 10:47:18 - Valid device ID found:
0x10660A79

Mon September 30 24 10:47:18 - Board Profile: Generic Board
Profile Using FT4232

Mon September 30 24 10:47:18 - Using FTDI URL (SPT = ftdi://
0x0403:0x6011:0:1/1, ITAG = ftdi://0x0403:0x6011:0:2/1)

Mon September 30 24 10:47:19 - jtag programming started!

Mon September 30 24 10:47:19 - JTAG Programming on ftdi://
0x0403:0x6011:0:2/1

Mon September 30 24 10:47:19 - Programming '//wsl.localhost/
Ubuntu/home/phyung/efinity/helloworld.bit' via JTAG at freq

6.0 MH;

Mon September 30 24 10:47:19 - Device ID read from JTAG:
0x10660A79

Mon September 30 24 10:47:24 - ... finished with JTAG

programming

Mon September 30 24 10:47:25 - Detecting device status...
Mon September 30 24 10:47:28 - Device is in user mode!
Mon September 30 24 10:47:32 - Connecting to URL: ftdi://
0x0403:0x6011:0:2/1

. Mon September 30 24 10:47:32 - Connecting to JTAG_TAP: efx_ti
vioo | la0 s

Note: Debug profiles are paired to their respective generated debug core via a
UUID key. Ensure that the correct debug profile is selected when connecting to the
debugger.

< Program the T20 FPGA on page 10

www.efinixinc.com 11



Efinity Debugger Tutorial

Where to Learn More

The Efinity” software includes documentation as PDF user guides and on-line HTML help.
This documentation is provided with the software. You can also access the latest versions of
PDF documentation in the Support Center:

. Efinity Software User Guide

. Efinity Synthesis User Guide

. Efinity Timing Closure User Guide

. Efinity Software Installation User Guide
. Efinity Trion Tutorial

. Efinity Debugger Tutorial

. Titanium Interfaces User Guide

. Trion Interfaces User Guide

. Efinity Interface Designer Python API

o Quantum® Trion Primitives User Guide

Quantum® Titanium Primitives User Guide
J Quantum® Primitives User Guide

In addition to documentation, Efinix field application engineers have created a series of videos
to help you learn about aspects of the software. You can view these videos in the Support
Center.

Revision History

Table 1: Revision History

Date Version Description
March 2025 1.4 Notes added to on page 5 and
on page 11.(DOC-2232)

November 2024 1.3 Added paragraph explaining the functionality of the Comparator,
as well as an example illustration. (DOC-2153)

September 2024 1.2 Major revision of on page 7.
(DOC-1848)
Added new section:

on page 9. (DOC-1848)

Rearranged the tables in topic on page 6.

December 2022 1.1 Corrected the source and probe names for the manual flow's Run
the Debugger topic.

August 2022 1.0 Initial release.

The content in this tutorial originally appeared in the Efinity Trion
Tutorial.

www.efinixinc.com 12


https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SOFTWARE
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-SYNTH
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TIMING
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-INSTALL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTORIAL
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-TUTDBG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TINTF
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PYAPI
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-EFN-PRIMITIVES
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TIPRIM
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TZPRIM

	Contents
	Introduction
	Tutorial: Automated Debugging Flow
	Prepare the Tutorial Files
	Create a Debug Profile
	Program the T20 FPGA
	Run the Debugger

	Tutorial: Manual Debugging Flow
	Prepare the Tutorial Files
	Create a Debug Profile
	Add Debug Code to Your Project
	Debugging with Multiple Manual Debug Profiles
	Program the T20 FPGA
	Run the Debugger

	Where to Learn More
	Revision History

